

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	· ·
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lc452t-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number DIP SOIC		Pin	Buffer	Description
Pin Name			Туре	Туре	Description
					PORTB is a bi-directional I/O port. PORTB can be software
					programmed for internal weak pull-ups on all inputs.
RB0/INT0	21	21			
RB0			I/O	TTL	Digital I/O.
INT0			Ι	ST	External Interrupt 0.
RB1/INT1	22	22			
RB1			I/O	TTL	
INT1			Ι	ST	External Interrupt 1.
RB2/INT2	23	23			
RB2			I/O	TTL	Digital I/O.
INT2			I	ST	External Interrupt 2.
RB3/CCP2	24	24			
RB3			I/O	TTL	Digital I/O.
CCP2			I/O	ST	Capture2 input, Compare2 output, PWM2 output.
RB4	25	25	I/O	TTL	Digital I/O.
					Interrupt-on-change pin.
RB5	26	26	I/O	TTL	Digital I/O.
					Interrupt-on-change pin.
RB6	27	27	I/O	TTL	Digital I/O.
					Interrupt-on-change pin.
			Ι	ST	ICSP programming clock.
RB7	28	28	I/O	TTL	Digital I/O.
					Interrupt-on-change pin.
			I/O	ST	ICSP programming data.
Legend: TTL = TTL	compa	tible inp	ut		CMOS = CMOS compatible input or output

PIC18C2X2 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-2:**

ST = Schmitt Trigger input with CMOS levels I = Input O = Output

OD = Open Drain (no P diode to VDD)

P = Power

	Pi	n Numt	per	Pin Buffer		
Pin Name	DIP	PLCC	TQFP	Type	Buffer Type	Description
		1 200	14.1			PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32			
RC0				I/O	ST	Digital I/O.
T1OSO				0	_	Timer1 oscillator output.
T1CKI				Ι	ST	Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2	16	18	35			
RC1				I/O	ST	Digital I/O.
T1OSI					CMOS	Timer1 oscillator input.
CCP2	47	40		I/O	ST	Capture2 input, Compare2 output, PWM2 output.
RC2/CCP1 RC2	17	19	36	I/O	ST	Digital I/O
CCP1				1/O 1/O	ST	Digital I/O. Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	"0	01	
RC3	10	20	57	I/O	ST	Digital I/O.
SCK				I/O	ST	Synchronous serial clock input/output for
						SPI mode.
SCL				I/O	ST	Synchronous serial clock input/output for
						I ² C mode.
RC4/SDI/SDA	23	25	42			
RC4				I/O	ST	Digital I/O.
SDI SDA				I I/O	ST ST	SPI Data In. I ² C Data I/O.
	24	20	43	1/0	31	T C Data 1/O.
RC5/SDO RC5	24	26	43	I/O	ST	Digital I/O.
SDO				0	_	SPI Data Out.
RC6/TX/CK	25	27	44	-		
RC6	20		••	I/O	ST	Digital I/O.
ТХ				0	_	USART Asynchronous Transmit.
СК				I/O	ST	USART Synchronous Clock (see related RX/DT).
RC7/RX/DT	26	29	1			
RC7				I/O	ST	Digital I/O.
RX					ST	USART Asynchronous Receive.
		41.1.1		I/O	ST	USART Synchronous Data (see related TX/CK).
Legend: TTL = TTL ST = Schn						OS = CMOS compatible input or output

PIC18C4X2 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-3:**

ST = Schmitt Trigger input with CMOS levels I = Input

O = Output

P = Power

OD = Open Drain (no P diode to VDD)

3.0 RESET

The PIC18CXX2 differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) Watchdog Timer (WDT) Reset (during normal operation)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

Most registers are unaffected by a RESET. Their status is unknown on POR and unchanged by all other RESETS. The other registers are forced to a "RESET state" on Power-on Reset, MCLR, WDT Reset, Brownout Reset, MCLR Reset during SLEEP, and by the RESET instruction. Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different RESET situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the RESET. See Table 3-3 for a full description of the RESET states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The Enhanced MCU devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

MCLR pin is not driven low by any internal RESETS, including WDT.

3.1 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected. To take advantage of the POR circuitry, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 3-2.

When the device starts normal operation (i.e., exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

FIGURE 3-2: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

ing into MCLR from external capacitor C in the event of MCLR/VPP pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

3.2 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (parameter #33) only on power-up from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameter #33 for details.

