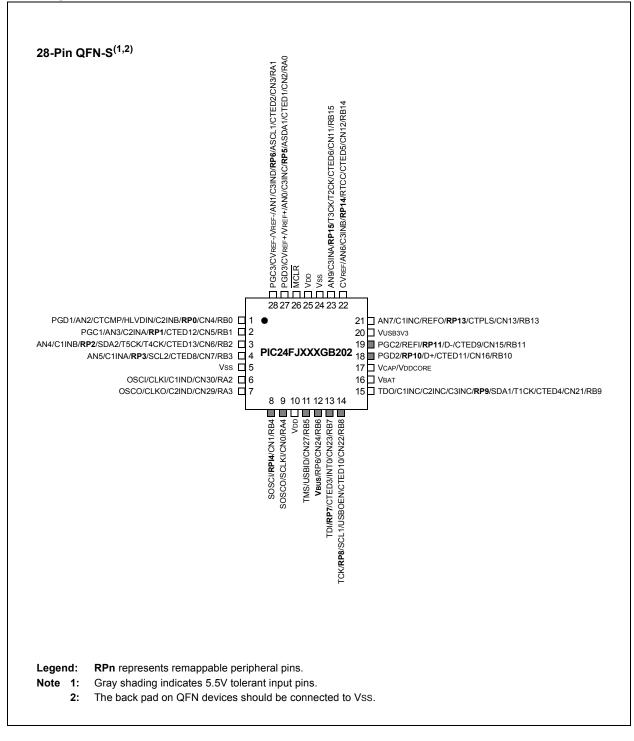


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Betano	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb202-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

	Pin Num	oer/Grid	Locator						
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description			
RB0	4	1	21	I/O	ST	PORTB Digital I/Os.			
RB1	5	2	22	I/O	ST				
RB2	6	3	23	I/O	ST				
RB3	7	4	24	I/O	ST				
RB4	11	8	33	Ι	ST				
RB5	14	11	41	I/O	ST				
RB6	15	12	42	I/O	ST				
RB7	16	13	43	I/O	ST				
RB8	17	14	44	I/O	ST				
RB9	18	15	1	I/O	ST				
RB10	21	18	8	I/O	ST				
RB11	22	19	9	I/O	ST				
RB13	24	21	11	I/O	ST				
RB14	25	22	14	I/O	ST				
RB15	26	23	15	I/O	ST				
RC0	—	—	25	I/O	ST	PORTC Digital I/Os.			
RC1	—	—	26	I/O	ST				
RC2	—		27	I/O	ST				
RC3		_	36	I/O	ST]			
RC4			37	I/O	ST				
RC5	—		38	I/O	ST				
RC6	_	_	2	I/O	ST]			
RC7	—		3	I/O	ST				
RC8	—	—	4	I/O	ST				
RC9	_	_	5	I/O	ST				
REFI	22	19	9			Reference Clock Input.			
REFO	24	21	11	—	_	Reference Clock Output.			

TABLE 1-3: PIC24FJ128GB204 FAMILY PINOUT DESCRIPTION (CONTINUED)

ANA = Analog input l^2C = ST with l^2C^{TM} or SMBus levels

O = Output

P = Power

© 2013-2015 Microchip Technology Inc.

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU with Extended Data Space (EDS)" (DS39732). The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The lower 32 Kbytes of the Data Space (DS) can be accessed linearly. The upper 32 Kbytes of the Data Space are referred to as Extended Data Space to which the extended data RAM, EPMP memory space or program memory can be mapped.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs. The core supports Inherent (no operand), Relative, Literal and Memory Direct Addressing modes, along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit x 16-bit or 8-bit x 8-bit, integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.

3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions.

A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory-mapped.

TABI F 4-27 [.]	CRC REGISTER MAP
ADLL = -21.	

© 20	TABLE 4-2	27:	CRC RE	GISTE	R MAP						
2013-2015	File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
5 Microchin	CRCCON1	0158	CRCEN		CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	-
	CRCCON2	015A	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	
	CRCXORL	015C								X<15:1>	
	CRCXORH	015E								X<31:	1
	CRCDATL	0160							CRC	Data Input	F
	CRCDATH	0162							CRC	Data Input	F
	CRCWDATL	0164							CF	RC Result R	e
	CRCWDATH	0166							CF	RC Result R	e

