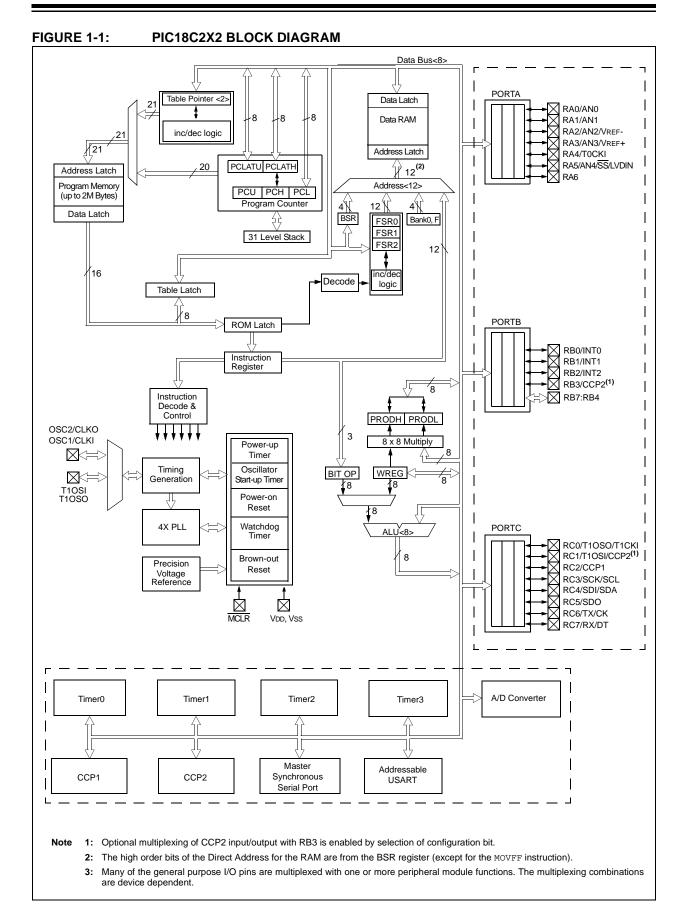


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lc452-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Oscillator	Power-up	(2)	- (2)	Wake-up from	
Configuration	PWRTE = 0PWRTE = 1		Brown-out ⁽²⁾	SLEEP or Oscillator Switch	
HS with PLL enabled ⁽¹⁾	72 ms + 1024Tosc + 2ms	1024Tosc + 2 ms	72 ms + 1024Tosc + 2ms	1024Tosc + 2 ms	
HS, XT, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc	
EC	72 ms	_	72 ms	—	
External RC	72 ms		72 ms	—	

Note 1: 2 ms is the nominal time required for the 4x PLL to lock.

2: 72 ms is the nominal Power-up Timer delay.

REGISTER 3-1: RCON REGISTER BITS AND POSITIONS

R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
IPEN	LWRT	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Note: See Register 4-3 on page 53 for bit definitions.

TABLE 3-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	00-1 1100	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	00-u uuuu	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	0u-0 uuuu	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	0u-u uull	u	u	u	u	u	u	1
Stack Underflow Reset during normal operation	0000h	0u-u uull	u	u	u	u	u	1	u
MCLR Reset during SLEEP	0000h	00-u 10uu	u	1	0	u	u	u	u
WDT Reset	0000h	0u-u 01uu	1	0	1	u	u	u	u
WDT Wake-up	PC + 2	uu-u 00uu	u	0	0	u	u	u	u
Brown-out Reset	0000h	0u-1 11u0	1	1	1	1	0	u	u
Interrupt wake-up from SLEEP	PC + 2 ⁽¹⁾	uu-u 00uu	u	1	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x000008h or 0x000018h).

