

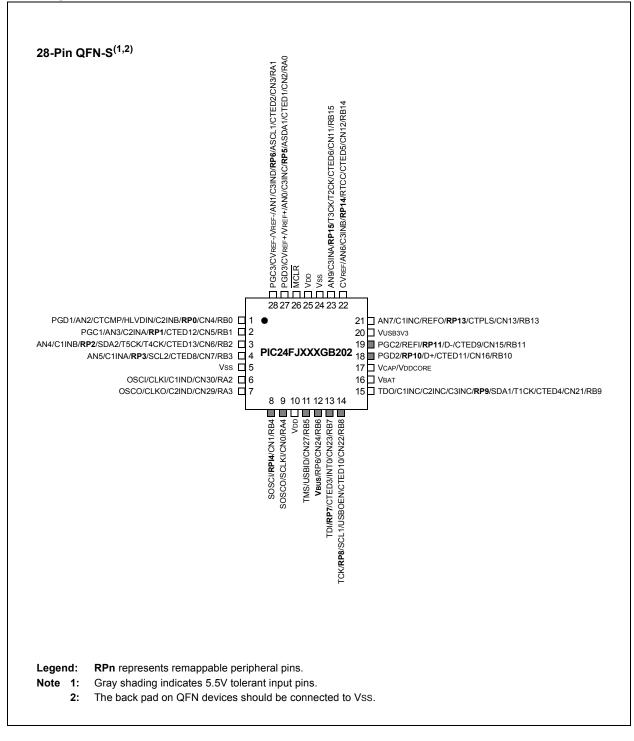
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb202-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

	Pin Num	per/Grid	Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description
PMA0/PMALL	_	—	3	0		Parallel Master Port Address.
PMA1/PMALH			2	0	_	
PMA14/PMCS/ PMCS1	-	—	15	0	—	
PMA2/PMALU	—	—	12	0	_	
PMA3	—		38	0	_	
PMA4			37	0	_	
PMA5	_		4	0	_	
PMA6			5	0	_	
PMA7	_	_	13	0	_	
PMA8			32	0	_	
PMA9			35	0	_	
PMACK1		—	27	Ι	ST/TTL	Parallel Master Port Acknowledge Input 1.
PMBE0		_	36	0	_	Parallel Master Port Byte Enable 0 Strobe.
PMBE1		—	25	0	_	Parallel Master Port Byte Enable 1 Strobe.
PMCS1		_	30	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe.
PMD0			21	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed
PMD1	_		22	I/O	ST/TTL	Master mode) or Address/Data (Multiplexed
PMD2		—	23	I/O	ST/TTL	Master modes).
PMD3			1	I/O	ST/TTL	
PMD4			44	I/O	ST/TTL	
PMD5			43	I/O	ST/TTL	
PMD6			20	I/O	ST/TTL	
PMD7			19	I/O	ST/TTL	
PMRD			11	0	_	Parallel Master Port Read Strobe.
PMWR	_	—	24	0	—	Parallel Master Port Write Strobe.
RA0	2	27	19	I/O	ST	PORTA Digital I/Os.
RA1	3	28	20	I/O	ST	
RA2	9	6	30	I/O	ST	
RA3	10	7	31	I/O	ST	
RA4	12	9	34	Ι	ST	
RA7	_	—	13	I/O	ST	
RA8	_	—	32	I/O	ST	
		—	35	I/O	ST	
RA9			1		ST	1

TABLE 1-3: PIC24FJ128GB204 FAMILY PINOUT DESCRIPTION (CONTINUED)

 I^2C = ST with I^2C^{TM} or SMBus levels

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FJ128GB204 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

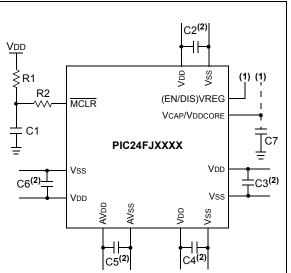
- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin
 (see Section 2.3 "Master Clear (MCLR) Pin")
- ENVREG/DISVREG and VCAP/VDDCORE pins (see Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:


• VREF+/VREF- pins used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED

MINIMUM CONNECTIONS

Key (all values are recommendations):

C1 through C6: 0.1 µF, 20V ceramic

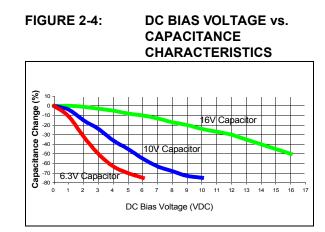
C7: 10 $\mu\text{F},$ 6.3V or greater, tantalum or ceramic R1: 10 $k\Omega$

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)" for the explanation of the ENVREG/DISVREG pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/VSs and AVDD/AVss pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.


Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

Typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 2.5V or 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 31.0 "Development Support"**.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0	_	SPI3IP2	SPI3IP1	SPI3IP0			
bit 15						•	bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	U4TXIP2	U4TXIP1	U4TXIP0	—	U4RXIP2	U4RXIP1	U4RXIP0			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	Unimplemen	ted: Read as ')'							
bit 14-12	-	0>: SPI3 Trans		riority bits						
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)						
	•									
	•									
	001 = Interrupt is Priority 1									
	-	ot source is dis								
bit 11	-	ted: Read as '								
bit 10-8	SPI3IP<2:0>: SPI3 General Interrupt Priority bits									
	 111 = Interrupt is Priority 7 (highest priority interrupt) • 									
	•									
	•									
	001 = Interru	pt is Priority 1 ot source is dis	ablad							
bit 7	-	ted: Read as '								
bit 6-4	-			t Priority hite						
Dit 0-4		U4TXIP<2:0>: UART4 Transmitter Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)								
	•	(g.ieet prienty							
	•									
	• 001 = Interrup	ot is Priority 1								
		ot source is dis	abled							
bit 3	Unimplemen	ted: Read as ')'							
bit 2-0	U4RXIP<2:0>: UART4 Receiver Interrupt Priority bits									
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)						
	•									
	•									
	001 = Interrup	ot is Priority 1								

REGISTER 8-42: IPC22: INTERRUPT PRIORITY CONTROL REGISTER 22

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				RODIV<14:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RODI	V<7:0>			
bit 7							bit C
Legend:							
R = Readat	ole bit	W = Writable bit		U = Unimplem	ented bit, read	1 as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown
bit 15 bit 14-0	RODIV<14:0 Specifies the For example	nted: Read as '0' >: Reference Osci e 1/2 period of the r :: Period of ref_clk_ 111111 = REFO c 111110 = REFO c	eference closed output \leq [R lock is the b	ock in the source eference Source base clock frequ	e * 2] * RODIV ency divided b	y 65,534 (32,7	
	000000000 000000000	000011 = REFO c 000010 = REFO c 000001 = REFO c 000000 = REFO c	lock is the b lock is the b	base clock freque	ency divided b ency divided b	y 4 (2 * 2) y 2 (1 * 2)	y (1)

REGISTER 9-5: REFOCONH: REFERENCE OSCILLATOR CONTROL HIGH REGISTER

Note 1: The ROTRIMx values are ignored.

NOTES:

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1 ⁽³⁾	DCB0 ⁽³⁾	OC32
bit 15			•	•	•	•	bit 8
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit (
Legend:		HS = Hardwa	re Settable bit				
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 15	FLTMD: Faul	t Mode Select I	oit				
			ed until the Fau	It source is ren	noved and the	corresponding	OCFLT0 bit i
		n software de is maintaine	d until the Faul	lt source is rem	oved and a ne	w PWM period	etarte
bit 14	FLTOUT: Fau						510/15
		put is driven hig	oh on a Fault				
		put is driven lov					
bit 13	FLTTRIEN: F	ault Output Sta	te Select bit				
			t on a Fault cor				
			ected by a Fau	llt			
bit 12		ut Compare x I	nvert bit				
	1 = OCx outp	ut is inverted ut is not inverte	d				
bit 11	•	ted: Read as '					
bit 10-9	•		e Least Signific	ant hite(3)			
DIL 10-9			e by $\frac{3}{4}$ of the ir		`		
			e by $\frac{1}{2}$ of the ir				
			e by ¼ of the in				
			s at the start of		-		
bit 8			odules Enable b	oit (32-bit opera	ation)		
		module operati module operati					
bit 7		•	Trigger/Sync S	Select hit			
			ource designate		CSELx bits		
			the source desi			s	
bit 6	TRIGSTAT: ⊺	imer Trigger St	atus bit				
			riggered and is	•			
			en triggered an	-			
bit 5			Output Pin Dir	ection Select b	vit		
	1 = OCx pin is 0 = Output Co		eral x is connec	ted to an OCx	pin		
	Never use an OC	x module as its			-	mode or anothe	er equivalent
	SYNCSELx settir Use these inputs	-	ces only and n	aver se evine or			
2:		as ingger sour	Ces only and the	ever as sync st			