3.3 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

3.4 PLL Lock Time-out

With the PLL enabled, the time-out sequence following a Power-on Reset is different from other oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator startup time-out (OST).

3.5 Brown-out Reset (BOR)

A configuration bit, BOREN, can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below parameter D005 for greater than parameter #35, the brown-out situation will reset the chip. A RESET may not occur if VDD falls below parameter D005 for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will then be invoked and will keep the chip in RESET an additional time delay (parameter #33). If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute the additional time delay.

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked after the POR time delay has expired. Then, OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC18CXXX device operating in parallel.

Table 3-2 shows the RESET conditions for some Special Function Registers, while Table 3-3 shows the RESET conditions for all the registers.

Register	Арр	olicable	e Devi	ces	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
TOSU	242	442	252	452	0 0000	0 0000	0 uuuu (3)	
TOSH	242	442	252	452	0000 0000	0000 0000	uuuu uuuu (3)	
TOSL	242	442	252	452	0000 0000	0000 0000	uuuu uuuu (3)	
STKPTR	242	442	252	452	00-0 0000	00-0 0000	uu-u uuuu (3)	
PCLATU	242	442	252	452	0 0000	0 0000	u uuuu	
PCLATH	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
PCL	242	442	252	452	0000 0000	0000 0000	PC + 2 ⁽²⁾	
TBLPTRU	242	442	252	452	00 0000	00 0000	uu uuuu	
TBLPTRH	242	442	252	452	0000 0000	0000 0000	սսսս սսսս	
TBLPTRL	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
TABLAT	242	442	252	452	0000 0000	0000 0000	uuuu uuuu	
PRODH	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PRODL	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu	
INTCON	242	442	252	452	0000 000x	0000 000u	սսսս սսսս (1)	
INTCON2	242	442	252	452	1111 -1-1	1111 -1-1	uuuu -u-u (1)	
INTCON3	242	442	252	452	11-0 0-00	11-0 0-00	uu-u u-uu (1)	
INDF0	242	442	252	452	N/A	N/A	N/A	
POSTINC0	242	442	252	452	N/A	N/A	N/A	
POSTDEC0	242	442	252	452	N/A	N/A	N/A	
PREINC0	242	442	252	452	N/A	N/A	N/A	
PLUSW0	242	442	252	452	N/A	N/A	N/A	
FSR0H	242	442	252	452	0000	0000	uuuu	
FSR0L	242	442	252	452	XXXX XXXX	uuuu uuuu	սսսս սսսս	
WREG	242	442	252	452	XXXX XXXX	uuuu uuuu	սսսս սսսս	
INDF1	242	442	252	452	N/A	N/A	N/A	
POSTINC1	242	442	252	452	N/A	N/A	N/A	
POSTDEC1	242	442	252	452	N/A	N/A	N/A	
PREINC1	242	442	252	452	N/A	N/A	N/A	
PLUSW1	242	442	252	452	N/A	N/A	N/A	

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- 6: The long write enable is only reset on a POR or MCLR Reset.
- 7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as '0'.

Register	Applicable Devices				Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt			
TRISE	242	442	252	452	0000 -111	0000 -111	uuuu -uuu			
TRISD	242	442	252	452	1111 1111	1111 1111	uuuu uuuu			
TRISC	242	442	252	452	1111 1111	1111 1111	uuuu uuuu			
TRISB	242	442	252	452	1111 1111	1111 1111	uuuu uuuu			
TRISA ^(5, 7)	242	442	252	452	-111 1111 (5)	-111 1111 (5)	-uuu uuuu (5)			
LATE	242	442	252	452	xxx	uuu	uuu			
LATD	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu			
LATC	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATB	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATA ^(5, 7)	242	442	252	452	-xxx xxxx(5)	-uuu uuuu (5)	-uuu uuuu (5)			
PORTE	242	442	252	452	000	000	uuu			
PORTD	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTC	242	442	252	452	XXXX XXXX	սսսս սսսս	uuuu uuuu			
PORTB	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTA ^(5, 7)	242	442	252	452	-x0x 0000 (5)	-u0u 0000 (5)	-uuu uuuu ⁽⁵⁾			

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

6: The long write enable is only reset on a POR or \overline{MCLR} Reset.

7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as '0'.

5.1.2 TABLAT - TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch is used to hold 8-bit data during data transfers between program memory and data memory.