Register Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt			
TOSU	242	442	252	452	0 0000	0 0000	0 uuuu (3)
TOSH	242	442	252	452	0000 0000	0000 0000	uuuu uuuu (3)
TOSL	242	442	252	452	0000 0000	0000 0000	uuuu uuuu (3)
STKPTR	242	442	252	452	00-0 0000	00-0 0000	uu-u uuuu (3)
PCLATU	242	442	252	452	0 0000	0 0000	u uuuu
PCLATH	242	442	252	452	0000 0000	0000 0000	uuuu uuuu
PCL	242	442	252	452	0000 0000	0000 0000	PC + 2 ⁽²⁾
TBLPTRU	242	442	252	452	00 0000	00 0000	uu uuuu
TBLPTRH	242	442	252	452	0000 0000	0000 0000	սսսս սսսս
TBLPTRL	242	442	252	452	0000 0000	0000 0000	uuuu uuuu
TABLAT	242	442	252	452	0000 0000	0000 0000	uuuu uuuu
PRODH	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
PRODL	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu
INTCON	242	442	252	452	0000 000x	0000 000u	uuuu uuuu (1)
INTCON2	242	442	252	452	1111 -1-1	1111 -1-1	uuuu -u-u (1)
INTCON3	242	442	252	452	11-0 0-00	11-0 0-00	uu-u u-uu (1)
INDF0	242	442	252	452	N/A	N/A	N/A
POSTINC0	242	442	252	452	N/A	N/A	N/A
POSTDEC0	242	442	252	452	N/A	N/A	N/A
PREINC0	242	442	252	452	N/A	N/A	N/A
PLUSW0	242	442	252	452	N/A	N/A	N/A
FSR0H	242	442	252	452	0000	0000	uuuu
FSR0L	242	442	252	452	XXXX XXXX	uuuu uuuu	սսսս սսսս
WREG	242	442	252	452	XXXX XXXX	uuuu uuuu	սսսս սսսս
INDF1	242	442	252	452	N/A	N/A	N/A
POSTINC1	242	442	252	452	N/A	N/A	N/A
POSTDEC1	242	442	252	452	N/A	N/A	N/A
PREINC1	242	442	252	452	N/A	N/A	N/A
PLUSW1	242	442	252	452	N/A	N/A	N/A

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

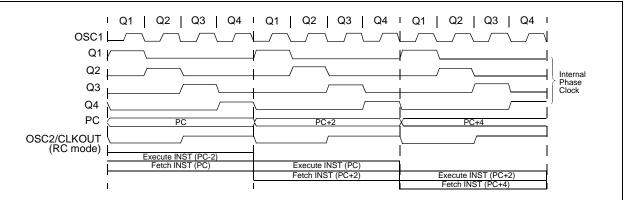
- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- 6: The long write enable is only reset on a POR or MCLR Reset.
- 7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as '0'.

4.3 Fast Register Stack

A "fast interrupt return" option is available for interrupts. A Fast Register Stack is provided for the STATUS, WREG and BSR registers and are only one in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the registers are then loaded back into the working registers, if the FAST RETURN instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.


If no interrupts are used, the fast register stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a FAST CALL instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1	
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

FIGURE 4-4: CLOCK/INSTRUCTION CYCLE

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCH register. The Upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATU register.

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSB of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see Section 4.8.1).

4.5 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 4-4.

4.7.1 TWO-WORD INSTRUCTIONS

The PIC18CXX2 devices have four two-word instructions: MOVFF, CALL, GOTO and LFSR. The second word of these instructions has the 4 MSBs set to 1's and is a special kind of NOP instruction. The lower 12bits of the second word contain data to be used by the instruction. If the first word of the instruction is executed, the data in the second word is accessed. If the second word of the instruction is executed by itself (first word was skipped), it will execute as a NOP. This action is necessary when the two-word instruction is preceded by a conditional instruction that changes the PC. A program example that demonstrates this concept is shown in Example 4-3. Refer to Section 19.0 for further details of the instruction set.

