

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb202-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Features

- 10/12-Bit, 12-Channel Analog-to-Digital (A/D) Converter:
 - Conversion rate of 500 ksps (10-bit), 200 ksps (12-bit)
 - Conversion available during Sleep and Idle
- Three Rail-to-Rail, Enhanced Analog Comparators with Programmable Input/Output Configuration
- Three On-Chip Programmable Voltage References
- Charge Time Measurement Unit (CTMU):
 - Used for capacitive touch sensing, up to 12 channels
 - Time measurement down to 100 ps resolution
 - Operation in Sleep mode

Peripheral Features

- Up to Five External Interrupt Sources
- Peripheral Pin Select (PPS); Allows Independent I/O Mapping of many Peripherals
- Five 16-Bit Timers/Counters with Prescaler:
 Can be paired as 32-bit timers/counters
- Six-Channel DMA supports All Peripheral modules:
- Minimizes CPU overhead and increases data throughput
- Six Input Capture modules, each with a Dedicated 16-Bit Timer
- Six Output Compare/PWM modules, each with a Dedicated 16-Bit Timer
- Enhanced Parallel Master/Slave Port (EPMP/EPSP)
- Hardware Real-Time Clock/Calendar (RTCC):
 - Runs in Sleep, Deep Sleep and VBAT modes
- Three 3-Wire/4-Wire SPI modules:
- Support four Frame modes
- Variable FIFO buffer
- I²S mode
- Variable width from 2-bit to 32-bit
- Two I²C[™] modules Support Multi-Master/
 - Slave mode and 7-Bit/10-Bit Addressing
- Four UART modules:
 - Support RS-485, RS-232 and LIN/J2602
 - On-chip hardware encoder/decoder for IrDA®
 - Smart Card ISO 7816 support on UART1 and UART2 only:
 - T = 0 protocol with automatic error handling
 - T = 1 protocol
 - Dedicated Guard Time Counter (GTC)
 - Dedicated Waiting Time Counter (WTC)
 - Auto-wake-up on Auto-Baud Detect (ABD)
 - 4-level deep FIFO buffer
- Programmable 32-Bit Cyclic Redundancy Check (CRC) Generator
- Digital Signal Modulator provides On-Chip FSK and PSK Modulation for a Digital Signal Stream
- High-Current Sink/Source (18 mA/18 mA) on All I/O Pins
- Configurable Open-Drain Outputs on Digital I/O Pins
- 5.5V Tolerant Inputs on Most Pins

High-Performance CPU

- Modified Harvard Architecture
- Up to 16 MIPS Operation @ 32 MHz
- 8 MHz Internal Oscillator:
 - 96 MHz PLL option
 - Multiple clock divide options
 - Run-time self-calibration capability for maintaining better than ±0.20% accuracy
 - Fast start-up
- 17-Bit x 17-Bit Single-Cycle Hardware Fractional/Integer Multiplier
- 32-Bit by 16-Bit Hardware Divider
- 16 x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture (ISA)
- Two Address Generation Units (AGUs) for Separate Read and Write Addressing of Data Memory

Special Microcontroller Features

- Supply Voltage Range of 2.0V to 3.6V
- Two On-Chip Voltage Regulators (1.8V and 1.2V) for Regular and Extreme Low-Power Operation
- 20,000 Erase/Write Cycle Endurance Flash Program Memory, Typical
- Flash Data Retention: 20 Years Minimum
- Self-Programmable under Software Control
- · Programmable Reference Clock Output
- In-Circuit Serial Programming™ (ICSP™) and In-Circuit Emulation (ICE) via 2 Pins
- JTAG Programming and Boundary Scan Support
- Fail-Safe Clock Monitor (FSCM) Operation:
- Detects clock failure and switches to on-chip, Low-Power RC Oscillator
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Separate Brown-out Reset (BOR) and Deep Sleep Brown-out Reset (DSBOR) Circuits
- Programmable High/Low-Voltage Detect (HLVD)
- Flexible Watchdog Timer (WDT) with its Own RC Oscillator for Reliable Operation
- Standard and Ultra Low-Power Watchdog Timers (ULPW) for Reliable Operation in Standard and Deep Sleep modes