5.1.3 TBLPTR - TABLE POINTER REGISTER

The Table Pointer (TBLPTR) addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers (Table Pointer Upper Byte, High Byte and Low Byte). These three registers (TBLPTRU:TBLPTRH:TBLPTRL) join to form a 22-bit wide pointer. The lower 21-bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The Table Pointer, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways, based on the table operation. These operations are shown in Table 5-1. These operations on the TBLPTR only affect the lower 21-bits.

TABLE 5-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

5.2 Internal Program Memory Read/ Writes

5.2.1 TABLE READ OVERVIEW (TBLRD)

The TBLRD instructions are used to read data from program memory to data memory.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TAB-LAT. In addition, TBLPTR can be modified automatically for the next Table Read operation.

Table Reads from program memory are performed one byte at a time. The instruction will load TABLAT with the one byte from program memory pointed to by TBLPTR.

5.2.2 INTERNAL PROGRAM MEMORY WRITE BLOCK SIZE

The internal program memory of PIC18CXXX devices is written in blocks. For PIC18CXX2 devices, the write block size is 2 bytes. Consequently, Table Write operations to internal program memory are performed in pairs, one byte at a time. When a Table Write occurs to an even program memory address (TBLPTR<0> = 0), the contents of TABLAT are transferred to an internal holding register. This is performed as a short write and the program memory block is not actually programmed at this time. The holding register is not accessible by the user.

When a Table Write occurs to an odd program memory address (TBLPTR<0>=1), a long write is started. During the long write, the contents of TABLAT are written to the high byte of the program memory block and the contents of the holding register are transferred to the low byte of the program memory block.

Figure 5-3 shows the holding register and the program memory write blocks.

If a single byte is to be programmed, the low (even) byte of the destination program word should be read using TBLRD*, modified or changed, if required, and written back to the same address using TBLWT*+. The high (odd) byte should be read using TBLRD*, modified or changed if required, and written back to the same address using TBLWT. A write to the odd address will cause a long write to begin. This process ensures that existing data in either byte will not be changed unless desired.

TABLE 8-7:PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0.
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1.
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2.
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3.
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4.
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5.
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6.
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7.

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 8-8: SUMMARY OF REGISTERS ASSOCIATED WITH POR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3		Bit 2 Bit 1 E		Value on POR, BOR	Value on all other RESETS
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
LATD	LATD D	Data Out	put Regis		xxxx xxxx	uuuu uuuu				
TRISD	PORTE	D Data D	irection F		1111 1111	1111 1111				
TRISE	IBF	IBF OBF IBOV PSPMODE — PORTE Data Direction bits								0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

14.3.7 SLEEP OPERATION

In Master mode, all module clocks are halted, and the transmission/reception will remain in that state until the device wakes from SLEEP. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI transmit/receive shift register operates asynchronously to the device. This allows the device to be placed in SLEEP mode, and data to be shifted into the SPI transmit/receive shift register. When all 8-bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from SLEEP.

14.3.8 EFFECTS OF A RESET

A RESET disables the MSSP module and terminates the current transfer.

14.3.9 BUS MODE COMPATIBILITY

Table 14-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 14-1:	SPI BUS MODES
-------------	----------------------

Standard SPI Mode	Control Bits State				
Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			

There is also a SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE/GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0000 0000	0000 0000
TRISC	PORTC Dat	ta Directior	Register						1111 1111	1111 1111
SSPBUF	Synchronou	is Serial Po	ort Receive	Buffer/Tra	nsmit Regist	er			xxxx xxxx	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISA	— PORTA Data Direction Register									11 1111
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

.

TABLE 14-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPI mode. **Note 1:** The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18C2X2 devices. Always maintain these bits clear.

14.4.6 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START condition enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low, while SCL is high, is the START condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the baud rate generator is suspended leaving the SDA line held low and the START condition is complete.

Note: If, at the beginning of the START condition, the SDA and SCL pins are already sampled low, or if during the START condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF is set, the START condition is aborted, and the I²C module is reset into its IDLE state.

FIGURE 14-16: FIRST START BIT TIMING

If the user writes the SSPBUF when a START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the START condition is complete.

The value that is in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 16.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - · Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared

OR

- Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH/ADRESL); clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 16-2: ANALOG INPUT MODEL

16.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 16-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

When the conversion is started, the hold-Note: ing capacitor is disconnected from the input pin.

18.0 SPECIAL FEATURES OF THE CPU

There are several features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- OSC Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-circuit Serial Programming

All PIC18CXX2 devices have a Watchdog Timer, which is permanently enabled via the configuration bits or software-controlled. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Powerup Timer (PWRT), which provides a fixed delay on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

18.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h - 3FFFFh), which can only be accessed using table reads and table writes.

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h	CONFIG1L	CP	CP	CP	CP	CP	СР	CP	CP	1111 1111
300001h	CONFIG1H	_	_	OSCSEN	_	_	FOSC2	FOSC1	FOSC0	111111
300002h	CONFIG2L	_	_	_	_	BORV1	BORV0	BODEN	PWRTEN	1111
300003h	CONFIG2H	_	_	_	_	WDTPS2	WDTPS1	WDTPS0	WDTEN	1111
300005h	CONFIG3H	_	_	_	_	_	_	_	CCP2MX	1
300006h	CONFIG4L	_	_	_	_	_	_	LVEN	STVREN	11
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	0000 0000
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 0010

TABLE 18-1: CONFIGURATION BITS AND DEVICE IDS

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'

NEGF	Negate f						
Syntax:	[<i>label</i>] N	[<i>label</i>] NEGF f[,a]					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5					
Operation:	$(\overline{f}) + 1 \rightarrow$	f					
Status Affected:	N,OV, C, [DC, Z					
Encoding:	0110	110a ff:	ff ffff				
Description:	compleme the data m 0, the Acc selected, c If 'a' = 1, t	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value.					
Words:	1	1					
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write register 'f'				
Example:		NEGF REG, 1					
Before Instru							
REG	= 0011 1	L010 [0x3A]					
After Instruc							

NOF	•	No Opera	No Operation						
Synt	ax:	[label]	NOP						
Ope	rands:	None							
Ope	ration:	No opera	tion						
Statu	us Affected:	None							
Encoding:		0000	0000	0000 000		0000			
		1111	xxxx xxxx			XXXX			
Desc	cription:	No opera	tion.						
Wor	ds:	1	1						
Cycl	es:	1	1						
QC	ycle Activity:								
Q1		Q2	Q3	Q3		Q4			
	Decode	No	No			No			
		operation	operat	ion	ор	eration			

Example:

None.

RETFIE	Return from Interrupt							
Syntax:	[label] RETFIE [s]							
Operands:	s ∈ [0,1]							
Operation:	$(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL},$ if s = 1 $(WS) \rightarrow WREG,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged.							
Status Affected: GIE/GIEH,PEIE/GIEL.								
Encoding:	0000	0000	0001	000s				
Description:	Return from Interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into their corresponding registers, WREG, STATUS and BSR. If 's' = 0, no update of these registers occurs (default).							
Words:	1							
Cycles:	2							
Q Cycle Activity:								
Q1	Q2	Q3	}	Q4				

RET	LW	Return Li	Return Literal to WREG					
Synt	ax:	[label]	[<i>label</i>] RETLW k					
Ope	rands:	$0 \le k \le 25$	5					
Ope	ration:	$(TOS) \rightarrow$	$k \rightarrow WREG,$ (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged					
Statu	us Affected:	None						
Enco	oding:	0000	1100	kkkk	kkkk			
Desi	cription:	literal 'k'. loaded fro (the return address la	WREG is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.					
Wor	ds:	1	1					
Cycl	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'k'	Proce Data	a s	op PC from stack, Write to WREG			
	No operation	No operation	No No No					

Example:

CALL I	ABLE	; ; ;	WREG contains table offset value WREG now has table value
:			
TABLE			
ADDWF	PCL	;	WREG = offset
RETLW	k0	;	Begin table
RETLW	k1	;	
:			
:			
RETLW	kn	;	End of table

Before Instruction

WREG = UXU/	WREG	=	0x07	
-------------	------	---	------	--

After Instruction

WREG = value of kn

Q1	Q2	Q3	Q4
Decode	No	No	pop PC from stack
	operation	operation	stack
			Set GIEH or
			GIEL
No	No	No	No
operation	operation	operation	operation

Example: RETFIE 1

After Interrupt

PC	=	TOS
W	=	WS
BSR	=	BSRS
STATUS	=	STATUSS
GIE/GIEH,	PEIE/GIEL=	1

RLNCF	Rotate Lo	Rotate Left f (no carry)					
Syntax:	[<i>label</i>] RLNCF f[,d[,a]						
Operands:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	$(f) \rightarrow$ $(f<7>) \rightarrow$	dest <n+1>, dest<0></n+1>					
Status Affected:	N,Z						
Encoding:	0100	01da ff	ff ffff				
Description:	The contents of register 'f' are rotated one bit to the left. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is stored back in reg- ister 'f' (default). If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).						
Words:	1						
Cycles:	1						
•	1						
Q Cycle Activity: Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write to destination				
Example:	RLNCF	RLNCF REG, 1, 0					
Before Instruct REG After Instructi							
REG = 0101 0111							