EXAMPLE 4-3:	TWO-WORD INSTRUCTIONS

CASE 1:			
Object Code	Source Cod	le	
0110 0110 0000 0000	TSTFSZ	REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF	REG1, REG2	; No, execute 2-word instruction
1111 0100 0101 0110			; 2nd operand holds address of REG2
0010 0100 0000 0000	ADDWF	REG3	; continue code
CASE 2:			
Object Code	Source Cod	le	
0110 0110 0000 0000	TSTFSZ	REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF	REG1, REG2	; Yes
1111 0100 0101 0110			; 2nd operand becomes NOP
0010 0100 0000 0000	ADDWF	REG3	; continue code

4.8 Lookup Tables

Lookup tables are implemented two ways. These are:

- Computed GOTO
- Table Reads

4.8.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL).

A lookup table can be formed with an ADDWF PCL instruction and a group of RETLW 0xnn instructions. WREG is loaded with an offset into the table, before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW 0xnn instructions that returns the value 0xnn to the calling function.

The offset value (value in WREG) specifies the number of bytes that the program counter should advance.

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

4.8.2 TABLE READS/TABLE WRITES

A better method of storing data in program memory allows 2 bytes of data to be stored in each instruction location.

Lookup table data may be stored 2 bytes per program word by using table reads and writes. The table pointer (TBLPTR) specifies the byte address and the table latch (TABLAT) contains the data that is read from, or written to program memory. Data is transferred to/from program memory one byte at a time.

A description of the Table Read/Table Write operation is shown in Section 5.0.

5.1 Control Registers

Several control registers are used in conjunction with the ${\tt TBLRD}$ and ${\tt TBLWT}$ instructions. These include the:

- TBLPTR registers
- TABLAT register
- RCON register

5.1.1 RCON REGISTER

The LWRT bit specifies the operation of Table Writes to internal memory when the VPP voltage is applied to the MCLR pin. When the LWRT bit is set, the controller continues to execute user code, but long Table Writes are allowed (for programming internal program memory) from user mode. The LWRT bit can be cleared only by performing either a POR or MCLR Reset.

REGISTER 5-1: RCON REGISTER (ADDRESS: FD0h)

R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
IPEN	LWRT	—	RI	TO	PD	POR	BOR
bit 7							bit 0

	bit 7	IPEN:	Interrupt	Prioritv	Enable bit
--	-------	--------------	-----------	----------	------------

- 1 = Enable priority levels on interrupts
- 0 = Disable priority levels on interrupts (16CXXX compatibility mode)
- bit 6 LWRT: Long Write Enable bit
 - 1 = Enable TBLWT to internal program memory
 - 0 = Disable TBLWT to internal program memory.
 - Note:Only cleared on a POR or MCLR Reset.This bit has no effect on TBLWTs to external program memory.
- bit 5 Unimplemented: Read as '0'
- bit 4 RI: RESET Instruction Flag bit
 - 1 = No RESET instruction occurred
 - 0 = A RESET instruction occurred
- bit 3 TO: Time-out bit
 - 1 = After power-up, CLRWDT instruction, or SLEEP instruction
 - 0 = A WDT time-out occurred
- bit 2 **PD:** Power-down bit
 - 1 = After power-up or by the CLRWDT instruction
 - 0 = By execution of the SLEEP instruction
- bit 1 POR: Power-on Reset Status bit
 - 1 = No Power-on Reset occurred
 - 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
- bit 0 BOR: Brown-out Reset Status bit
 - 1 = No Brown-out Reset or POR Reset occurred
 - 0 = A Brown-out Reset or POR Reset occurred
 - (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

8.0 I/O PORTS

Depending on the device selected, there are either five ports, or three ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)

The data latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

8.1 PORTA, TRISA and LATA Registers

PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Note:	On a Power-on Reset, these pins are con-
	figured as digital inputs.

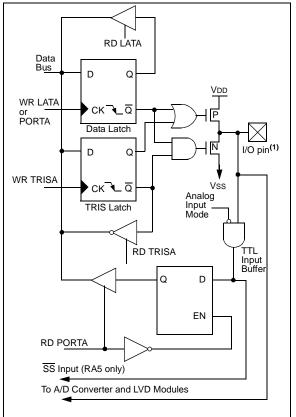
Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register reads and writes the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

The other PORTA pins are multiplexed with analog inputs and the analog VREF+ and VREF- inputs. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.