3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

REGISTER 16-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AUDEN ⁽¹) SPISGNEXT	IGNROV	IGNTUR	AUDMONO ⁽²⁾	URDTEN ⁽³⁾	AUDMOD1 ⁽⁴⁾	AUDMOD0 ⁽⁴⁾
bit 15				-			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0
bit 7							bit C
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	iown
bit 15	AUDEN: Audi	o Codec Supp	ort Enable bit ⁽	1)			
				ntrols the directio			
		le functions as s of their actua		, FRMSYNC = N	ISTEN, FRMC	NT<2:0> = 001	and SMP = 0 ,
		tocol is disable					
bit 14	SPISGNEXT:	SPIx Sign-Exte	end RX FIFO	Read Data Enab	le bit		
		RX FIFO is sig					
	0 = Data from	RX FIFO is no	t sign-extende	ed			
bit 13	IGNROV: Igno						
			DV) is NOT a (critical error; duri	ing ROV, data	in the FIFO is r	not overwritten
	by the rec	a critical error	that stops SP	Loperation			
bit 12	IGNTUR: Igno			roperation			
	-			critical error an	d data indicate	d by URDTEN	is transmitted
		SPIxTXB is not					
		a critical error	-				
bit 11	AUDMONO: A						
	1 = Audio data 0 = Audio data		each data wo	rd is transmitted	on both left an	d right channel	s)
bit 10	URDTEN: Tra	nsmit Underru	n Data Enable	e bit ⁽³⁾			
				egisters during T g Transmit Under		. ,	itions
bit 9-8	AUDMOD<1:0		-	•			
	11 = PCM/DS						
				nctions as if SPII			
				ctions as if SPIFE f SPIFE = 0, reg			value
bit 7	FRMEN: Fram			13FIFE = 0, 1eg			
				pin is used as th	e ESYNC innu	t/output)	
		Plx support is o				output)	
Note 1:	AUDEN can only	be written whe	n the SPIEN	bit = 0.			
	AUDMONO can o				s only valid for a	AUDEN = 1.	
3:	URDTEN is only	valid when IGN	ITUR = 1.				
4:	AUDMOD<1:0> c						
	NOT in PCM/DSF	- mode, this m	odule function	IS AS IT FRIMSYP	$vv = \perp$, regardle	ess of its actual	value.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RXWIEN	—	RXMSK5 ⁽¹⁾	RXMSK4 ^(1,4)	RXMSK3 ^(1,3)	RXMSK2 ^(1,2)	RXMSK1 ⁽¹⁾	RXMSK0 ⁽¹⁾
bit 15	•		·	·	•	·	bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXWIEN	_	TXMSK5 ⁽¹⁾	TXMSK4 ^(1,4)	TXMSK3 ^(1,3)	TXMSK2 ^(1,2)	TXMSK1 ⁽¹⁾	TXMSK0 ⁽¹⁾
bit 7							bit C
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpleme	nted bit, read as	· '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkn	own
bit 14	0 = Disable	es receive buffer	element waterr	nark interrupt wh mark interrupt	en RXMSK<5:0	> ≤ RXELM<5:()>
	-	ented: Read as :0>: RX Buffer N					
bit 13-8		its; used in conj					
bit 7		Fransmit Watern					
	1 = Trigger		r element water	mark interrupt wi	nen TXMSK<5:0	> = TXELM<5:()>
bit 6	Unimplem	ented: Read as	·'O'				
bit 5-0	TXMSK<5	:0>: TX Buffer M	lask bits ^(1,2,3,4)				
	TX mask b	its; used in conj	unction with the	TXWIEN bit.			
Note 1:	Mask values this case.	s higher than Fl		not valid. The mo	odule will not trig	gger a match fo	or any value in
-							

REGISTER 16-7: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH

- **2:** RXMSK2 and TXMSK2 bits are only present when FIFODEPTH = 8 or higher.
- 3: RXMSK3 and TXMSK3 bits are only present when FIFODEPTH = 16 or higher.
- 4: RXMSK4 and TXMSK4 bits are only present when FIFODEPTH = 32.