TABLE 4-21: DMA REGISTER MAP

	-21.																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMACON	0450	DMAEN	_	—	_	_	_	_	—	—	—	_	—	_	—	_	PRSSEL	0000
DMABUF	0452								DMA Trans	fer Data Buff	er							0000
DMAL	0454							DN	IA High Add	ress Limit Re	egister							0000
DMAH	0456							DN	IA Low Add	ress Limit Re	gister							0000
DMACH0	0458	—	_	_	r	_	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT0	045A	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF		_	HALFEN	0000
DMASRC0	045C							DMA C	hannel 0 So	urce Addres	s Register							0000
DMADST0	045E							DMA Cha	annel 0 Dest	ination Addre	ess Register							0000
DMACNT0	0460							DMA Ch	annel 0 Trai	nsaction Cou	nt Register							0001
DMACH1	0462	_	_	_	r	_	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT1	0464	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	_	_	HALFEN	0000
DMASRC1	0466	İ. İ.						DMA C	hannel 1 So	urce Addres	s Register							0000
DMADST1	0468							DMA Cha	annel 1 Dest	ination Addre	ess Register							0000
DMACNT1	046A							DMA Ch	annel 1 Trai	nsaction Cou	nt Register							0001
DMACH2	046C	_	—	—	r	—	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT2	046E	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF			HALFEN	0000
DMASRC2	0470							DMA C	hannel 2 So	urce Addres	s Register							0000
DMADST2	0472							DMA Cha	annel 2 Dest	ination Addre	ess Register							0000
DMACNT2	0474							DMA Ch	annel 2 Trai	nsaction Cou	nt Register							0001
DMACH3	0476	_	_	—	r	_	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT3	0478	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	—	_	HALFEN	0000
DMASRC3	047A							DMA C	hannel 3 Sc	urce Addres	s Register							0000
DMADST3	047C							DMA Cha	annel 3 Dest	ination Addre	ess Register							0000
DMACNT3	047E							DMA Ch	annel 3 Trai	nsaction Cou	nt Register							0001
DMACH4	0480	_	_	—	r	_	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT4	0482	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF			HALFEN	0000
DMASRC4	0484	· · ·						DMA C	hannel 4 Sc	urce Addres	s Register							0000
DMADST4	0486							DMA Cha	annel 4 Dest	ination Addre	ess Register							0000
DMACNT4	0488							DMA Ch	annel 4 Trai	nsaction Cou	nt Register							0001
DMACH5	048A	_	_	_	r	_	NULLW	RELOAD	CHREQ	SAMODE1		DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT5	048C	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	_	_	HALFEN	0000
DMASRC5	048E			•				DMA C	hannel 5 Sc	urce Addres	s Register		•					0000
DMADST5	0490							DMA Cha	annel 5 Dest	ination Addre	ess Register							0000
DMACNT5	0492							DMA Ch	annel 5 Trai	nsaction Cou	nt Register							0001
											v							اـــــــــــــــــــــــــــــــــــــ

Legend: - = unimplemented, read as '0'; r = reserved bit. Reset values are shown in hexadecimal.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE ⁽¹⁾	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
bit 15	1					1	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	INT1IE ⁽¹⁾	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7							bit 0
Legend:							
R = Readabl	e hit	W = Writable	hit	II = Unimplen	nented bit, rea	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
					uicu		lowin
bit 15	U2TXIE: UAF	RT2 Transmitter	Interrupt Enal	ble bit			
		request is enab	-				
	0 = Interrupt	request is not e	nabled				
bit 14		RT2 Receiver Ir	•	e bit			
		request is enab request is not e					
bit 13	•	rnal Interrupt 2					
DIL 15		request is enab					
		request is not e					
bit 12	T5IE: Timer5	Interrupt Enab	le bit				
		request is enab					
	-	request is not e					
bit 11		Interrupt Enab					
		request is enab request is not e					
bit 10	•	ut Compare Ch		ot Enable bit			
	=	request is enab		p			
		request is not e					
bit 9	OC3IE: Outp	ut Compare Ch	annel 3 Interru	pt Enable bit			
		request is enab					
h # 0	•	request is not e		L :4			
bit 8		IA Channel 2 In request is enab	-	DI			
		request is enab					
bit 7-5		ted: Read as '					
bit 4	INT1IE: Exte	rnal Interrupt 1	Enable bit ⁽¹⁾				
		request is enab request is not e					
bit 3	CNIE: Input (Change Notifica	tion Interrupt E	Enable bit			
		request is enab request is not e					
bit 2	CMIE: Comp	arator Interrupt	Enable bit				
		request is enab					
	0 = Interrupt	request is not e	nabled				
		errupt is enabled ormation, see <mark>S</mark>				l to an available	RPn or RPIn

REGISTER 8-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

© 2013-2015 Microchip Technology Inc.