The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 8-1: INITIALIZING PORTA

CLRF PORTA	; Initialize PORTA by ; clearing output
	; data latches
CLRF LATA	; Alternate method
	; to clear output
	; data latches
MOVLW 0x07	; Configure A/D
MOVWF ADCON1	; for digital inputs
MOVLW 0xCF	; Value used to
	; initialize data
	; direction
MOVWF TRISA	; Set RA<3:0> as inputs
	; RA<5:4> as outputs

FIGURE 8-1:

BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

TABLE 8-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit2	TTL	Input/output or analog input or VREF
RA3/AN3/VREF+	bit3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4/LVDIN	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input, or low voltage detect input.
OSC2/CLKO/RA6	bit6	TTL	OSC2 or clock output or I/O pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 8-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
PORTA	—	RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
LATA		Latch A	Data Outp	out Regis	ster				xx xxxx	uu uuuu
TRISA		PORTA	Data Dire	ction Reg	gister				11 1111	11 1111
ADCON1	ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

 $\ensuremath{\textcircled{}^\circ}$ 1999-2013 Microchip Technology Inc.

13.3 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on pin RC2/CCP1. An event is defined as:

- · every falling edge
- every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

13.3.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 is configured as an out-
	put, a write to the port can cause a capture condition.
	oonalion.

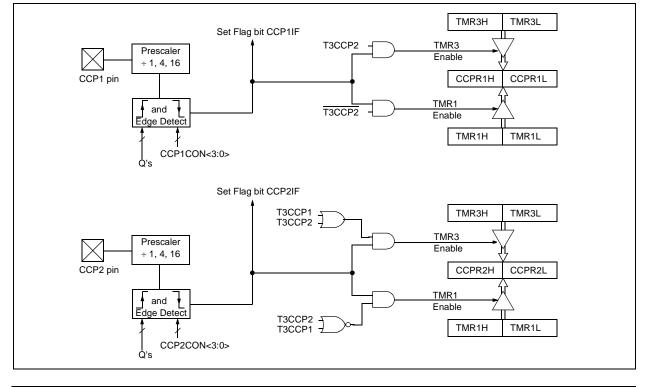
13.3.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (either Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with each CCP module is selected in the T3CON register.

13.3.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit, CCP1IF, following any such change in operating mode.

13.3.4 CCP PRESCALER


There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 13-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 13-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON, F	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and CCP ON
MOVWF	CCP1CON	;	Load CCP1CON with
		;	this value

FIGURE 13-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

TABLE 15-4:	BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)
-------------	---

PAUD	Fosc = 40 MHz			F	Fosc = 20 MHz			Fosc = 16 MHz			Fosc = 10 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	NA		_	NA	_	_	NA	_	_	NA	_	_	
1.2	NA	—	—	1.221	+1.73	255	1.202	+0.16	207	1.202	+0.16	129	
2.4	2.44	-1.70	255	2.404	+0.16	129	2.404	+0.16	103	2.404	+0.16	64	
9.6	9.62	-0.16	64	9.469	-1.36	32	9.615	+0.16	25	9.766	+1.73	15	
19.2	18.94	+1.38	32	19.53	+1.73	15	19.23	+0.16	12	19.53	+1.73	7	
76.8	78.13	-1.70	7	78.13	+1.73	3	83.33	+8.51	2	78.13	+1.73	1	
96	89.29	+7.52	6	104.2	+8.51	2	NA	—	—	NA	—	—	
300	312.50	-4.00	1	312.5	+4.17	0	NA	_	—	NA	—	—	
500	625.00	-20.00	0	NA	—		NA		—	NA	—	—	
HIGH	2.44	—	255	312.5	_	0	250	—	0	156.3	—	0	
LOW	625.00	—	0	1.221	—	255	0.977	—	255	0.6104	—	255	