REGISTER 19-2: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, CPU MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	r-0	r-0	R/W-x	R/W-x	R/W-x, HSC	R/W-x, HSC
UOWN	DTS ⁽¹⁾	—	—	DTSEN	BSTALL	BC9	BC8
bit 15							bit 8

| R/W-x, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| BC7 | BC6 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| bit 7 | | | | | | | bit 0 |

Legend:	r = Reserved bit	HSC = Hardware Setta	able/Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'r' = Reserved bit	x = Bit is unknown

bit 15	UOWN: USB Own bit
	 The microcontroller core owns the BD and its corresponding buffer; the USB module ignores all other fields in the BD
bit 14	DTS: Data Toggle Packet bit ⁽¹⁾
	1 = Data 1 packet
	0 = Data 0 packet
bit 13-12	Reserved: Maintain as '0'
bit 11	DTSEN: Data Toggle Synchronization Enable bit
	 1 = Data toggle synchronization is enabled; data packets with incorrect Sync value will be ignored 0 = No data toggle synchronization is performed
bit 10	BSTALL: Buffer STALL Enable bit
	 1 = Buffer STALL is enabled; STALL handshake is issued if a token is received that would use the BD in the given location (UOWN bit remains set, BD value is unchanged); corresponding EPSTALL bit will get set on any STALL handshake 0 = Buffer STALL is disabled
bit 9-0	BC<9:0>: Byte Count bits
	This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.
Note 1: T	his bit is ignored unless DTSEN = 1.

REGISTER 19-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/K-0, HS	U-0	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R-0	R/K-0, HS
STALLIF	—	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF
bit 7							bit 0
Legend:		U = Unimplem	nented bit, read	l as '0'			
R = Readable bit		K = Write '1' to Clear bit		HS = Hardware Settable bit			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown

bit 15-8	Unimplemented: Read as '0'
bit 7	STALLIF: STALL Handshake Interrupt bit
	 1 = A STALL handshake was sent by the peripheral during the handshake phase of the transaction in Device mode 0 = A STALL handshake has not been sent
bit 6	Unimplemented: Read as '0'
bit 5	
DIL 5	 RESUMEIF: Resume Interrupt bit 1 = A K-state is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed) 0 = No K-state is observed
bit 4	IDLEIF: Idle Detect Interrupt bit
	 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of the current token is complete; read the U1STAT register for endpoint information 0 = Processing of the current token is not complete; clear the U1STAT register or load the next token from U1STAT (clearing this bit causes the U1STAT FIFO to advance)
bit 2	SOFIF: Start-of-Frame Token Interrupt bit
	1 = A Start-of-Frame token is received by the peripheral or the Start-of-Frame threshold is reached by the host
	0 = No Start-of-Frame token is received or threshold reached
bit 1	UERRIF : USB Error Condition Interrupt bit (read-only)
	 1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit
· ·· •	0 = No unmasked error condition has occurred
bit 0	URSTIF: USB Reset Interrupt bit
	 1 = Valid USB Reset has occurred for at least 2.5 μs; Reset state must be cleared before this bit can be reasserted
	0 = No USB Reset has occurred. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise oper- ations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the
	entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

23.5.8 PROGRAMMING CFGPAGE (PAGE 0) CONFIGURATION BITS

- 1. If not already set, set the CRYON bit. Set KEYPG<3:0> to '0000'.
- 2. Read the PGMFAIL status bit. If this bit is '1', an illegal configuration has been selected and the programming operation will not be performed.
- Write the data to be programmed into the Configuration Page into CRYTXTC<31:0>. Any bits that are set ('1') will be permanently programmed, while any bits that are cleared ('0') will not be programmed and may be programmed at a later time.
- 4. Set the CRYWR bit. Poll the bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- 5. Once all programming has completed, set the CRYREAD bit to reload the values from the on-chip storage. A read operation must be performed to complete programming.
- Note: Do not clear the CRYON bit while the CRYREAD bit is set; this will result in an incomplete read operation and unavailable key data. To recover, set CRYON and CRYREAD, and allow the read operation to fully complete.
- 6. Poll the CRYREAD bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- For production programming, the TSTPGM bit can be set to indicate a successful programming operation. When TSTPGM is set, the PGMTST bit (CRYOTP<7>) will also be set, allowing users to see the OTP array status with performing a read operation on the array.
- **Note:** If the device enters Sleep mode during OTP programming, the contents of the OTP array may become corrupted. This is not a recoverable error. Users must ensure that entry into power-saving modes is disabled before OTP programming is performed.