RRCF	Rotate Ri	Rotate Right f through Carry					
Syntax:	[label]	RRCF	f [,d [,a]				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5					
Operation:	$(f < n >) \rightarrow (f < 0 >) \rightarrow (f < 0 >) \rightarrow (C) \rightarrow des$	C,	1>,				
Status Affected:	C,N,Z						
Encoding:	0011	00da	ffff	ffff			
	rotated or the Carry is placed i result is p (default). Bank will the BSR v bank will b	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).					
Words:	1						
Cycles:	1						
Q Cycle Activity	/:						
Q1	Q2	Q	3	Q4			
Decode	Read register 'f'	Proce Data		Vrite to stinatior			
Example:	RRCF	REG,	0, 0				
Before Instruction REG = 1110 0110 C = 0							

After Instruction

REG = 1110 0110 WREG = 0111 0011 C = 0

21.1 DC Characteristics

		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial					
PIC18CXX2 (Industrial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Symbol Characteristic		Min	Тур	Max	Units	Conditions
	Vdd	Supply Voltage					
D001		PIC18LCXX2	2.5	_	5.5	V	HS, XT, RC and LP osc mode
D001		PIC18CXX2	4.2		5.5	V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	-	-	V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal		—	0.7	V	See section on Power-on Reset for details
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—		V/ms	See section on Power-on Reset for details
	VBOR	Brown-out Reset Voltag	ge				
D005		PIC18LCXX2					
		BORV1:BORV0 = 11	2.5	_	2.66	V	
		BORV1:BORV0 = 10	2.7		2.86	V	
		BORV1:BORV0 = 01	4.2		4.46	V	
		BORV1:BORV0 = 00	4.5	—	4.78	V	
D005		PIC18CXX2					
		BORV1:BORV0 = 1x	N.A.	—	N.A.	V	Not in operating voltage range of device
		BORV1:BORV0 = 01	4.2	—	4.46	V	
		BORV1:BORV0 = 00	4.5	—	4.78	V	

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR,...).
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.

TABLE 21-22: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characte	Min	Max	Units	Conditions		
130	TAD	A/D clock period	PIC18CXXX	1.6	20 ⁽⁵⁾	μS	Tosc based, VREF $\geq 3.0V$	
			PIC18LCXXX	3.0	20 ⁽⁵⁾	μS	Tosc based, VREF full range	
			PIC18CXXX	2.0	6.0	μS	A/D RC mode	
			PIC18LCXXX	3.0	9.0	μS	A/D RC mode	
131	TCNV	Conversion time (not including acquisiti	11	12	TAD			
132	TACQ	Acquisition time (Note 3)		15 10		μs μs	-40°C ≤ Temp ≤ 125°C 0°C ≤ Temp ≤ 125°C	
135	Tswc	Switching Time from c	—	(Note 4)				
136	Тамр	AMP Amplifier settling time (Note 2)		1	_	μs	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).	

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 16.0 for minimum conditions, when input voltage has changed more than 1 LSb.

3: The time for the holding capacitor to acquire the "New" input voltage, when the voltage changes full scale after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (*Rs*) on the input channels is 50Ω .

4: On the next Q4 cycle of the device clock.

5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

22.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for design guidance and are not tested.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'Max' or 'min' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

FIGURE 22-1: TYPICAL IDD vs. Fosc OVER VDD (HS MODE)

© 1999-2013 Microchip Technology Inc.

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		MILLIMETERS*			
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		44			44		
Pitch	р		.031			0.80		
Pins per Side	n1		11			11		
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20	
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05	
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15	
Foot Length	L	.018	.024	.030	0.45	0.60	0.75	
Footprint (Reference)	(F)		.039		1.00			
Foot Angle	¢	0	3.5	7	0	3.5	7	
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25	
Overall Length	D	.463	.472	.482	11.75	12.00	12.25	
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10	
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10	
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20	
Lead Width	В	.012	.015	.017	0.30	0.38	0.44	
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026

Drawing No. C04-076