

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lc452t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

Pin Name	Pi	n Numb	ber	Pin	Buffer	Description
Pin Name	DIP	PLCC	TQFP	Туре	Туре	Description
MCLR/VPP MCLR	1	2	18	I	ST	Master clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active
Vpp				Р		low RESET to the device. Programming voltage input.
NC				_	_	These pins should be left unconnected.
OSC1/CLKI OSC1	13	14	30	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode, CMOS otherwise
CLKI				I	CMOS	External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKIN, OSC2/CLKOUT pins.)
OSC2/CLKO/RA6 OSC2	14	15	31	0	_	Oscillator crystal output. Oscillator crystal output. Connects to crystal
CLKO				0	_	or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction
RA6				I/O	TTL	cycle rate. General Purpose I/O pin.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19			
RA0		-		I/O	TTL	Digital I/O.
AN0				Ι	Analog	Analog input 0.
RA1/AN1	3	4	20			
RA1				I/O	TTL	Digital I/O.
AN1				I	Analog	Analog input 1.
RA2/AN2/VREF-	4	5	21			
RA2				I/O	TTL	Digital I/O.
AN2 Vref-					Analog Analog	Analog input 2. A/D Reference Voltage (Low) input.
RA3/AN3/VREF+	5	6	22		/ indiog	
RA3	5	0	22	I/O	TTL	Digital I/O.
AN3					Analog	Analog input 3.
VREF+				Ι	Analog	A/D Reference Voltage (High) input.
RA4/T0CKI	6	7	23			
RA4 T0CKI				I/O I	ST/OD ST	Digital I/O. Open drain when configured as output. Timer0 external clock input.
RA5/AN4/SS/LVDIN	7	8	24			
RA5				I/O	TTL	Digital I/O.
AN4					Analog	Analog input 4.
SS					ST	SPI Slave Select input.
				I	Analog	Low Voltage Detect Input.
RA6						See the OSC2/CLKO/RA6 pin.
Legend: TTL = TTL ST = Schm O = Output	nitt Trig			MOS le	vels I = I	OS = CMOS compatible input or output Input Power

TABLE 1-3: PIC 10C4AZ PINOUT I/O DESCRIPTIONS	TABLE 1-3:	PIC18C4X2 PINOUT I/O DESCRIPTIONS
---	------------	-----------------------------------

OD = Open Drain (no P diode to VDD)

 \odot 1999-2013 Microchip Technology Inc.

Oscillator	Power-up	(2)	- (2)	Wake-up from
Configuration	PWRTE = 0	PWRTE = 1	Brown-out ⁽²⁾	SLEEP or Oscillator Switch
HS with PLL enabled ⁽¹⁾	72 ms + 1024Tosc + 2ms	1024Tosc + 2 ms	72 ms + 1024Tosc + 2ms	1024Tosc + 2 ms
HS, XT, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
EC	72 ms	_	72 ms	—
External RC	72 ms		72 ms	—

Note 1: 2 ms is the nominal time required for the 4x PLL to lock.

2: 72 ms is the nominal Power-up Timer delay.

REGISTER 3-1: RCON REGISTER BITS AND POSITIONS

R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
IPEN	LWRT	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Note: See Register 4-3 on page 53 for bit definitions.

TABLE 3-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	00-1 1100	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	00-u uuuu	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	0u-0 uuuu	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	0u-u uull	u	u	u	u	u	u	1
Stack Underflow Reset during normal operation	0000h	0u-u uull	u	u	u	u	u	1	u
MCLR Reset during SLEEP	0000h	00-u 10uu	u	1	0	u	u	u	u
WDT Reset	0000h	0u-u 01uu	1	0	1	u	u	u	u
WDT Wake-up	PC + 2	uu-u 00uu	u	0	0	u	u	u	u
Brown-out Reset	0000h	0u-1 11u0	1	1	1	1	0	u	u
Interrupt wake-up from SLEEP	PC + 2 ⁽¹⁾	uu-u 00uu	u	1	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x000008h or 0x000018h).