23.5.9 PROGRAMMING KEYS

- 1. If not already set, set the CRYON bit.
- 2. Configure KEYPG<3:0> to the page you want to program.
- 3. Read the PGMFAIL status bit. If this bit is '1', an illegal configuration has been selected and the programming operation will not be performed.
- 4. Write the data to be programmed into the Configuration Page into CRYTXTC<63:0>. Any bits that are set ('1') will be permanently programmed, while any bits that are cleared ('0') will not be programmed and may be programmed at a later time.
- 5. Set the CRYWR bit. Poll the bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- 6. Repeat Steps 2 through 5 for each OTP array page to be programmed.
- 7. Once all programming has completed, set the CRYREAD bit to reload the values from the on-chip storage. A read operation must be performed to complete programming.
- Note: Do not clear the CRYON bit while the CRYREAD bit is set; this will result in an incomplete read operation and unavailable key data. To recover, set CRYON and CRYREAD, and allow the read operation to fully complete.
- 8. Poll the CRYREAD bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- For production programming, the TSTPGM bit can be set to indicate a successful programming operation. When TSTPGM is set, the PGMTST bit (CRYOTP<7>) will also be set, allowing users to see the OTP array status with performing a read operation on the array.
- **Note:** If the device enters Sleep Mode during OTP programming, the contents of the OTP array may become corrupted. This is not a recoverable error. Users must ensure that entry into power-saving modes is disabled before OTP programming is performed.

23.5.10 VERIFYING PROGRAMMED KEYS

To maintain key security, the secure OTP array has no provision to read back its data to any user-accessible memory space in any operating mode. Therefore, there is no way to directly verify programmed data. The only method for verifying that they have been programmed correctly is to perform an encryption operation with a known plaintext/ciphertext pair for each programmed key.

REGISTER 25-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)

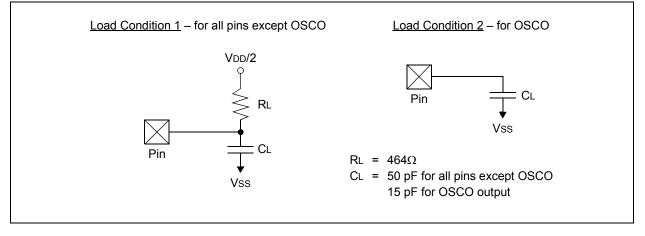
bit 6-2	SMPI<4:0>: Interrupt Sample/DMA Increment Rate Select bits
	When DMAEN = 1:
	11111 = Increments the DMA address after completion of the 32nd sample/conversion operation
	 11110 = Increments the DMA address after completion of the 31st sample/conversion operation •
	•
	•
	00001 = Increments the DMA address after completion of the 2nd sample/conversion operation 00000 = Increments the DMA address after completion of each sample/conversion operation
	When DMAEN = 0:
	11111 = Interrupts at the completion of the conversion for each 32nd sample
	11110 = Interrupts at the completion of the conversion for each 31st sample
	•
	•
	•
	00001 = Interrupts at the completion of the conversion for every other sample
	00000 = Interrupts at the completion of the conversion for each sample
bit 1	BUFM: Buffer Fill Mode Select bit ⁽¹⁾
	 1 = Starts buffer filling at ADC1BUF0 on the first interrupt and ADC1BUF8 on the next interrupt 0 = Always starts filling buffer at ADC1BUF0
bit 0	ALTS: Alternate Input Sample Mode Select bit
	 1 = Uses channel input selects for Sample A on the first sample and Sample B on the next sample 0 = Always uses channel input selects for Sample A
Note 1:	These bits are only applicable when the buffer is used in FIEO mode (BLIEREGEN = 0). In addition, BLIES