REGISTER 8-24: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_					DMA1IP2	DMA1IP1	DMA1IP0
pit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0
bit 7							bit
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-11	-	nted: Read as '					
oit 10-8	DMA1IP<2:0	>: DMA Chann	el 1 Interrupt P	riority bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
		pt is Priority 1 pt source is dis	abled				
bit 7	Unimplemer	• •ted: Read as ')'				
oit 6-4	AD1IP<2:0>:	ADC1 Interrup	t Priority bits				
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	111 = Interru •	pt is Priority 7(highest priority	interrupt)			
	111 = Interru •	pt is Priority 7(highest priority	interrupt)			
	• •		highest priority	interrupt)			
	• • 001 = Interru	pt is Priority 7(pt is Priority 1 pt source is dis		interrupt)			
bit 3	• • 001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled	interrupt)			
	• • 001 = Interru 000 = Interru Unimplemer	pt is Priority 1 pt source is dis ited: Read as 'o	abled				
	• • 001 = Interru 000 = Interru Unimplemer U1TXIP<2:03	pt is Priority 1 pt source is dis ited: Read as 'o >: UART1 Trans	abled o' smitter Interrup	t Priority bits			
	• • 001 = Interru 000 = Interru Unimplemer U1TXIP<2:03	pt is Priority 1 pt source is dis ited: Read as 'o	abled o' smitter Interrup	t Priority bits			
	• • 001 = Interru 000 = Interru Unimplemer U1TXIP<2:03	pt is Priority 1 pt source is dis ited: Read as 'o >: UART1 Trans	abled o' smitter Interrup	t Priority bits			
	• • • • • • • • • • • • • •	pt is Priority 1 pt source is dis nted: Read as 'o >: UART1 Trans pt is Priority 7 (abled o' smitter Interrup	t Priority bits			
bit 3 bit 2-0	• • • • • • • • • • • • • •	pt is Priority 1 pt source is dis ited: Read as 'o >: UART1 Trans	abled o' smitter Interrup highest priority	t Priority bits			

REGISTER 8-26: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—	—	_	_		INT1IP<2:0>	
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable b	bit	U = Unimple	mented bit, rea	d as '0'	

		• • • • • • • • • • • • • • • • • • • •	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- INT1IP<2:0>: External Interrupt 1 Priority bits
 - 111 = Interrupt is Priority 7 (highest priority interrupt)
 - •

bit 2-0

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 SPI1RXIPO ____ SPI2RXIP2 SPI2RXIP1 SPI2RXIPO ____ SPI1RXIP2 SPI1RXIP1 bit 8 bit 15 U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0 **KEYSTRIP2** KEYSTRIP1 **KEYSTRIP0** bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 SPI2RXIP<2:0>: SPI2 Receive Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 SPI1RXIP<2:0>: SPI1 Receive Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 7-3 Unimplemented: Read as '0' bit 2-0 KEYSTRIP<2:0>: Cryptographic Key Store Program Done Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled

REGISTER 8-35: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

REGISTER 11-23: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP1R<5:0>: RP1 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP1 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP0R<5:0>: RP0 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP0 (see Table 11-4 for peripheral function numbers).

REGISTER 11-24: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7		-			•	•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP2R<5:0>:** RP2 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP2 (see Table 11-4 for peripheral function numbers).