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-28: PERIPHERAL PIN SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	038C	_	_	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	_	_	OCTRIG1R5	OCTRIG1R4	OCTRIG1R3	OCTRIG1R2	OCTRIG1R1	OCTRIG1R0	3F3F
RPINR1	038E	-	-	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	_	_	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	3F3F
RPINR2	0390	-	-	OCTRIG2R5	OCTRIG2R4	OCTRIG2R3	OCTRIG2R2	OCTRIG2R1	OCTRIG2R0	_	_	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0	3F3F
RPINR7	039A	_	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	_	_	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	3F3F
RPINR8	039C	—	_	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	_	_	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	3F3F
RPINR9	039E	_	_	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0	_	_	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	3F3F
RPINR11	03A2	—	_	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0	—	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	3F3F
RPINR17	03AE	—	_			U3RXF	?<5:0>			_	_	_	_	_	-	_	_	3F00
RPINR18	03B0	_	_	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	_	_	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	3F3F
RPINR19	03B2	—	_	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0	—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	3F3F
RPINR20	03B4	—	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	—	_	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	3F3F
RPINR21	03B6	_	_	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	_	_	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	3F3F
RPINR22	03B8	—	_	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	3F3F
RPINR23	03BA	—	—	TMRCKR5	TMRCKR4	TMRCKR3	TMRCKR2	TMRCKR1	TMRCKR0	—	_	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	3F3F
RPINR27	03C2	_	_	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0	_	_	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0	3F3F
RPINR28	03C4	_	_	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0	_	-	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0	3F3F
RPINR29	03C6	_	_	_	_	_	_	_	_	_				SS3R	<5:0>			003F
RPINR30	03C8	_	_	_	_	_	_	_	_	_	-			MDMIF	<5:0>			003F
RPINR31	03CA	_		MDC2R5	MDC2R4	MDC2R3	MDC2R2	MDC2R1	MDC2R0	_	-	MDC1R5	MDC1R4	MDC1R3	MDC1R2	MDC1R1	MDC1R0	3F3F

X<31:16>

CRC Data Input Register Low

CRC Data Input Register High

CRC Result Register Low

CRC Result Register High

Bit 7

CRCFUL

_

Bit 6

CRCMPT

Bit 5

CRCISEL

_

Bit 4

CRCGO

PLEN4

Bit 3

LENDIAN

PLEN3

Bit 2

_

PLEN2

Bit 1

_

PLEN1

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All

Resets

0040

0000

0000

0000

XXXX

XXXX

XXXX

XXXX

Bit 0

_

PLEN0

_

4.2.5.1 Data Read from EDS

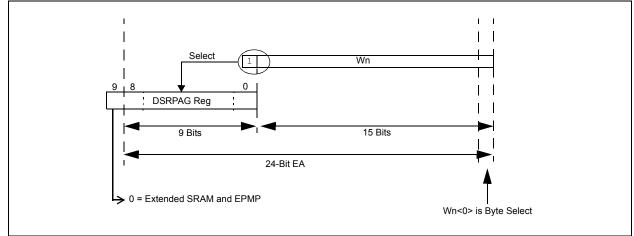

In order to read the data from the EDS space first, an Address Pointer is set up by loading the required EDS page number into the DSRPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, the EDS window is enabled by setting bit 15 of the Working register assigned with the offset address; then, the contents of the pointed EDS location can be read.

Figure 4-5 illustrates how the EDS space address is generated for read operations.

When the Most Significant bit of the EA is '1' and DSRPAG<9> = 0, the lower 9 bits of DSRPAG are concatenated to the lower 15 bits of the EA to form a 24-bit EDS space address for read operations.

Example 4-1 shows how to read a byte, word and double-word from EDS.

Note: All read operations from EDS space have an overhead of one instruction cycle. Therefore, a minimum of two instruction cycles is required to complete an EDS read. EDS reads under the REPEAT instruction; the first two accesses take three cycles and the subsequent accesses take one cycle.

FIGURE 4-5: EDS ADDRESS GENERATION FOR READ OPERATIONS

EXAMPLE 4-1: EDS READ CODE IN ASSEMBLY

```
; Set the EDS page from where the data to be read
             #0x0002, w0
   mov
   mov
              w0, DSRPAG ;page 2 is selected for read
             #0x0800, w1 ;select the location (0x800) to be read
   mov
             w1, #15
                          ;set the MSB of the base address, enable EDS mode
   bset
;Read a byte from the selected location
   mov.b
          [w1++], w2 ;read Low byte
             [w1++], w3
                           ;read High byte
   mov.b
;Read a word from the selected location
   mov
             [w1], w2
                          ;
;Read Double - word from the selected location
   mov.d
             [w1], w2
                       ;two word read, stored in w2 and w3
```

REGISTER 8-16: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 (CONTINUED)

- bit 1 SI2C2IE: Slave I2C2 Event Interrupt Enable bit 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 0 Unimplemented: Read as '0'
- Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 8-38: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
_	—	—	—	—				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		

bit 15-3 Unimplemented: Read as '0'

- HLVDIP<2:0>: High/Low-Voltage Detect Interrupt Priority bits
 - 111 = Interrupt is Priority 7 (highest priority interrupt)
 - •

bit 2-0

- •
- 001 = Interrupt is Priority 1
- 000 = Interrupt source is disabled

REGISTER 8-39: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—		—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0

00	1000	1010 0	10110	00	00	00	00
—		CTMUIP<2:0>		—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-4	CTMUIP<2:0>: CTMU Interrupt Priority bits
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1
	000 = Interrupt source is disabled
bit 3-0	Unimplemented: Read as '0'

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—	U3TXIP2	U3TXIP1	U3TXIP0	—	U3RXIP2	U3RXIP1	U3RXIP0					
bit 15							bita					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
_	U3ERIP2	U3ERIP1	U3ERIP0	_	_	_	_					
bit 7							bit					
Legend:												
R = Readab	le hit	W = Writable	nit	U = Unimplen	nented bit, read	l as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	own					
					area		lowin					
bit 15	Unimplemen	ted: Read as ')'									
bit 14-12	-			ot Priority bits								
	U3TXIP<2:0>: UART3 Transmitter Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)											
	•		lightest phones	(interrupt)								
	•											
	•											
	001 = Interru 000 = Interru	ot is Priority 1 ot source is disa	abled									
bit 11	Unimplemen	ted: Read as ')'									
bit 10-8	U3RXIP<2:0>: UART3 Receiver Interrupt Priority bits											
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	•											
	•											
	•											
	• • 001 = Interrup 000 = Interrup		abled									
bit 7	000 = Interru	ot source is dis										
	000 = Interru Unimplemen	ot source is disa ted: Read as '0)'	ritv bits								
	000 = Interru Unimplemen U3ERIP<2:0>	ot source is dis ted: Read as '(•: UART3 Error)' Interrupt Prio	•								
	000 = Interru Unimplemen U3ERIP<2:0>	ot source is disa ted: Read as '0)' Interrupt Prio	•								
	000 = Interru Unimplemen U3ERIP<2:0>	ot source is dis ted: Read as '(•: UART3 Error)' Interrupt Prio	•								
	000 = Interru Unimplemen U3ERIP<2:0> 111 = Interru •	ot source is dis ted: Read as '(: UART3 Error ot is Priority 7 ())' Interrupt Prio	•								
bit 7 bit 6-4	000 = Interrup Unimplemen U3ERIP<2:0> 111 = Interrup • • • 001 = Interrup	ot source is dis ted: Read as '(•: UART3 Error ot is Priority 7 (1 ot is Priority 1) [,] Interrupt Prior highest priority	•								
	000 = Interrup Unimplemen U3ERIP<2:0> 111 = Interrup	ot source is dis ted: Read as '(: UART3 Error ot is Priority 7 ())' Interrupt Prior highest priority abled	•								

REGISTER 8-40: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

REGISTER 8-43: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
_	—	—	—			FSTIP<2:0>			
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	_		—	_	—		
bit 7	÷	•			•	·	bit 0		
Legend:									
R = Readab	ole bit	W = Writable I	oit	U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15-11	Unimplemen	ited: Read as '0)'						
bit 10-8	FSTIP<2:0>:	FRC Self-Tune	Interrupt Prior	ity bits					
	111 = Interru	pt is Priority 7 (I	nighest priority	interrupt)					
	•								
	•								
	•								
		pt is Priority 1 pt source is disa	ahled						
bit 7-0		ited: Read as '0							
	ommplemen	iteu. iteau as (,						

REGISTER 8-44: IPC29: INTERRUPT PRIORITY CONTROL REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	_	—	—	—	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
_		JTAGIP<2:0>			<u> </u>		<u> </u>	
bit 7							bit 0	
Legend:								
R = Readat	ole bit	W = Writable b	oit	U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-7	Unimplemer	nted: Read as '0)'					
bit 6-4	JTAGIP<2:0	>: JTAG Interrup	ot Priority bits					
	111 = Interru	pt is Priority 7 (ł	nighest priority	interrupt)				
	•							
	•							
		pt is Priority 1						
		pt source is disa						
bit 3-0	Unimplemer	nted: Read as '0)'					

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1			
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0			
bit 15			•			•	bit 8			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
CPDIV1	CPDIV0	PLLEN	_	—	—		_			
bit 7							bit (
Legend:										
R = Readab		W = Writable		U = Unimplem						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
L:1 4 F		n an Internuet b								
bit 15		er on Interrupt b		set the CPU peri	oboral clock re	atio to 1.1				
		s have no effect								
bit 14-12		CPU Periphera								
	111 = 1:128									
	110 = 1:64									
	101 = 1:32									
	100 = 1:16									
	011 = 1:8									
	010 = 1:4 001 = 1:2									
	001 = 1.2 000 = 1.1									
bit 11	DOZEN: Doz	DOZEN: Doze Enable bit ⁽¹⁾								
	1 = DOZE<2	:0> bits specify	the CPU perip	oheral clock ratio						
		ipheral clock rat								
bit 10-8	RCDIV<2:0>	: FRC Postscal	er Select bits							
	111 = 31.25	kHz (divide-by-	256)							
	110 = 125 kHz (divide-by-64)									
	101 = 250 kHz (divide-by-32)									
	100 = 500 kHz (divide-by-16)									
	011 = 1 MHz (divide-by-8) 010 = 2 MHz (divide-by-4)									
	010 = 2 MHz (divide-by-4) 001 = 4 MHz (divide-by-2)									
		(divide-by-1)								
bit 7-6	CPDIV<1:0>	: USB System	Clock Select b	its (postscaler se	elected from 3	2 MHz clock br	anch)			
	11 = 4 MHz (divide-by-8) ⁽²⁾									
	$10 = 8 \text{ MHz} (divide-by-4)^{(2)}$									
	01 = 16 MHz (divide-by-2)									
		(divide-by-1)								
bit 5	PLLEN: PLL									
	1 = PLL is er 0 = PLL is di									
bit 4-0		nted: Read as '	∩ '							
DIL 4-0	ommplemen	neu. nedu ds	U							
Note 1: T	his bit is autom	atically cleared	when the ROI	bit is set and an	interrupt occu	irs				

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

2: This setting is not allowed while the USB module is enabled.

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ128GB204 family devices support a larger number of remappable input only pins than remappable input/output pins. In this device family, there are up to 25 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered, RP0 through RP25.

See Table 1-3 for a summary of pinout options in each package offering.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals. PPS is not available for these peripherals:

- I²C[™] (input and output)
- USB (all module inputs and outputs)
- Change Notification Inputs
- RTCC Alarm Output(s)
- EPMP Signals (input and output)
- · Analog (inputs and outputs)
- INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

11.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., OC, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs (e.g., USB on USB-enabled devices) will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pin-selectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

17.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 17-1.

EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾

$$I2CxBRG = \left(\left(\frac{1}{FSCL} - PGDx \right) \times \frac{FCY}{2} \right) - 2$$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

17.3 Slave Address Masking

The I2CxMSK register (Register 17-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the I²C[™] protocol, the addresses in Table 17-1 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

TABLE 17-1:	I ² C [™] RESERVED ADDRESSES ⁽¹⁾
-------------	---

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	Х	Cbus Address
0000 01x	х	Reserved
0000 1xx	Х	HS Mode Master Code
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	Х	Reserved

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

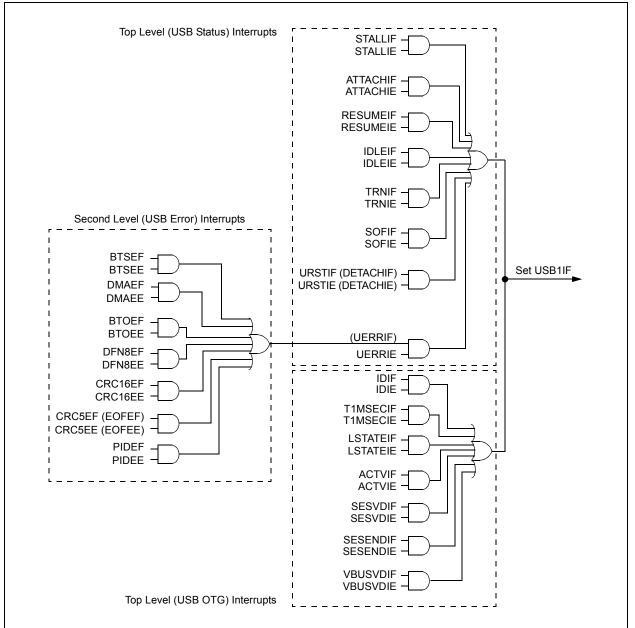
2: The address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect) 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (the character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (the character at the top of the receive FIFO) a = Framing error has not been detected
h :4 4	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only) 1 = Receive buffer has overflowed
	1 = Receive buffer has overflowed (clearing a previously set OERR bit (1 → 0 transition); will reset the receive buffer and the RSR to the empty state)
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1	: The value of this bit only affects the transmit properties of the module when the IrDA [®] encoder is enabled (IREN = 1).

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".


19.3 USB Interrupts

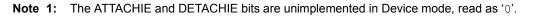
The USB OTG module has many conditions that can be configured to cause an interrupt. All interrupt sources use the same interrupt vector.

Figure 19-9 shows the interrupt logic for the USB module. There are two layers of interrupt registers in the USB module. The top level consists of overall USB status interrupts; these are enabled and flagged in the U1IE and U1IR registers, respectively. The second

level consists of USB error conditions, which are enabled and flagged in the U1EIR and U1EIE registers. An interrupt condition in any of these triggers a USB Error Interrupt Flag (UERRIF) in the top level.

Interrupts may be used to trap routine events in a USB transaction. Figure 19-10 provides some common events within a USB frame and their corresponding interrupts.

FIGURE 19-9: USB OTG INTERRUPT FUNNEL


REGISTER 19-18: U1IE: USB INTERRUPT ENABLE REGISTER (ALL USB MODES)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS
STALLIE	ATTACHIE ⁽¹⁾	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE
							DETACHIE ⁽¹⁾
bit 7 bit 0							

Legend:		U = Unimplemented bit, re	U = Unimplemented bit, read as '0'					
R = Readab	ole bit	K = Write '1' to Clear bit	HS = Hardware Settabl	e bit				
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-8	Unimple	mented: Read as '0'						
hit 7	STALLE	STALLE: STALL Handshake Interrunt Enable hit						

	•
bit 7	STALLIE: STALL Handshake Interrupt Enable bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 6	ATTACHIE: Peripheral Attach Interrupt bit (Host mode only) ⁽¹⁾
	1 = Interrupt is enabled 0 = Interrupt is disabled
bit 5	RESUMEIE: Resume Interrupt bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 4	IDLEIE: Idle Detect Interrupt bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 3	TRNIE: Token Processing Complete Interrupt bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 2	SOFIE: Start-of-Frame Token Interrupt bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 1	UERRIE: USB Error Condition Interrupt bit
	1 = Interrupt is enabled0 = Interrupt is disabled
bit 0	URSTIE or DETACHIE: USB Reset Interrupt (Device mode) or USB Detach Interrupt (Host mode) Enable bit ⁽¹⁾
	1 = Interrupt is enabled0 = Interrupt is disabled

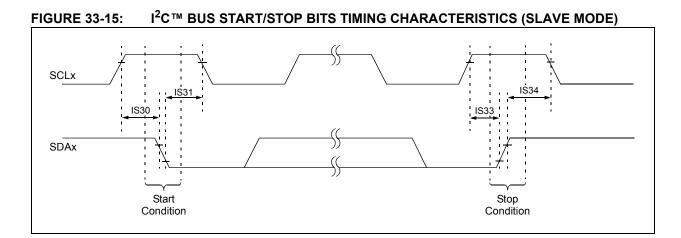
Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, 2
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, 2
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, 2
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, 2
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, 2
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, 2
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, 2
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, 2
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, 2
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
DOLL	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
DRA	BRA	GE, Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GIO, Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	-	Branch if Less than or Equal	1	1 (2)	None
	BRA	LE, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
		LEU, Expr	Branch if Less than	1		None
	BRA	LT, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	LTU, Expr			1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	
	BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

TABLE 32-2:	INSTRUCTION SET	OVERVIEW

TABLE 32-2:	INSTRUCTION SET OVERVIEW (CONTINUED)
--------------------	--------------------------------------

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C, DC, N, OV, Z
	SUBB	#lit10,Wn	Wn = Wn – lit10 – (\overline{C})	1	1	C, DC, N, OV, Z
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, Z
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, Z
JUDIC	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C, DC, N, OV, Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
JUDDK						
	SUBBR	f,WREG	WREG = WREG – f – (C)	1	1	C, DC, N, OV, Z
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None

DC CHARAC	TERISTICS		$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array} $				
Parameter No. Typical ⁽¹⁾ Max		Units Operating Temperature		VDD	Conditions		
Incremental C	Current Brow	/n-out Rese	t (∆BOR) ⁽²⁾				
DC25	3.1	5.0	μA	-40°C to +125°C	2.0V	480R ⁽²⁾	
	4.3	6.0	μA	-40°C to +125°C	3.3V		
Incremental C	Current Watc	hdog Timer	. (∆WDT) ⁽²⁾				
DC71	0.8	1.5	μA	-40°C to +125°C	2.0V	۵WDT ⁽²⁾	
	0.8	1.5	μA	-40°C to +125°C	3.3V		
Incremental C	Current High	Low-Voltag	e Detect (Al	HLVD) ⁽²⁾			
DC75	4.2	15	μΑ	-40°C to +125°C	2.0V	AHLVD ⁽²⁾	
	4.2	15	μA	-40°C to +125°C	3.3V		
Incremental C	Current Real-	Time Clock	and Calend	lar (∆RTCC) ⁽²⁾			
DC77	0.3	1.0	μΑ	-40°C to +125°C	2.0V	△RTCC (with SOSC) ⁽²⁾	
	0.35	1.0	μA	-40°C to +125°C	C 3.3V		
DC77A	0.3	1.0	μA	-40°C to +125°C	2.0V	∆RTCC (with LPRC) ⁽²⁾	
	0.35	1.0	μΑ	-40°C to +125°C	3.3V		
Incremental C	Current Deep	Sleep BOF		(2)			
DC81	0.11	0.40	μA	-40°C to +125°C	2.0V	∆Deep Sleep BOR ⁽²⁾	
	0.12	0.40	μA	-40°C to +125°C	3.3V		
Incremental C	Current Deep	Sleep Wat	chdog Time	r Reset (∆DSWDT) ⁽²⁾	•	
DC80	0.24	0.40	μA	-40°C to +125°C	2.0V	∆Deep Sleep WDT ⁽²⁾	
	0.24	0.40	μΑ	-40°C to +125°C	3.3V		
VBAT A/D MOI	nitor ⁽³⁾						
DC91	1.5	_	μA	-40°C to +125°C	3.3V	VBAT = 2V	
	4	_	μA	-40°C to +125°C	3.3V	VBAT = 3.3V	

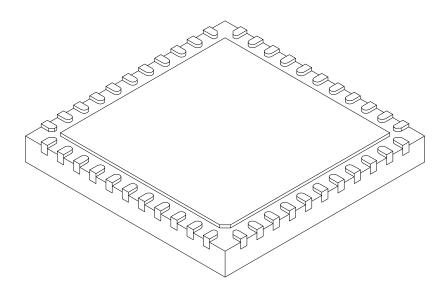

TABLE 33-7: DC CHARACTERISTICS: △ CURRENT (BOR, WDT, DSBOR, DSWDT)⁽⁴⁾

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Incremental current while the module is enabled and running.

3: The A/D channel is connected to the VBAT pin internally; this is the current during A/D VBAT operation.

4: The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.


TABLE 33-38: I²C[™] BUS START/STOP BITS TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
IS30		Start Condition Setup Time	100 kHz mode	4.7	—	μs	Only relevant for Repeated
			400 kHz mode	0.6	—	μs	Start condition
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS31	IS31 THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μs	After this period, the first clock
			400 kHz mode	0.6	_	μs	pulse is generated
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS33	IS33 Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	0.6	_	μs	
		1 MHz mode ⁽¹⁾	0.6	—	μs		
IS34	34 THD:STO	Stop Condition	100 kHz mode	4000	_	ns	
	Hold Time	400 kHz mode	600	_	ns		
			1 MHz mode ⁽¹⁾	250	_	ns	

Note 1: Maximum Pin Capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension Limits		MIN	NOM	MAX			
Number of Pins	Ν	44					
Pitch	e		0.65 BSC				
Overall Height	A	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3		0.20 REF				
Overall Width	Е	8.00 BSC					
Exposed Pad Width	E2	6.25	6.25 6.45 6.60				
Overall Length	D	D 8.00 BSC					
Exposed Pad Length	D2	6.25	6.45	6.60			
Terminal Width	b	0.20	0.30	0.35			
Terminal Length	L	0.30	0.40	0.50			
Terminal-to-Exposed-Pad	К	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2