Register	Applicable Devices			ces	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt			
TRISE	242	442	252	452	0000 -111	0000 -111	uuuu -uuu			
TRISD	242	442	252	452	1111 1111	1111 1111	uuuu uuuu			
TRISC	242	442	252	452	1111 1111	1111 1111	uuuu uuuu			
TRISB	242	442	252	452	1111 1111	1111 1111	uuuu uuuu			
TRISA ^(5, 7)	242	442	252	452	-111 1111 (5)	-111 1111 (5)	-uuu uuuu ⁽⁵⁾			
LATE	242	442	252	452	xxx	uuu	uuu			
LATD	242	442	252	452	xxxx xxxx	սսսս սսսս	uuuu uuuu			
LATC	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATB	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATA ^(5, 7)	242	442	252	452	-xxx xxxx(5)	-uuu uuuu (5)	-uuu uuuu (5)			
PORTE	242	442	252	452	000	000	uuu			
PORTD	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTC	242	442	252	452	XXXX XXXX	սսսս սսսս	uuuu uuuu			
PORTB	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTA ^(5, 7)	242	442	252	452	-x0x 0000 (5)	-u0u 0000 (5)	-uuu uuuu ⁽⁵⁾			

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for RESET value for specific condition.

5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

6: The long write enable is only reset on a POR or \overline{MCLR} Reset.

7: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read as '0'.

4.0 MEMORY ORGANIZATION

There are two memory blocks in Enhanced MCU devices. These memory blocks are:

- Program Memory
- Data Memory

Program and data memory use separate buses so that concurrent access can occur.

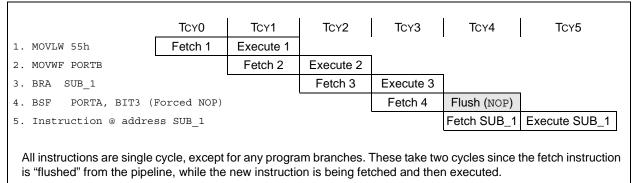
4.1 Program Memory Organization

A 21-bit program counter is capable of addressing the 2-Mbyte program memory space. Accessing a location between the physically implemented memory and the 2-Mbyte address will cause a read of all '0's (a NOP instruction).

PIC18C252 and PIC18C452 have 32 Kbytes of EPROM, while PIC18C242 and PIC18C442 have 16 Kbytes of EPROM. This means that PIC18CX52 devices can store up to 16K of single word instructions, and PIC18CX42 devices can store up to 8K of single word instructions.

The RESET vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

Figure 4-1 shows the Program Memory Map for PIC18C242/442 devices and Figure 4-2 shows the Program Memory Map for PIC18C252/452 devices.


4.6 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO), then two cycles are required to complete the instruction (Example 4-2).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 4-2: INSTRUCTION PIPELINE FLOW

4.7 Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB ='0'). Figure 4-5 shows an example of how instruction words are stored in the program memory. To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 4.4). The CALL and GOTO instructions have an absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 4-5 shows how the instruction "GOTO 00006h" is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single word instructions that the PC will be offset by. Section 19.0 provides further details of the instruction set.

FIGURE 4-5: INSTRUCTIONS IN PROGRAM MEMORY

			LSB = 1	LSB = 0	Word Address \downarrow
	Program M				000000h
	Byte Locati	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	000006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	Clh	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

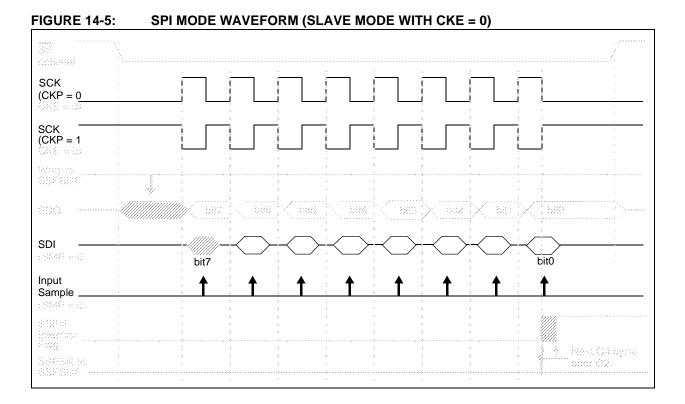
PIC18CXX2

NOTES:

13.1 CCP1 Module

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

TABLE 13-1: CCP MODE - TIMER RESOURCE


CCP Mode	Timer Resource		
Capture	Timer1 or Timer3		
Compare	Timer1 or Timer3		
PWM	Timer2		

13.2 CCP2 Module

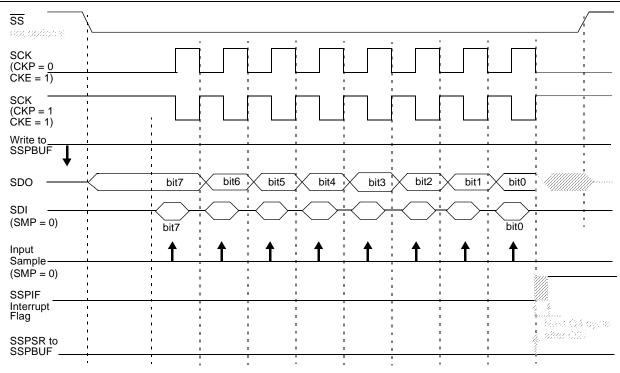

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

TABLE 13-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	TMR1 or TMR3 time-base. Time-base can be different for each CCP.
Capture	Compare	The compare could be configured for the special event trigger, which clears either TMR1, or TMR3, depending upon which time-base is used.
Compare	Compare	The compare(s) could be configured for the special event trigger, which clears TMR1, or TMR3, depending upon which time-base is used.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None.
PWM	Compare	None.

FIGURE 14-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

14.4.1.1 Addressing

Once the MSSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit BF is set.
- c) An ACK pulse is generated.
- MSSP interrupt flag bit SSPIF (PIR1<3>) is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address. If match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

14.4.1.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address <u>byte</u> overflow condition exists, then no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON<6>) is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

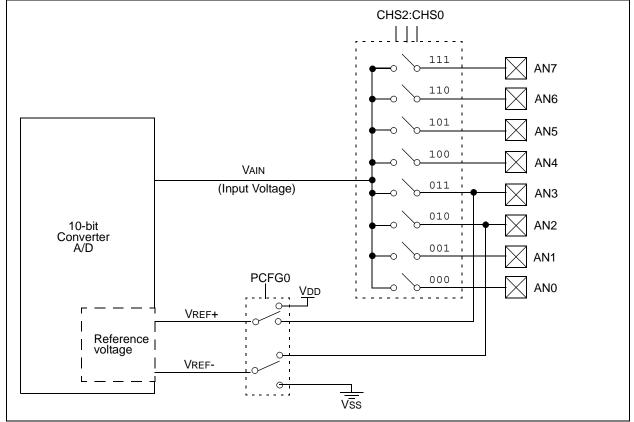
14.4.1.3 Transmission

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 14-9).

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Pin RC3/SCK/SCL should be enabled by setting bit CKP.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS) or the voltage level on the RA3/AN3/ VREF+ pin and RA2/AN2/VREF-.


The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference) or as a digital I/O.

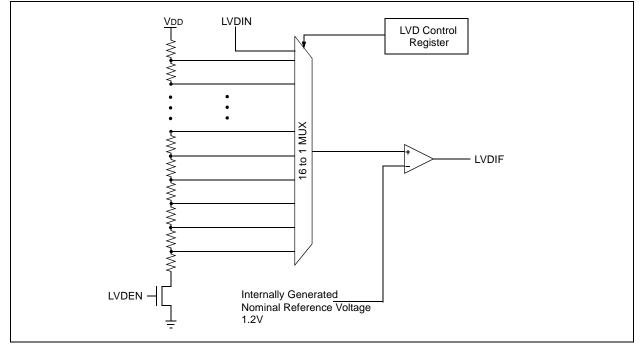

The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ ADRESL registers, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 16-1.

FIGURE 16-1: A/D BLOCK DIAGRAM

PIC18CXX2

FIGURE 17-2: LOW VOLTAGE DETECT (LVD) BLOCK DIAGRAM

The LVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits LVDL3:LVDL0 are set to 1111. In this state, the comparator input is multiplexed from the external input pin LVDIN (Figure 17-3). This gives flexibility, because it allows a user to configure the Low Voltage Detect interrupt to occur at any voltage in the valid operating range.

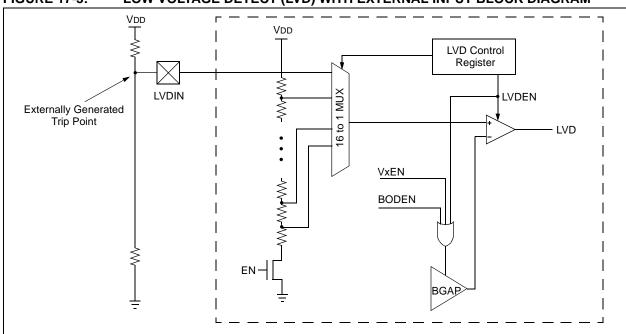


FIGURE 17-3: LOW VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM

18.2 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO/RA6 pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the RCON register will be cleared upon a WDT time-out.

The Watchdog Timer is enabled/disabled by a device configuration bit. If the WDT is enabled, software execution may not disable this function. When the WDTEN configuration bit is cleared, the SWDTEN bit enables/ disables the operation of the WDT. The WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT postscaler may be assigned using the configuration bits.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

Note: When a CLRWDT instruction is executed and the postscaler is assigned to the WDT, the postscaler count will be cleared, but the postscaler assignment is not changed.

18.2.1 CONTROL REGISTER

Register 18-7 shows the WDTCON register. This is a readable and writable register, which contains a control bit that allows software to override the WDT enable configuration bit, only when the configuration bit has disabled the WDT.

REGISTER 18-7: WDTCON REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—	—	—	—	_	SWDTEN
bit 7							bit 0

bit 7-1 Unimplemented: Read as '0'

- bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit
 - 1 = Watchdog Timer is on
 - Watchdog Timer is turned off if the WDTEN configuration bit in the configuration register = '0'

Legend:	
R = Readable bit	W = Writable bit
U = Unimplemented bit, read as '0'	- n = Value at POR Reset

TABLE 19-2:	PIC18CXXX INSTRUCTION SET	(CONTINUED)
-------------	---------------------------	-------------

Mnem	nonic,	Description	Cycles	16-	bit Inst	ruction	Word	Status	Natas
Operands		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL	OPERATI	ONS							
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSRx 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA ME		PROGRAM MEMORY OPERATI	ONS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with post-increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with post-decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2 (5)	0000	0000	0000	1100	None	
TBLWT*+		Table Write with post-increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

PIC18CXX2

ADDWFC ADD WREG and Carry bit to f							
Syntax:	[label] Al	DWFC	f [,d [,a	a]			
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5					
Operation:	: $(WREG) + (f) + (C) \rightarrow dest$						
Status Affected: N,OV, C, DC, Z							
Encoding:	0010	00da	ffff	ffff			
Words:	Description: Add WREG, the Carry Flag and data memory location 'f'. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed in data memory location 'f'. If 'a' is 0, the Access Bank will be selected. If 'a' is 1, the BSR will not be overridden.						
	1						
Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4							
Decode	Read register 'f'	Process Data		ite to ination			
Example: ADDWFC REG, 0, 1 Before Instruction							

ANDLW	AND liter	AND literal with WREG						
Syntax:	[label] A	NDLW	k					
Operands:	$0 \le k \le 25$	$0 \le k \le 255$						
Operation:	(WREG).	(WREG) .AND. $k \rightarrow WREG$						
Status Affected:	N,Z							
Encoding:	0000	1011	kkkk	kkkk				
Description: The contents of WREG are ANDec with the 8-bit literal 'k'. The result is placed in WREG.								
Words:	1							
Cycles:	1							
Q Cycle Activit	y:							
Q1	Q2	Q3		Q4				
Decode	Read literal 'k'	Proce: Data		/rite to VREG				
Example:	ANDLW	0x5F						

Carry	bit=	1				
REG	=	0x02				
WREG	=	0x4D				
ar Instruction						

After Instruction

Carry	bit=	0
REG	=	0x02
WREG	=	0x50

Before Instruction WREG = 0xA3

After Instruction

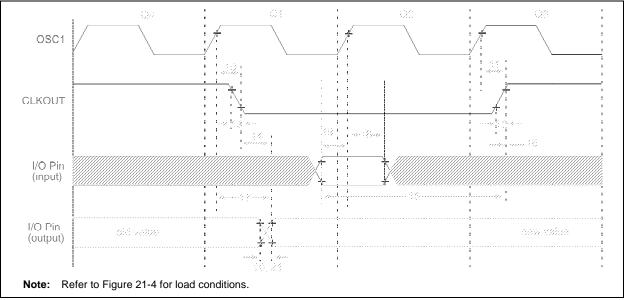
WREG = 0×03

PIC18CXX2

SLEEP	EEP Enter SLEEP mode		SUBFWB	Subtract	Subtract f from WREG with borro			
Syntax:	[label]	SLEEP		Syntax:	[label]	SUBFWB	f [,d [,a]	
Operands:	None			Operands:	$0 \le f \le 25$			
Operation:	$00h \rightarrow W$	/DT,			d ∈ [0,1]			
		T postscaler,			a ∈ [0,1]			
	$1 \rightarrow TO, 0 \rightarrow PD$			Operation:		$-(f) - (\overline{C}) -$	→ dest	
				Status Affected:	N,OV, C,	DC, Z		
Status Affected:	TO, PD			Encoding:	0101	01da f	fff fff	
Encoding:			Description:		register 'f' an			
Description:		er-down statu				from WREG		
		The time-out et. Watchdog				thod). If 'd' is WREG. If 'd'		
		caler are clea			is stored i	in register 'f' (default). If 'a'	
	The proc	essor is put i	nto SLEEP			cess Bank w		
	mode wit	th the oscillat	or stopped.			g the BSR va bank will be s		
Nords:	1					value (defau		
Cycles:	1			Words:	1			
Q Cycle Activity	<i>/</i> :			Cycles:	1			
Q1	Q2	Q3	Q4	Q Cycle Activity				
Decode	No	Process	Go to	Q1	Q2	Q3	Q4	
	operation	Data	sleep	Decode	Read	Process	Write to	
Example:	SLEEP				register 'f'	Data	destination	
Before Instr	uction			Example 1:	SUBFWB	REG, 1,	0	
$\overline{TO} =$?			Before Instru	uction			
PD =	?			REG	= 3			
After Instruc	1 †			WREG C	= 2 = 1			
$\frac{10}{PD} =$	0			After Instruc				
If WDT cause	es wake-up, tl	his bit is clea	red.	REG	= FF			
				WREG	= 2			
				C Z	= 0 = 0			
				Ν	= 1	; result :	is negativ	
				Example 2:	SUBFWB	REG, 0,	0	
				Before Instru	uction			
				REG	= 2			
				WREG C	= 5 = 1			
				After Instruc	tion			
				REG	= 2			
				WREG C	= 3 = 1			
				Z	= 1 = 0			
				Ν	= 0	; result :	is positiv	
				Example 3:	SUBFWB	REG, 1,	0	
				Before Instru				
				REG	= 1			
				WREG C	= 2 = 0			
				After Instruc	tion			
				REG	= 0			
				WREG	= 2			
				WREG C Z	= 2 = 1 = 1	; result :	is zero	

21.3 AC (Timing) Characteristics

21.3.1 TIMING PARAMETER SYMBOLOGY


The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	3	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	etters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase le	etters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

TABLE 21-5:	PLL CLOCK TIMING SPECIFICATION (VDD = 4.2V - 5.5V)

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
	TRC	PLL Start-up Time (Lock Time)		2	ms	
	ΔCLK	CLKOUT Stability (Jitter) using PLL	-2	+2	%	

FIGURE 21-6: CLKOUT AND I/O TIMING

TABLE 21-6: CLKOUT AND I/O TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Тур	Мах	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓			75	200	ns	(1)
11	TosH2ckH	OSC1↑ to CLKOUT↑		—	75	200	ns	(1)
12	TckR	CLKOUT rise time		_	35	100	ns	(1)
13	TckF	CLKOUT fall time		_	35	100	ns	(1)
14	TckL2ioV	CLKOUT ↓ to Port out v	alid	_	_	0.5TCY + 20	ns	(1)
15	TioV2ckH	Port in valid before CLK	OUT ↑	0.25Tcy + 25	_		ns	(1)
16	TckH2iol	Port in hold after CLKOUT ↑		0			ns	(1)
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		_	50	150	ns	
18	TosH2iol	OSC1↑ (Q2 cycle) to	PIC18CXXX	100	_		ns	
18A		Port input invalid (I/O in hold time)	PIC18LCXXX	200	—	_	ns	
19	TioV2osH	Port input valid to OSC1 (I/O in setup time)	1	0	—	—	ns	
20	TioR	Port output rise time	PIC18CXXX	_	12	25	ns	
20A			PIC18LCXXX		_	50	ns	
21	TioF	Port output fall time	PIC18CXXX		12	25	ns	
21A			PIC18LCXXX	_	_	50	ns	
22††	TINP	INT pin high or low time		Тсү	_		ns	
23††	Trbp	RB7:RB4 change INT h	igh or low time	Тсү	_		ns	
24††	TRCP	RC7:RC4 change INT h	igh or low time	20			ns	

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

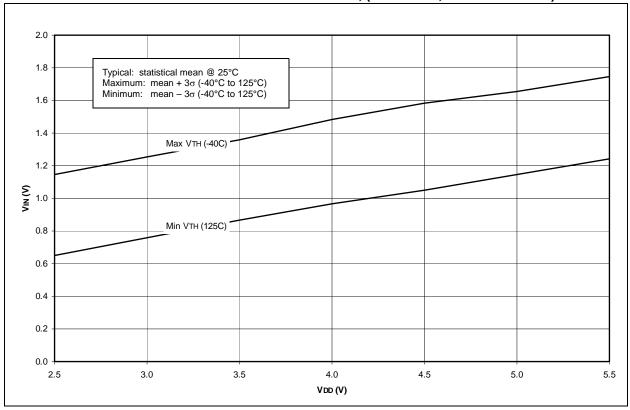
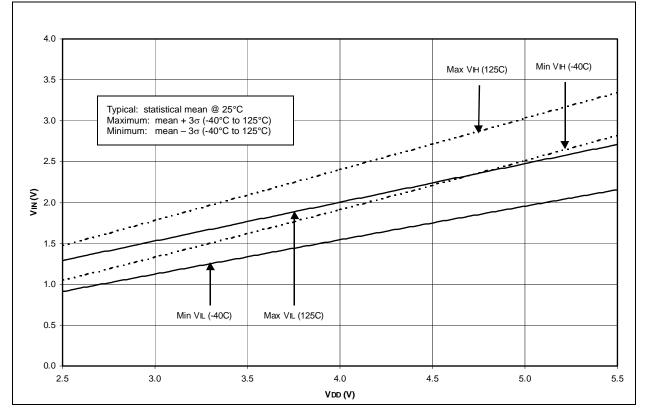



FIGURE 22-25: MINIMUM AND MAXIMUM VIN vs. VDD, (TTL INPUT, -40°C TO +125°C)



© 1999-2013 Microchip Technology Inc.

23.0 PACKAGING INFORMATION

23.1 Package Marking Information

28-Lead PDIP (Skinny DIP)

Example	ample		
	PIC18C242-I/SP		

10117017

28-	Lead	SOIC	

Example

Leger	ld: XXX Y YY WW NNN (e3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	