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 4 OCFLT0: Output Compare x PWM Fault 0 (OCFA pin) Condition Status bit^(2,4)
 - 1 = PWM Fault 0 has occurred
 - 0 = No PWM Fault 0 has occurred
- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on $OCx^{(2)}$
 - 110 = Edge-Aligned PWM mode on $OCx^{(2)}$
 - 101 = Double Compare Continuous Pulse mode: Initializes the OCx pin low; toggles the OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes the OCx pin low; toggles the OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low; compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
 - **3:** The Comparator 1 output controls the OC1-OC2 channels; Comparator 2 output controls the OC3-OC4 channels; Comparator 3 output controls the OC5-OC6 channels.
 - 4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 16-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
	1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the slave select inpu 0 = SSx pin is not used by the macro (SSx pin will be controlled by the port I/O)
bit 6	CKP: Clock Polarity Select bit
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode 0 = Slave mode
bit 4	DISSDI: Disable SDIx Input Port bit
	 1 = SDIx pin is not used by the module; pin is controlled by the port function 0 = SDIx pin is controlled by the module
bit 3	DISSCK: Disable SCKx Output Port bit
	 1 = SCKx pin is not used by the module; pin is controlled by the port function 0 = SCKx pin is controlled by the module
bit 2	MCLKEN: Master Clock Enable bit ⁽³⁾
	 1 = MCLK is used by the BRG 0 = PBCLK is used by the BRG
bit 1	SPIFE: Frame Sync Pulse Edge Select bit
	 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0	ENHBUF: Enhanced Buffer Mode Enable bit
	 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note 1:	When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.

- **2:** When FRMEN = 1, SSEN is not used.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

17.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 17-1.

EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾

$$I2CxBRG = \left(\left(\frac{1}{FSCL} - PGDx \right) \times \frac{FCY}{2} \right) - 2$$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

17.3 Slave Address Masking

The I2CxMSK register (Register 17-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the I²C[™] protocol, the addresses in Table 17-1 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

TABLE 17-1:	I ² C [™] RESERVED ADDRESSES ⁽¹⁾
-------------	---

Slave Address	R/W Bit	Description				
0000 000	0	General Call Address ⁽²⁾				
0000 000	1	Start Byte				
0000 001	Х	Cbus Address				
0000 01x	х	Reserved				
0000 1xx	Х	HS Mode Master Code				
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾				
1111 1xx	Х	Reserved				

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

2: The address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

REGISTER 19-11: U1SOF: USB OTG START-OF-FRAME COUNT REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—		_	
bit 15		· · · · ·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bi	t	U = Unimplen	nented bit, read	1 as '0'	

R – Reauable bit		0 – Onimplemented bit, rea	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 CNT<7:0>: Start-of-Frame Size bits

Value represents 10 + (packet size of n bytes). For example:

0100 1010 = 64-byte packet

0010 1010 = **32-byte packet** 0001 0010 = **8-byte packet**

22.2 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

22.2.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTRx bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 22-1).

By writing the RTCVALH byte, the RTCPTR<1:0> bits (the RTCC Pointer value) decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 22-1: RTCVAL REGISTER MAPPING

RTCPTR<1:0>	RTCC Value Register Window					
RICPIRSI.02	RTCVAL<15:8>	RTCVAL<7:0>				
00	MINUTES	SECONDS				
01	WEEKDAY	HOURS				
10	MONTH	DAY				
11	—	YEAR				

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTRx bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 22-2).

By writing the ALRMVALH byte, the ALRMPTR<1:0> bits (the Alarm Pointer value) decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 22-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window				
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>			
00	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11	_	_			

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes, the ALRMPTR<1:0> value will be decremented. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

22.2.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (see Example 22-1).

Note:	To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code
	therefore, it is recommended that code follow the procedure in Example 22-1.

22.2.3 SELECTING RTCC CLOCK SOURCE

The clock source for the RTCC module can be selected using the RTCLK<1:0> bits in the RTCPWC register. When the bits are set to '00', the Secondary Oscillator (SOSC) is used as the reference clock and when the bits are '01', LPRC is used as the reference clock. When RTCLK<1:0> = 10 and 11, the external power line (50 Hz and 60 Hz) is used as the clock source.

EXAMPLE 22-1: SETTING THE RTCWREN BIT

```
asm volatile("push w7");
asm volatile("push w8");
asm volatile("disi #5");
asm volatile("mov #0x55, w7");
asm volatile("mov w7, _NVMKEY");
asm volatile("mov #0xAA, w8");
asm volatile("mov w8, _NVMKEY");
asm volatile("bset _RCFGCAL, #13"); //set the RTCWREN bit
asm volatile("pop w8");
asm volatile("pop w7");
```

REGISTER 24-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Χ<	:15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplem	nented bit, read	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-1 X<15:1>: XOR of Polynomial Term xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

REGISTER 24-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Χ<	31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Χ<	23:16>			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-0 X<31:16>: XOR of Polynomial Term xⁿ Enable bits

REGISTER 25-9: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER (HIGH WORD)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		CSS<31:27>					—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