Note 1: These bits are only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
ASEN	LPEN	CTMREQ	BGREQ			ASINT1	ASINT0			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
0-0	0-0	0-0	0-0	WM1	WM0	CM1	CM0			
 bit 7				VVIVII	VIVIO	CIVIT	bit 0			
Legend:										
R = Readabl	e bit	W = Writable	oit	U = Unimplem	ented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	ASEN: Auto-S	Scan Enable bi	:							
	1 = Auto-scan 0 = Auto-scan									
oit 14	LPEN: Low-P	ower Enable bi	t							
		er is enabled aft r is enabled aft								
oit 13	CTMREQ: CT	MU Request b	it							
	 1 = CTMU is enabled when the A/D is enabled and active 0 = CTMU is not enabled by the A/D 									
bit 12	BGREQ: Band Gap Request bit									
		is enabled whe		nabled and acti	ve					
bit 11-10	Unimplement	ted: Read as ')'							
bit 9-8	ASINT<1:0>:	Auto-Scan (Th	reshold Detect	i) Interrupt Mod	e bits					
	10 = Interrupt	after valid com after Threshol	pare has occu			npare has occu	rred			
bit 7-4	Unimplement	ted: Read as ')'							
bit 3-2	WM<1:0>: Wr	rite Mode bits								
	11 = Reserved									
	10 = Auto-compare only (conversion results are not saved, but interrupts are generated when a valid									
	match occurs, as defined by the CMx and ASINTx bits) 01 = Convert and save (conversion results are saved to locations as determined by the register bits									
	when a match occurs, as defined by the CMx bits)									
	00 = Legacy operation (conversion data is saved to a location determined by the buffer register bits)									
bit 1-0	CM<1:0>: Compare Mode bits									
	11 = Outside Window mode (valid match occurs if the conversion result is outside of the window defined by the corresponding buffer pair)									
	10 = Inside W		alid match occ	,	ersion result is	inside the wind	low defined by			
	01 = Greater	Than mode (va		rs if the result is	greater than t	he value in the	corresponding			
	buffer register) 00 = Less Than mode (valid match occurs if the result is less than the value in the corresponding buffer register)									

	2001 01110		5 CONNERN	CONTROLIN					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
		<u> </u>	_		_	<u> </u>	—		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
	<pre>011111 = Maximum positive change from nominal current 011110</pre>								
bit 9-8 bit 7-0	100001 = Maximum negative change from nominal current IRNG<1:0>: Current Source Range Select bits 11 = 100 × Base Current 10 = 10 × Base Current 01 = Base current level (0.55 μA nominal) 00 = 1000 × Base Current Unimplemented: Read as '0'								

REGISTER 28-3: CTMUICON: CTMU CURRENT CONTROL REGISTER


33.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ128GB204 family AC characteristics and timing parameters.

TABLE 33-18: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended
	Operating voltage VDD range as described in Section 33.1 "DC Characteristics".

FIGURE 33-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

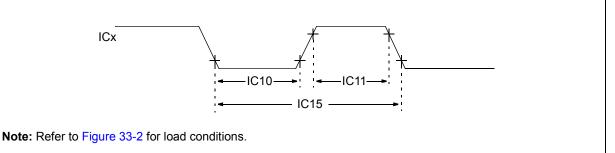


TABLE 33-19: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSCO/CLKO Pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	—	400	pF	In I ² C™ mode

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 33-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

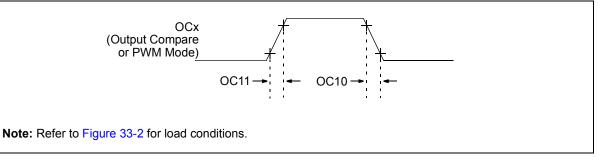


TABLE 33-29: INPUT CAPTURE x TIMING REQUIREMENTS

				$\begin{array}{llllllllllllllllllllllllllllllllllll$			
Param No.	Symbol	Characteristic ⁽¹⁾		Min	Max	Units	Conditions
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20		ns	
			With Prescaler	10	_	ns	
IC11	TccH	ICx Input High	No Prescaler	0.5 TCY + 20	_	ns	
		Time	With Prescaler	10	_	ns	
IC15	TccP	ICx Input Period		(Tcy + 40)/N	—	ns	N = Prescale Value (1, 4, 16)

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 33-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

TABLE 33-30: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

			$\label{eq:standard operating Conditions: 2.0V to 3.6V} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
OC10	TccF	OCx Output Fall Time		_	_	ns	See Parameter DO32
OC11	TccR	OCx Output Rise Time	—		_	ns	See Parameter DO31

Note 1: These parameters are characterized but not tested in manufacturing.

NOTES:

NOTES: