

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	
3.0	СРИ	
4.0	Memory Organization	
5.0	Direct Memory Access Controller (DMA)	
6.0	Flash Program Memory	
7.0	Resets	
8.0	Interrupt Controller	
9.0	Oscillator Configuration	147
10.0	Power-Saving Features	161
11.0	I/O Ports	173
12.0	Timer1	
13.0	Timer2/3 and Timer4/5	
14.0	Input Capture with Dedicated Timers	
	Output Compare with Dedicated Timers	
16.0	Serial Peripheral Interface (SPI)	
17.0		
	Universal Asynchronous Receiver Transmitter (UART)	
19.0	Universal Serial Bus with On-The-Go Support (USB OTG)	
20.0		
	Enhanced Parallel Master Port (EPMP)	
	Real-Time Clock and Calendar (RTCC)	
23.0	Cryptographic Engine	
	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	
	12-Bit A/D Converter with Threshold Detect	
	Triple Comparator Module	
	Comparator Voltage Reference	
	Charge Time Measurement Unit (CTMU)	
	High/Low-Voltage Detect (HLVD)	
	Special Features	
	Development Support	
	Instruction Set Summary	
	Electrical Characteristics	
	Packaging Information	
	endix A: Revision History	
	(
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
Prod	uct Identification System	

TABI F 4-27 [.]	CRC REGISTER MAP
ADLL = -21.	

© 20	TABLE 4-2	27:	CRC RE	GISTE	R MAP						
2013-2015	File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
5 Microchin	CRCCON1	0158	CRCEN		CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	-
	CRCCON2	015A	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	
	CRCXORL	015C								X<15:1>	
	CRCXORH	015E								X<31:	1
	CRCDATL	0160							CRC	Data Input	F
	CRCDATH	0162							CRC	Data Input	F
	CRCWDATL	0164							CF	RC Result R	e
	CRCWDATH	0166							CF	RC Result R	e

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-28: PERIPHERAL PIN SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	038C	_	_	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	_	_	OCTRIG1R5	OCTRIG1R4	OCTRIG1R3	OCTRIG1R2	OCTRIG1R1	OCTRIG1R0	3F3F
RPINR1	038E	-	-	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	_	_	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	3F3F
RPINR2	0390	-	-	OCTRIG2R5	OCTRIG2R4	OCTRIG2R3	OCTRIG2R2	OCTRIG2R1	OCTRIG2R0	_	_	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0	3F3F
RPINR7	039A	_	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	_	_	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	3F3F
RPINR8	039C	—	—	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	_	_	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	3F3F
RPINR9	039E	_	_	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0	_	_	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	3F3F
RPINR11	03A2	—	_	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0	—	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	3F3F
RPINR17	03AE	—	—		U3RXR<5:0>				_	_	_	_	_	-	_	_	3F00	
RPINR18	03B0	_	_	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	_	_	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	3F3F
RPINR19	03B2	—	_	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0	—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	3F3F
RPINR20	03B4	—	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	—	_	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	3F3F
RPINR21	03B6	_	_	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	_	_	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	3F3F
RPINR22	03B8	—	_	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	3F3F
RPINR23	03BA	—	—	TMRCKR5	TMRCKR4	TMRCKR3	TMRCKR2	TMRCKR1	TMRCKR0	—	_	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	3F3F
RPINR27	03C2	_	_	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0	_	_	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0	3F3F
RPINR28	03C4	_	_	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0	_	-	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0	3F3F
RPINR29	03C6	_	_	_	_	_	_	_	_	_				SS3R	<5:0>			003F
RPINR30	03C8	_	_	_	_	_	_	_	_	_	-	- MDMIR<5:0>				003F		
RPINR31	03CA	_		MDC2R5	MDC2R4	MDC2R3	MDC2R2	MDC2R1	MDC2R0	_	-	MDC1R5	MDC1R4	MDC1R3	MDC1R2	MDC1R1	MDC1R0	3F3F

X<31:16>

CRC Data Input Register Low

CRC Data Input Register High

CRC Result Register Low

CRC Result Register High

Bit 7

CRCFUL

_

Bit 6

CRCMPT

Bit 5

CRCISEL

_

Bit 4

CRCGO

PLEN4

Bit 3

LENDIAN

PLEN3

Bit 2

_

PLEN2

Bit 1

_

PLEN1

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All

Resets

0040

0000

0000

0000

XXXX

XXXX

XXXX

XXXX

Bit 0

_

PLEN0

_

4.2.5 EXTENDED DATA SPACE (EDS)

The Extended Data Space (EDS) allows PIC24F devices to address a much larger range of data than would otherwise be possible with a 16-bit address range. EDS includes any additional internal data memory not directly accessible by the lower 32-Kbyte data address space and any external memory through the Enhanced Parallel Master Port (EPMP).

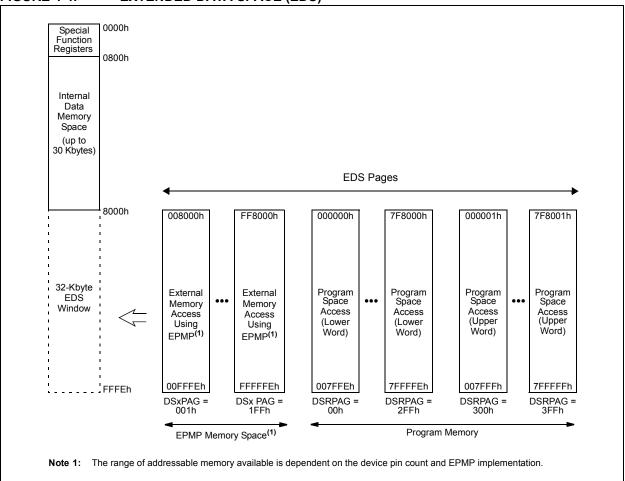

In addition, EDS also allows read access to the program memory space. This feature is called Program Space Visibility (PSV) and is discussed in detail in Section 4.3.3 "Reading Data from Program Memory Using EDS".

Figure 4-4 displays the entire EDS space. The EDS is organized as pages, called EDS pages, with one page equal to the size of the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read register (DSRPAG) or Data Space Write register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA). The data addressing range of PIC24FJ128GB204 family devices depends on the version of the Enhanced Parallel Master Port implemented on a particular device; this is, in turn, a function of device pin count. Table 4-34 lists the total memory accessible by each of the devices in this family. For more details on accessing external memory using EPMP, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Enhanced Parallel Master Port (EPMP)"** (DS39730).

TABLE 4-34:	TOTAL ACCESSIBLE DATA
	MEMORY

Family	Internal RAM	External RAM Access Using EPMP
PIC24FJXXXGB204	8K	Up to 16 Mbytes
PIC24FJXXXGB202	8K	Up to 64K

Note: Accessing Page 0 in the EDS window will generate an address error trap as Page 0 is the base data memory (data locations, 0800h to 7FFFh, in the lower Data Space).

FIGURE 4-4: EXTENDED DATA SPACE (EDS)

REGISTER 5-1: DMACON: DMA ENGINE CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
DMAEN	—	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
_	—	—	—	—	—	—	PRSSEL		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

bit 15 DMAEN: DMA Module Enable bit

1 = Enables module

0 = Disables module and terminates all active DMA operation(s)

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round robin scheme

0 = Fixed priority scheme

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

	Vector	IRQ	IVT	ΑΙντ	Interrupt Bit Locations				
Interrupt Source	#	#	Address	Address	Flag	Enable	Priority		
SPI1 General	17	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>		
SPI1 Transmit	18	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>		
SPI1 Receive	66	58	000088h	000188h	IFS3<10>	IEC3<10>	IPC14<10:8>		
SPI2 General	40	32	000054h	000154h	IFS2<0>	IEC2<0>	IPC8<2:0>		
SPI2 Transmit	41	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>		
SPI2 Receive	67	59	00008Ah	00018Ah	IFS3<11>	IEC3<11>	IPC14<14:12>		
SPI3 General	98	90	0000C8h	0001C8h	IFS5<10>	IEC5<10>	IPC22<10:8>		
SPI3 Transmit	99	91	0000CAh	0001CAh	IFS5<11>	IEC5<11>	IPC22<14:12>		
SPI3 Receive	68	60	000054h	000154h	IFS3<12>	IEC3<12>	IPC15<2:0>		
Timer1	11	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>		
Timer2	15	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>		
Timer3	16	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>		
Timer4	35	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>		
Timer5	36	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>		
UART1 Error	73	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>		
UART1 Receiver	19	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>		
UART1 Transmitter	20	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>		
UART2 Error	74	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>		
UART2 Receiver	38	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>		
UART2 Transmitter	39	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>		
UART3 Error	89	81	0000B6h	0001B6h	IFS5<1>	IEC5<1>	IPC20<6:4>		
UART3 Receiver	90	82	0000B8h	0001B8h	IFS5<2>	IEC5<2>	IPC20<10:8>		
UART3 Transmitter	91	83	0000BAh	0001BAh	IFS5<3>	IEC5<3>	IPC20<14:12>		
UART4 Error	95	87	0000C2h	0001C2h	IFS5<7>	IEC5<7>	IPC21<14:12>		
UART4 Receiver	96	88	0000C4h	0001C4h	IFS5<8>	IEC5<8>	IPC22<2:0>		
UART4 Transmitter	97	89	0000C6h	0001C6h	IFS5<9>	IEC5<9>	IPC22<6:4>		
USB	94	86	0000C0h	0001C0h	IFS5<6>	IEC5<6>	IPC21<10:8>		

REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 2 CMIF: Comparator Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 MI2C1IF: Master I2C1 Event Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 8-11: IFS6: INTERRUPT FLAG STATUS REGISTER 6

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	
—	_	—	—	—	FSTIF	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow					iown			

bit 15-11	Unimplemented: Read as '0'
hit 10	ESTIE: EDC Solf Tupo Interrupt Ele

- bit 10 FSTIF: FRC Self-Tune Interrupt Flag Status bit 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 9-0 Unimplemented: Read as '0'

REGISTER 8-12: IFS7: INTERRUPT FLAG STATUS REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
—	—	JTAGIF	—	—	—	—	—	
bit 7								

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-6 Unimplemented: Read as '0'

bit 5 JTAGIF: JTAG Controller Interrupt Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred
- bit 4-0 Unimplemented: Read as '0'

9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The Primary Oscillator and FRC sources have the option of using the internal USB PLL block, which generates both the USB module clock and a separate system clock from the 96 MHz PLL. Refer to **Section 9.6 "Oscillator Modes and USB Operation"** for additional information.

The internal FRC provides an 8 MHz clock source. It can optionally be reduced by the programmable clock divider to provide a range of system clock frequencies.

The selected clock source generates the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, FcY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the Primary Oscillator.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in program memory (for more information, refer to **Section 30.1 "Configuration Bits"**). The Primary Oscillator Configuration bits, POSCMD<1:0> (Configuration Word 2<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (Configuration Word 2<10:8>), select the oscillator source that is used at a Power-on Reset. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes, as shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (Configuration Word 2<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION										
Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes						
Fast RC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2						
(Reserved)	Internal	XX	110	1						
Low-Power RC Oscillator (LPRC)	Internal	11	101	1						
Secondary (Timer1) Oscillator (SOSC)	Secondary	11	100	1						
Primary Oscillator (XT) with PLL Module (XTPLL)	Primary	01	011							
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011							
Primary Oscillator (HS)	Primary	10	010							
Primary Oscillator (XT)	Primary	01	010							
Primary Oscillator (EC)	Primary	00	010							
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1						
Fast RC Oscillator (FRC)	Internal	11	000	1						