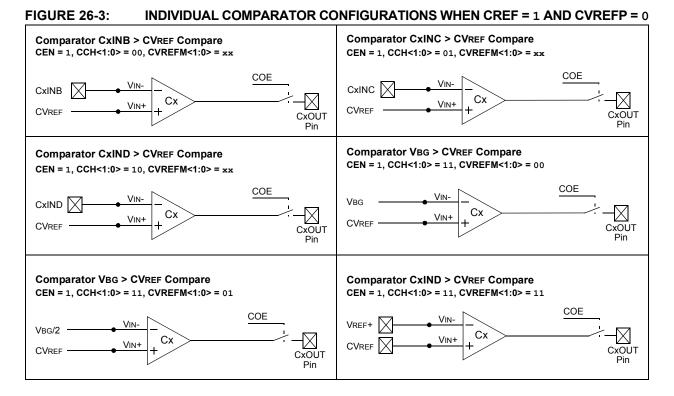
bit 15-11 CSS<31:27>: ADC1 Input Scan Selection bits 1 = Includes corresponding channel for input scan

0 = Skips channel for input scan

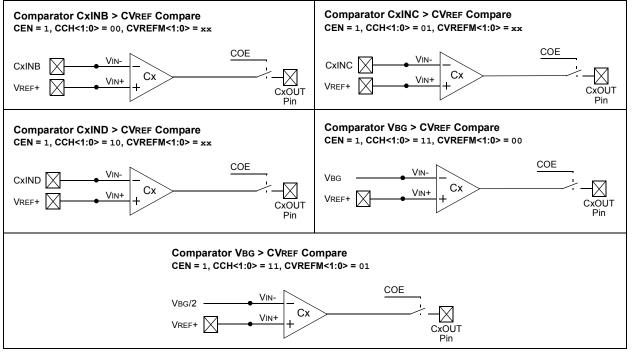
REGISTER 25-10: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER (LOW WORD)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
—	CSS<14:9> ⁽¹⁾					—	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	<7:0>			
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'


- bit 14-9CSS<14:9>: ADC1 Input Scan Selection bits(1)1 = Includes corresponding channel for input scan0 = Skips channel for input scanbit 8Unimplemented: Read as '0'bit 7-0CSS<7:0>: ADC1 Input Scan Selection bits1 = Includes corresponding channel for input scan
 - 0 = Skips channel for input scan

bit 10-0 Unimplemented: Read as '0'

FIGURE 26-4: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 1

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
HLVDEN	—	LSIDL		_	—		—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
VDIR	BGVST	IRVST		HLVDL3	HLVDL2	HLVDL1	HLVDL0		
bit 7							bit		
Legend:									
R = Readabl	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	HLVDEN: Hi	gh/Low-Voltage	Detect Powe	r Enable bit					
	1 = HLVD is 0 = HLVD is								
bit 14		nted: Read as '0	,						
bit 13	-								
DIL 15	LSIDL: HLVD Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode								
	0 = Continues module operation in Idle mode								
bit 12-8	Unimplemented: Read as '0'								
bit 7	VDIR: Voltage Change Direction Select bit								
				exceeds the trip falls below the tr					
bit 6	BGVST: Band Gap Voltage Stable Flag bit								
		s that the band g s that the band g	•						
bit 5	IRVST: Internal Reference Voltage Stable Flag bit								
	1 = Internal reference voltage is stable; the High-Voltage Detect logic generates the interrupt flag at the specified voltage range								
				; the High-Voltag d the HLVD inter			te the interrup		
bit 4	Unimpleme	nted: Read as 'o)'						
bit 3-0	HLVDL<3:0>	High/Low-Volt	age Detection	n Limit bits					
	<pre>1111 = External analog input is used (input comes from the HLVDIN pin) 1110 = Trip Point 1⁽¹⁾ 1101 = Trip Point 2⁽¹⁾</pre>								
	1100 = Trip	Point 30							
	•								
	• 0100 = Trip Point 11 ⁽¹⁾								
	0100 - Trin	Doint 11(1)							

REGISTER 29-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

REGISTER 30-3: CW3: FLASH CONFIGURATION WORD 3 (CONTINUED)

- bit 7
 Reserved: Always maintain as '1'

 bit 6-0
 WPFP<6:0>: Write-Protected Code Segment Boundary Page bits⁽³⁾

 Designates the 512 instruction words page boundary of the protected Code Segment.