DAUD	Fosc = 7.15909 MHz		Fos	Fosc = 5.0688 MHz			Fosc = 4 MHz			Fosc = 3.579545 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	NA		_	0.31	+3.13	255	0.3005	-0.17	207	0.301	+0.23	185
1.2	1.203	+0.23	92	1.2	0	65	1.202	+1.67	51	1.190	-0.83	46
2.4	2.380	-0.83	46	2.4	0	32	2.404	+1.67	25	2.432	+1.32	22
9.6	9.322	-2.90	11	9.9	+3.13	7	NA		—	9.322	-2.90	5
19.2	18.64	-2.90	5	19.8	+3.13	3	NA	_	—	18.64	-2.90	2
76.8	NA	_	_	79.2	+3.13	0	NA	_	_	NA	_	_
96	NA	—	—	NA	_	—	NA	_	—	NA	_	_
300	NA	_	_									
500	NA	—	—	NA	_	—	NA	_	—	NA	_	_
HIGH	111.9	—	0	79.2	_	0	62.500	_	0	55.93	_	0
LOW	0.437	—	255	0.3094	_	255	3.906		255	0.2185		255

DAUD	F	osc = 1	MHz	Fos	SC = 32.76	68 kHz
BAUD RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	+0.16	51	0.256	-14.67	1
1.2	1.202	+0.16	12	NA	_	_
2.4	2.232	-6.99	6	NA	—	—
9.6	NA	—	—	NA	—	—
19.2	NA	_	_	NA	_	—
76.8	NA	_	—	NA	_	_
96	NA	_	—	NA	_	_
300	NA	_	—	NA	_	_
500	NA	_	_	NA	—	—
HIGH	15.63	_	0	0.512	—	0
LOW	0.0610	—	255	0.0020	—	255

NOTES:

address (HERE)

address (Jump)

0; address (HERE+2)

BTG		Bit Toggl	e f		ВС	v	Branch if	Overflow			
Synt	ax:	[<i>label</i>] B	STG f,b[,a]		Sy	ntax:	[<i>label</i>] B	OV n			
Oper	rands:	0 ≤ f ≤ 25	5		Ор	erands:	-128 ≤ n ≤	$-128 \le n \le 127$			
		0 ≤ b < 7 a ∈ [0,1]			Ор	eration:		if overflow bit is '1' $(PC) + 2 + 2n \rightarrow PC$			
Oper	ration:	$(\overline{f} < b >) \rightarrow 1$	f 		Sta	atus Affected:	None				
Statu	us Affected:	None			En	coding:	1110	0100 nn	nn nnnn		
Enco	oding:	0111	bbba f	fff ffff		scription:	If the Ove	rflow bit is '1	, then the		
Desc	cription:	inverted. I will be sel value. If 'a	ata memory I If 'a' is 0, the ected, overrid a' = 1, then th as per the BS	Access Bank ding the BSR le bank will b			The 2's co added to t have incre instruction PC+2+2n.	he PC. Since emented to fe to the new ad This instrue			
Word	ds:	1					a two-cycl	e instruction			
Cycl	es:	1			Wo	ords:	1				
QC	vcle Activity				Су	cles:	1(2)				
	Q1	Q2	Q3	Q4		Cycle Activity	<i>r</i> :				
	Decode	Read register 'f'	Process Data	Write register 'f'	lf -	Jump: Q1	Q2	Q3	Q4		
Exar	nole:		PORTC, 4,			Decode	Read literal 'n'	Process Data	Write to PC		
	Before Instru			•		No	No	No	No		
	PORTC		0101 [0x75]		14	operation	operation	operation	operation		
	After Instruc	tion:			If	No Jump:	00	00	04		
	PORTC	= 0110 (0101 [0x65]			Q1 Decode	Q2 Read literal	Q3 Process	Q4 No		
						Decode	'n'	Data	operation		
					<u>Ex</u>	ample:	HERE	BOV Jump			