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

14.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Input Capture with Dedicated Timer" (DS39722). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ128GB204 family contain six independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

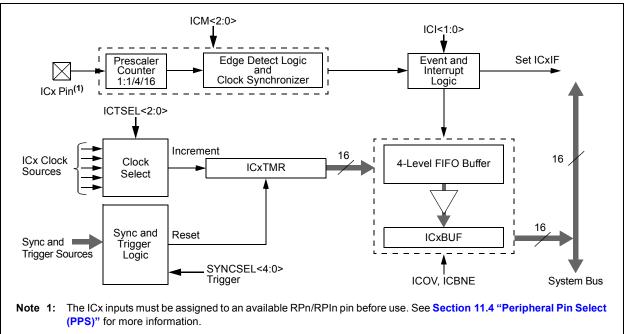
Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 30 user-selectable sync/trigger sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to 6 clock sources available for each module, driving a separate, internal 16-bit counter

The module is controlled through two registers: ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2). A general block diagram of the module is shown in Figure 14-1.

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES


When the input capture module operates in a Free-Running mode, the internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow. Its period is synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the internal counter to run.

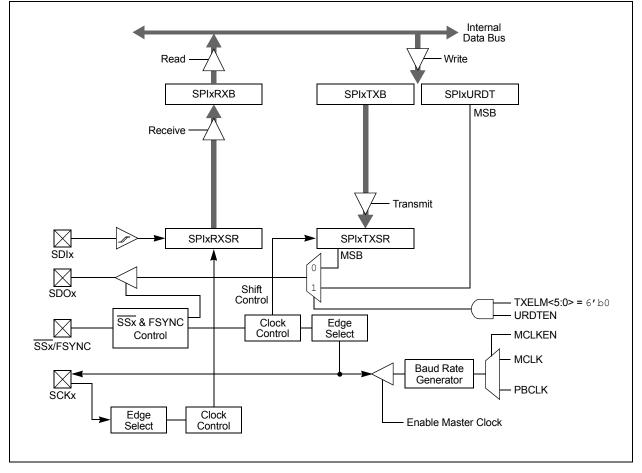
Standard, free-running operation is selected by setting the SYNCSELx bits (ICxCON2<4:0>) to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

FIGURE 14-1: INPUT CAPTURE x BLOCK DIAGRAM

16.1 Standard Master Mode

To set up the SPIx module for the Standard Master mode of operation:


- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP<2:0> bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L and SPIxCON1H registers with the MSTEN bit (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 5. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

16.2 Standard Slave Mode

To set up the SPIx module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF registers.
- 2. If using interrupts:
 - a) Clear the SPIxBUFL and SPIxBUFH registers.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP<2:0> bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1L<8>) is set, then the SSEN bit (SPIxCON1L<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

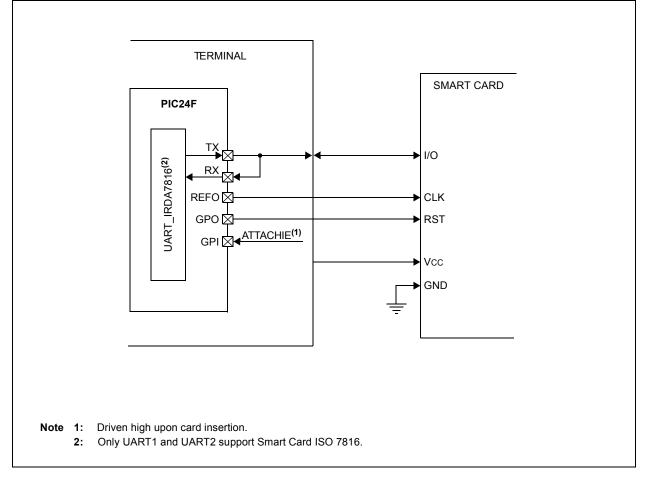
FIGURE 16-1: SPIX MODULE BLOCK DIAGRAM (STANDARD MODE)

18.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

18.8 Smart Card ISO 7816 Support

Figure 18-2 shows a Smart Card subsystem using a PIC24F microcontroller with a UARTx module for Smart Card data communication. Vcc to power the Smart Card can be supplied through a terminal or an


external power supply. The terminal is also responsible for clocking and resetting the Smart Card. The TX and RX line of the PIC24F device has to be shorted externally, and then connected to the I/O line of the Smart Card.

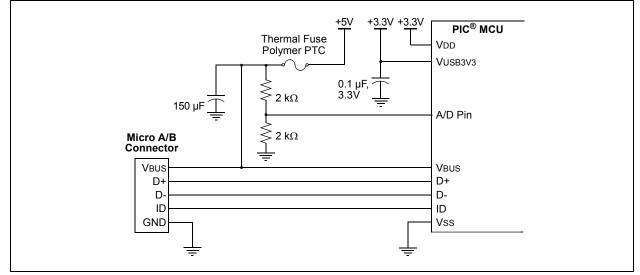
There are two protocols which are widely used for Smart Card communication between terminal and Smart Card:

- T = 0 (asynchronous, half-duplex, byte-oriented protocol)
- T = 1 (asynchronous, half-duplex, block-oriented protocol)

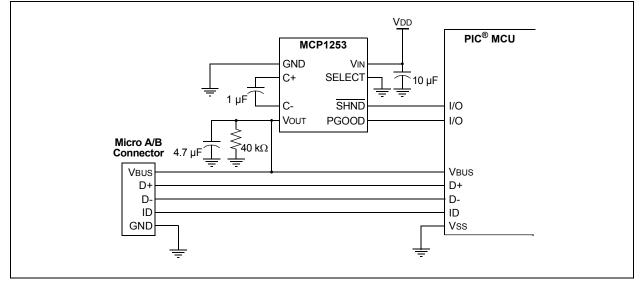
The selection of the T = 0 or T = 1 protocol is done using the PTRCL bit in the UxSCCON register.

19.1.2 HOST AND OTG MODES

19.1.2.1 D+ and D- Pull-Down Resistors


PIC24FJ128GB204 family devices have a built-in 15 kΩ pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON<3>). If the OTGEN bit (U1OTGCON<2>) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON<5:4>).

19.1.2.2 Power Configurations


In Host mode, as well as Host mode in On-The-Go operation, the "USB 2.0 Specification" requires that the host application should supply power on VBUS. Since the microcontroller is running below VBUS, and is not able to source sufficient current, a separate power supply must be provided.

When the application is always operating in Host mode, a simple circuit can be used to supply VBUS and regulate current on the bus (Figure 19-6). For OTG operation, it is necessary to be able to turn VBUS on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 19-7.

FIGURE 19-6: USB HOST INTERFACE EXAMPLE

FIGURE 19-7: USB OTG INTERFACE EXAMPLE

Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month Day	Hours M	inutes Seconds
0000 - Every half second 0001 - Every second				
0010 - Every 10 seconds				: s
0011 - Every minute				s s
0100 - Every 10 minutes				m:ss
0101 - Every hour				n m : s s
0110 - Every day			h h i n	n m : s s
0111 - Every week	d		h h i n	n m : s s
1000 - Every month		/d	d h h i n	n m : s s
1001 - Every year ⁽¹⁾		m m / d	d h h i n	n m : s s
Note 1: Annually, except when	n configured fo	r February 29.		

22.6 Power Control

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake from the current lower power mode (Sleep, Deep Sleep, etc.).

To use this feature:

- 1. Enable the RTCC (RTCEN = 1).
- 2. Set the PWCEN bit (RTCPWC<15>).
- 3. Configure the RTCC pin to drive the PWC control signal (RTCOE = 1 and RTCOUT<1:0> = 11).

The polarity of the PWC control signal may be chosen using the PWCPOL bit (RTCPWC<14>). An active-low or active-high signal may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin, in order to drive the ground pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

22.7 RTCC VBAT Operation

The RTCC can operate in VBAT mode when there is a power loss on the VDD pin. The RTCC will continue to operate if the VBAT pin is powered on (it is usually connected to the battery).

Note: It is recommended to connect the VBAT pin to VDD if the VBAT mode is not used (not connected to the battery).

REGISTER 30-2: CW2: FLASH CONFIGURATION WORD 2

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	r-0	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IESO	—	WDTCMX	ALTCMPI	ALTRB6 ⁽²⁾	FNOSC2	FNOSC1	FNOSC0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	R/PO-1	R/PO-1		
FCKSM1	FCKSM0	OSCIOFCN	WDTCLK1	WDTCLK0	_	POSCMD1	POSCMD0		
bit 7 b									

Legend:	r = Reserved bit	PO = Program Once bi	t
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	IESO: Internal External Switchover bit
	1 = IESO mode (Two-Speed Start-up) is enabled
	0 = IESO mode (Two-Speed Start-up) is disabled
bit 14	Reserved: Read as '0'
bit 13	WDTCMX: WDT Clock Multiplex Control bit
	1 = WDT clock source is determined by the WDTCLK<1:0> Configuration bits
	0 = WDT always uses LPRC as its clock source
bit 12	ALTCMPI: Alternate Comparator Input bit
	 1 = C1INC is on RB13, C2INC is on RB9 and C3INC is on RA0 0 = C1INC, C2INC and C3INC are on RB9
bit 11	ALTRB6: Alternate RB6 Pin Function Enable bit ⁽²⁾
bit 11	
	 = Appends the RP6/ASCL1/PMD6 functions of RB6 to RA1 pin functions = Keeps the RP6/ASCL1/PMD6 functions to RB6
bit 10-8	FNOSC<2:0>: Initial Oscillator Select bits
	111 = Fast RC Oscillator with Postscaler (FRCDIV)
	110 = Reserved
	101 = Low-Power RC Oscillator (LPRC)
	100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
	010 = Primary Oscillator (XT, HS, EC)
	001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)
	000 = Fast RC Oscillator (FRC)
bit 7-6	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits
	1x = Clock switching and Fail-Safe Clock Monitor are disabled
	01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
	00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
Note 1:	The 31 kHz FRC source is used when a Windowed WDT mode is selected and the LPRC is not being
	used as the system clock. The LPRC is used when the device is in Sleep mode and in all other cases.
2:	When VBUS functionality is used, this Configuration bit must be programmed to '1'.

31.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

31.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

31.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB X IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

31.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB X IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

31.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

31.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

31.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 33-13: COMPARATOR DC SPECIFICATIONS

-	Operating Conditions: $2.0V < VDD < 3.6V$ Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments	
D300	VIOFF	Input Offset Voltage		20	±40	mV	(Note 1)	
D301	VICM	Input Common-Mode Voltage	0	_	Vdd	V	(Note 1)	
D302	CMRR	Common-Mode Rejection Ratio	55	—	—	dB	(Note 1)	
D306	IQCMP	AVDD Quiescent Current per Comparator	_	27	—	μs	Comparator enabled	
D307	TRESP	Response Time	_	300	_	ns	(Note 2)	
D308	Тмс2оv	Comparator Mode Change to Valid Output	_	—	10	μs		

Note 1: Parameters are characterized but not tested.

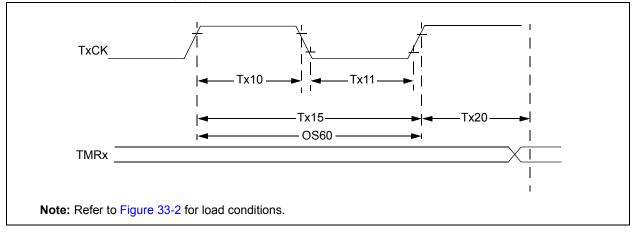
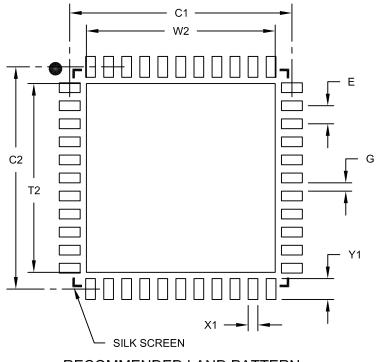

2: Measured with one input at VDD/2 and the other transitioning from VSS to VDD, 40 mV step, 15 mV overdrive.

TABLE 33-14: COMPARATOR VOLTAGE REFERENCE DC SPECIFICATIONS

-	Operating Conditions: $2.0V < V_{DD} < 3.6V$ Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le T_A \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
VR310	TSET	Settling Time		_	10	μs	(Note 1)
VRD311	CVRAA	Absolute Accuracy	-100	—	100	mV	
VRD312	CVRur	Unit Resistor Value (R)		4.5	_	kΩ	

Note 1: Measures the interval while CVR<4:0> transitions from '11111' to '00000'.

FIGURE 33-5: TIMER1, 2, 3, 4 AND 5 EXTERNAL CLOCK TIMING CHARACTERISTICS


TABLE 33-26:	TIMER1 EXTERNAL	CLOCK TIM	IING REQUIREMENTS ⁽¹⁾	
				1

			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Charao	cteristic	Min	Тур	Мах	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous, No Prescaler	0.5 TCY + 20	_		ns	Must also meet Parameter TA15
			Synchronous, with Prescaler	10		—	ns	
			Asynchronous	10		—	ns	
TA11	ΤτxL	T1CK Low Time	Synchronous, No Prescaler	0.5 TCY + 20		_	ns	Must also meet Parameter TA15
			Synchronous, with Prescaler	10	_	-	ns	
			Asynchronous	10	_	—	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous, No Prescaler	Tcy + 40	_	—	ns	
			Synchronous, with Prescaler	Greater of: 20 ns or (Tcy + 40)/N	_	—	_	N = Prescale Value (1, 8, 64, 256)
			Asynchronous	20	_	—	ns	
OS60	FT1	SOSC1/T1CK O Frequency Rang enabled by settir (T1CON<1>))	e (oscillator	DC	_	50	kHz	
TA20	TCKEXTMRL	Delay from Exte Edge to Timer Ir	rnal T1CK Clock	0.5 TCY		1.5 TCY		

Note 1: Timer1 is a Type A.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N N	/ILLIMETER	S
Dimensio	n Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

Equationa	
Equations	

16-Bit, 32-Bit CRC Polynomials	346
A/D Conversion Clock Period	368
Baud Rate Reload Calculation	
Calculating the PWM Period	220
Calculation for Maximum PWM Resolution	
Estimating USB Transceiver	
Current Consumption	
Fractional Divisor for ROTRIMx Bits	156
Relationship Between Device and	
SPIx Clock Speed	
UARTx Baud Rate with BRGH = 0	
UARTx Baud Rate with BRGH = 1	
Errata	7
Extended Data Space (EDS)	303
• • • •	

F

Flash Configuration Word Locations	389
Flash Configuration Words	36
Flash Program Memory	79
and Table Instructions	79
Control Registers	80
Enhanced ICSP Operation	80
JTAG Operation	80
Programming Algorithm	82
Programming Operations	80
RTSP Operation	80
Single-Word Programming	

G

Analog/Digital Pins Configuration During ICSP Operations 28 Connection Requirements 23 External Oscillator Pins 27 ICSP Programming Pins 26 Master Clear (MCLR) Pin 24 Power Supply Pins 24 Unused I/Os 28 Voltage Regulator Pins 25	Getting Started with 16-Bit MCUs	
Connection Requirements23External Oscillator Pins27ICSP Programming Pins26Master Clear (MCLR) Pin24Power Supply Pins24Unused I/Os28	Analog/Digital Pins Configuration During	
External Oscillator Pins27ICSP Programming Pins26Master Clear (MCLR) Pin24Power Supply Pins24Unused I/Os28	ICSP Operations	
ICSP Programming Pins	Connection Requirements	
Master Clear (MCLR) Pin	External Oscillator Pins	
Power Supply Pins	ICSP Programming Pins	
Unused I/Os	Master Clear (MCLR) Pin	24
	Power Supply Pins	24
Voltage Regulator Pins25	Unused I/Os	
	Voltage Regulator Pins	

Н

I
I/O Ports
Analog Port Pins Configuration (ANSx)
Analog/Digital Function of an I/O Pin 174
Input Change Notification (ICN) 177
Open-Drain Configuration174
Parallel (PIO)173
Peripheral Pin Select178
Pull-ups and Pull-Downs177
Write/Read Timing 174
l ² C
Communicating as Master in Single
Master Environment245
Reserved Addresses
Setting Baud Rate as Bus Master
Slave Address Masking247
In-Circuit Debuggers
MPLAB ICD 3 405
PICkit 3 405
In-Circuit Emulator System
MPLAB REAL ICE405

Input Capture	
32-Bit Cascaded Mode	212
Operations	
Synchronous and Trigger Modes	
Input Capture with Dedicated Timers Input Voltage Levels for Port or Pin Tolerated	
Description Input	174
Instruction Set	
Overview	409
Summary	407
Symbols Used in Opcode Descriptions	
Interfacing Program and Data Spaces	65
Inter-Integrated Circuit. See I ² C.	470
Internet Address	
Interrupt Vector Table (IVT) Interrupts	
Control and Status Registers	95
Implemented Vectors	
Reset Sequence	
Setup and Service Procedures	
Trap Vectors	92
Vector Table	92
Peripheral Pin Select (PPS)	
Selectable Input Sources	179
J	
JTAG Interface	402
K	
Key Features	389
L	
Low-Voltage/Retention Regulator	. 163, 399
	. 163, 399
м	
M Memory Organization	35
M Memory Organization Microchip Internet Web Site	35 473
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian	35 473
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development	35 473 404
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software	35 473 404 403
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian	35 473 404 403
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian	35 473 404 403
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian N	
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian N Near Data Space	
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O	
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator	
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR	35 473 404 403 404 38 38 399 399
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian M Near Data Space O On-Chip Voltage Regulator POR Standby Mode	35 473 404 403 404 38 38 399 399
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG.	35 473 404 403 404 38 38 399 399
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching	35 473 404 403 404 38 399 399 399 399 399
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence	35 473 404 403 404 38 399 399 399 399 153
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection	35 473 404 403 404 38 399 399 399 399 399 153 153 148
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers	35 473 404 403 404 38 399 399 399 399 399 153 153 148 149
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers FRC Self-Tuning	35 473 404 403 404 38 399 399 399 399 399 399 153 153 148 149 154
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers FRC Self-Tuning Initial Configuration on POR	35 473 404 403 404 38 399 399 399 399 399 399 153 153 148 149 154 148
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers FRC Self-Tuning Initial Configuration on POR Initial CPU Clocking Scheme	35 473 404 403 404 38 399 399 399 399 399 399 399 153 153 148 148 149 154 148
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers FRC Self-Tuning Initial Configuration on POR Initial CPU Clocking Scheme On-Chip PLL	35 473 404 403 404 38 399 399 399 399 399 399 399 399 153 153 148 148 148 148 159
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers FRC Self-Tuning Initial Configuration on POR Initial CPU Clocking Scheme On-Chip PLL Reference Clock Output	35 473 404 403 404 38 399 399 399 399 399 399 399 399 153 153 148 148 148 148 159 156
MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator	35 473 404 403 404 38 399 399 399 399 399 399 399 153 153 148 148 149 154 148 159 156 155
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers FRC Self-Tuning Initial Configuration on POR Initial CPU Clocking Scheme On-Chip PLL Reference Clock Output	35 473 404 403 404 38 399 399 399 399 399 399 399 153 153 148 148 149 154 148 159 156 155