 If WPEND = 1:

 Specifies the lower page boundary of the protected Code Segment; the last page being the last implemented page in the device.

 If WPEND = 0:

 Specifies the upper page boundary of the protected Code Segment; Page 0 being the lower boundary.
- **Note 1:** Regardless of WPCFG status, if WPEND = 1 or if the WPFP<6:0> bits correspond to the Configuration Word page, the Configuration Word page is protected.
 - 2: Ensure that the SCLKI pin is made a digital input while using this configuration (see Table 11-1).
 - 3: For the 64K devices (PIC24FJ64GB2XX), maintain WPFP6 as '0'.
 - 4: This Configuration bit only takes effect when PLL is not being used.

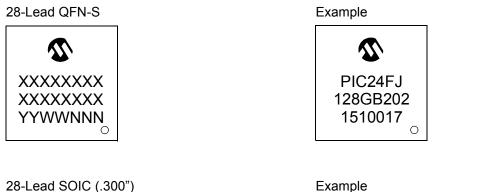
Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb, Wns, Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws, Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
11010	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws) {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL.00	f	W13:W2 = f * WREG	1	1	None
NEC		f	$f = \overline{f} + 1$		1	
NEG	NEG			1		C, DC, N, OV, Z
	NEG	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 32-2: INSTRUCTION SET OVERVIEW (CONTINUED)

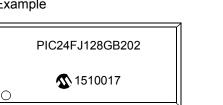
DC CHARAC	TERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Typical ⁽¹⁾	Мах	Units Operating VDD Condition			Conditions	
Incremental C	Current Brow	/n-out Rese	t (∆BOR) ⁽²⁾				
DC25	3.1	5.0	μA	-40°C to +125°C	2.0V	480R ⁽²⁾	
	4.3	6.0	μA	-40°C to +125°C	3.3V		
Incremental C	Current Watc	hdog Timei	′ (∆WDT) ⁽²⁾			-	
DC71	0.8	1.5	μA	-40°C to +125°C	2.0V		
	0.8	1.5	μA	-40°C to +125°C	3.3V		
Incremental C	Current High	Low-Voltag	e Detect (∆l	HLVD) ⁽²⁾			
DC75	4.2	15	μA	-40°C to +125°C	2.0V	4HLVD ⁽²⁾	
	4.2	15	μA	-40°C to +125°C	3.3V		
Incremental C	Current Real-	Time Clock	and Calend	lar (∆RTCC) ⁽²⁾			
DC77	0.3	1.0	μA	-40°C to +125°C	2.0V	△RTCC (with SOSC) ⁽²⁾	
	0.35	1.0	μA	-40°C to +125°C	3.3V		
DC77A	0.3	1.0	μA	-40°C to +125°C	2.0V	∆RTCC (with LPRC) ⁽²⁾	
	0.35	1.0	μA	-40°C to +125°C	3.3V		
Incremental C	Current Deep	Sleep BOF		(2)			
DC81	0.11	0.40	μΑ	-40°C to +125°C	2.0V	∆Deep Sleep BOR ⁽²⁾	
	0.12	0.40	μA	-40°C to +125°C	3.3V	Taneeb Sleeb BOK	
Incremental C	Current Deep	Sleep Wat	chdog Time	r Reset (∆DSWDT) ⁽²⁾	· ·	
DC80	0.24	0.40	μΑ	-40°C to +125°C	2.0V	∆Deep Sleep WDT ⁽²⁾	
	0.24	0.40	μΑ	-40°C to +125°C	3.3V		
VBAT A/D MOI	nitor ⁽³⁾		•				
DC91	1.5	_	μA	-40°C to +125°C	3.3V	VBAT = 2V	
	4	_	μA	-40°C to +125°C	3.3V	VBAT = 3.3V	

TABLE 33-7: DC CHARACTERISTICS: △ CURRENT (BOR, WDT, DSBOR, DSWDT)⁽⁴⁾

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

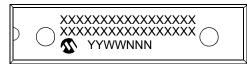

2: Incremental current while the module is enabled and running.

3: The A/D channel is connected to the VBAT pin internally; this is the current during A/D VBAT operation.


4: The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

34.0 PACKAGING INFORMATION

34.1 Package Marking Information



PIC24FJ128GB202

1510017

28-Lead SPDIP

28-Lead SSOP

Example

Example

Legen	d: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.