Before Instruction PC

After Instruction If Overflow=

=

PC =

If Overflow= PC =

1;

DECFSZ		Decreme	Decrement f, skip if 0						
Syntax:		[label]	[label] DECFSZ f [,d [,a]]						
Operands:		$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Operation:		(f) – 1 \rightarrow c skip if rest							
Status Affect	ed:	None							
Encoding:		0010	11da	ffff	ffff				
Description:		placed in V result is pl (default). If the resu tion, which discarded instead, m instruction Bank will b the BSR v bank will b	decremented. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f'						
Words:		BSR value (default). 1							
Cycles: Q Cycle Act	ivity:	1(2) Note: 3 c by	-	skip and d instruc					
Q Oycle Act	ivity.	Q2	Q3	3	Q4				
Decod	е	Read register 'f'	Proce Data	ss V	Write to estination				
If skip:									
Q1		Q2	Q3	5	Q4				
No		No	No		No				
operatio		operation	operat		peration				
If skip and fo	VIIOW	-	_		<u>.</u>				
Q1		Q2	Q3	5 T	Q4				
No operatio	n	No operation	No operat	ion	No peration				
No		No	No		No				
operatio	on	operation	operat	ion o	peration				
Example:	Example:		DECFS GOTO		F, 1, 1)P				
Before In PC After Ins CNT If	cnt	= Addres ion = CNT - = 0;							
If	PC CNT PC	≠ 0;	s (CON s (HER						

DCFSNZ	Decrement f, skip if not 0							
Syntax:	[label] D	CFSNZ f[,	d [,a]					
Operands:	$0 \le f \le 255$	5						
	d ∈ [0,1]							
Onerting	a ∈ [0,1]	14						
Operation:	(f) – 1 \rightarrow c skip if resu							
Status Affected:	None							
Encoding:	0100	11da fff	f ffff					
Description:	remented. placed in V result is pl (default). If the resu instruction fetched, is executed i cycle instr Access Ba overriding then the b	The contents of register 'f' are dec- remented. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f'						
Words:	рег ше во 1	SR value (de	auit).					
Cycles:	1(2)							
Q Cycle Activity	by	ycles if skip a a 2-word inst						
Q1	Q2	Q3	Q4					
Decode	Read	Process	Write to					
	register 'f'	Data	destination					
If skip:	00	00	0.4					
Q1	Q2	Q3	Q4					
No operation	No operation	No operation	No operation					
If skip and follow		•	operation					
Q1	Q2	Q3	Q4					
No	No	No	No					
operation	operation	operation	operation					
No	No	No	No					
operation	operation	operation	operation					
Example:	ZERO	DCFSNZ TEM :	IP, 1, 0					
Before Instr	uction							
TEMP	=	?						
After Instruc		ר האיםית						
TEMP If TEM	= P =	TEMP - 1, 0;						
PC If TEM	= P ≠	Address 0;	(ZERO)					
PC	₽ ≠ =	0; Address	(NZERO)					

IOR	LW	Inclusive	Inclusive OR literal with WREG						
Synt	tax:	[label]	IORLW	k					
Ope	rands:	$0 \leq k \leq 255$							
Operation: (WREG) .OR. $k \rightarrow WREG$									
State	us Affected:	N,Z							
Enc	oding:	0000	1001	kkkk	kkkk				
Des	cription:	/REG a iteral 'k WREC							
Wor	ds:	1							
Cycl	es:	1							
QC	Cycle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read literal 'k'	Proce Data		Write to WREG				
Example: Before Instruc		IORLW	0x35						
	WREG After Instruct	= 0x9A							

WREG = 0xBF

IORWF	Inclusive OR WREG with f						
Syntax:	[label]	IORWF	f [,d	[,a]			
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	(WREG) .	OR. (f) -	→ dest	t			
Status Affected:	N,Z						
Encoding:	0001	00da	ffff	ffff			
	'f'. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).						
	(default).			value			
Words:				value			
Words: Cycles:	(default).			value			
	(default). 1			value			
Cycles:	(default). 1	Q3		Q4			
Cycles: Q Cycle Activity:	(default). 1 1	·	SS				
Cycles: Q Cycle Activity: Q1	(default). 1 1 Q2 Read register 'f'	Q3 Proce	SS a	Q4 Write to			

Delore instruction							
RESULT	=	0x13					
WREG	=	0x91					
After Instruct	ion						
RESULT	=	0x13					

TBL	RD	Table Read	d							
Synt	ax:	[label]	TBLRD (*; *+; *-; +	-*)					
Ope	rands:	None	None							
Ope	ration:	if TBLRD *	if TBLRD *,							
			(Prog Mem (TBLPTR)) \rightarrow TABLAT;							
			TBLPTR - No Change; if TBLRD *+,							
				$PTR)) \rightarrow $	TABLAT;					
		•		TBLPTR;						
		if TBLRD *· (Prog M		$PTR)) \rightarrow $	TABI AT'					
			R) -1 \rightarrow		17 (BE) (1,					
		if TBLRD +								
				TBLPTR; PTR)) \rightarrow	ταρί ατ.					
State	us Affected			· · · ()) →	IADLAI,					
	oding:		0000	0000	10nn					
LIIC	Julig.	0000	0000	0000	nn=0 *					
					=1 *+ =2 *-					
					=2 +*					
Dese	cription:	This instruc	ction is us	sed to rea	d the					
		contents of	-	-						
		address the pointer call								
		is used.								
		The TBLPT								
		to each byt TBLPTR ha								
				Least Sig	-					
				n Memory	-					
		TBLPT	[R[0] = 1	Most Sig	nificant					
		Byte o	f Prograr	n Memory	Word					
		The TBLRD value of TE			odify the					
		 no chang 	ge							
		 post-incr 	ement							
		 post-dec 								
		 pre-incre 	ment							
Wor		1								
Cycl		2								
QC	ycle Activit		•••	-						
	Q1	Q2	Q3	Q						
	Decode	No operation	No operation	n opera						
	No	No	No	N						
	operation	operation	operation		ation					

TBLRD	Table Read	d (co	ont'd)
Example 1:	TBLRD *+	;	
Before Instru	ction		
TABLAT TBLPTR MEMORY (0x00A356)	= = =	0x55 0x00A356 0x34
After Instruct	ion		
TABLAT TBLPTR		=	0x34 0x00A357
Example 2:	TBLRD +*	;	
Before Instru	ction		
	0x01A357) 0x01A358)	= = =	0xAA 0x01A357 0x12 0x34
After Instruct	ion		
TABLAT TBLPTR		=	0x34 0x01A358

operation (Read Program Memory)

operation

operation

operation (Write TABLAT)

20.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
- ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD for PIC16F87X
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

20.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

20.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:


- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

20.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

Note:

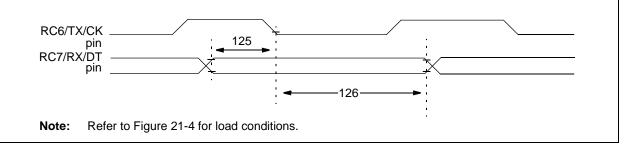


TABLE 21-19: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Refer to Figure 21-4 for load conditions.

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)					
		Clock high to data out valid	PIC18 C XXX	_	40	ns	
			PIC18LCXXX		100	ns	
121	Tckrf	Clock out rise time and fall time	PIC18 C XXX	_	25	ns	
		(Master mode)	PIC18LCXXX	_	50	ns	
122	Tdtrf	Data out rise time and fall time	PIC18CXXX	_	25	ns	
			PIC18LCXXX		50	ns	

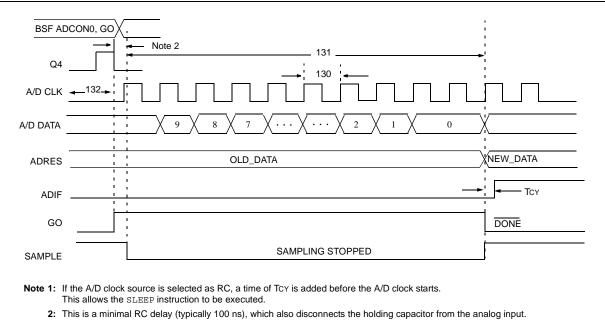

FIGURE 21-21: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 21-20: USART SYNCHRONOUS RECEIVE REQUIREMENTS

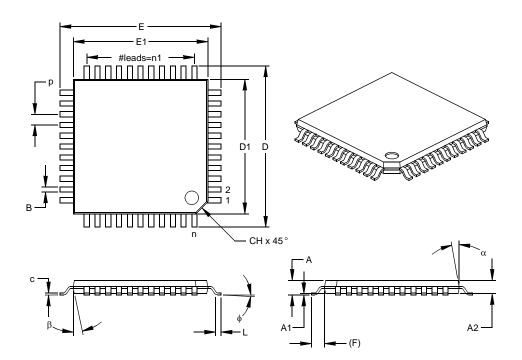
Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (MASTER & SLAVE) Data hold before CK \downarrow (DT hold time)	10		20	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	10		ns ns	

TABLE 21-22: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions
130	TAD	A/D clock period	A/D clock period PIC18 C XXX		20 ⁽⁵⁾	μS	Tosc based, VREF $\geq 3.0V$
			PIC18LCXXX	3.0	20 ⁽⁵⁾	μS	Tosc based, VREF full range
			PIC18CXXX	2.0	6.0	μS	A/D RC mode
			PIC18LCXXX	3.0	9.0	μS	A/D RC mode
131	TCNV	Conversion time (not including acquisiti	11	12	TAD		
132	TACQ	Acquisition time (Note	15 10		μs μs	-40°C ≤ Temp ≤ 125°C 0°C ≤ Temp ≤ 125°C	
135	Tswc	Switching Time from c	onvert \rightarrow sample	—	(Note 4)		
136	Тамр	Amplifier settling time	(Note 2)	1	_	μs	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 16.0 for minimum conditions, when input voltage has changed more than 1 LSb.


3: The time for the holding capacitor to acquire the "New" input voltage, when the voltage changes full scale after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (*Rs*) on the input channels is 50Ω .

4: On the next Q4 cycle of the device clock.

5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

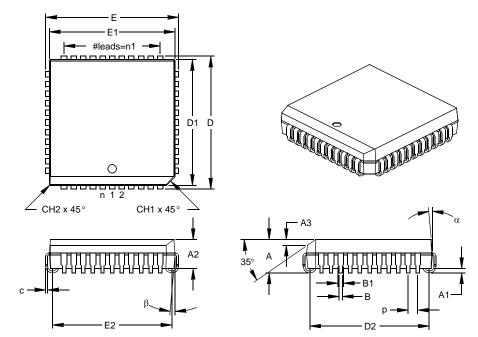
44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	ts INCHES			MILLIMETERS*		
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.031			0.80	
Pins per Side	n1		11			11	
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039		1.00		
Foot Angle	¢	0	3.5	7	0	3.5	7
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25
Overall Length	D	.463	.472	.482	11.75	12.00	12.25
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.012	.015	.017	0.30	0.38	0.44
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter

§ Significant Characteristic


Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026

Drawing No. C04-076

44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units INCHES*			MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.050			1.27	
Pins per Side	n1		11			11	
Overall Height	Α	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	Е	.685	.690	.695	17.40	17.53	17.65
Overall Length	D	.685	.690	.695	17.40	17.53	17.65
Molded Package Width	E1	.650	.653	.656	16.51	16.59	16.66
Molded Package Length	D1	.650	.653	.656	16.51	16.59	16.66
Footprint Width	E2	.590	.620	.630	14.99	15.75	16.00
Footprint Length	D2	.590	.620	.630	14.99	15.75	16.00
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-047

Drawing No. C04-048