

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Betuils	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb202t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Num	per/Grid	Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin 44-Pin QFN-S TQFP/QFN		I/O	Input Buffer	Description
RP0	4	1	21	I/O	ST	Remappable Peripheral (input or output).
RP1	5	2	22	I/O	ST	
RP2	6	3	23	I/O	ST]
RP3	7	4	24	I/O	ST]
RP5	2	27	19	I/O	ST]
RP6	3,15	28	20	I/O	ST	1
RP7	16	13	43	I/O	ST	
RP8	17	14	44	I/O	ST	1
RP9	18	15	1	I/O	ST	
RP10	21	18	8	I/O	ST	
RP11	22	19	9	I/O	ST	
RP13	24	21	11	I/O	ST	
RP14	25	22	14	I/O	ST	
RP15	26	23	15	I/O	ST	
RP16	_		25	I/O	ST	
RP17	_		26	I/O	ST	
RP18	_		27	I/O	ST	
RP19	_	—	36	I/O	ST	
RP20	_		37	I/O	ST	
RP21	_		38	I/O	ST	
RP22	_		2	I/O	ST	
RP23	_		3	I/O	ST	
RP24			4	I/O	ST	1
RP25			5	I/O	ST	
RPI4	11	8	33	Ι	ST	Remappable Peripheral (input).
RTCC	25	22	14	0	—	Real-Time Clock Alarm/Seconds Pulse Output.
SCL1	17	14	44	I/O	l ² C	I2C1 Synchronous Serial Clock Input/Output.
SCL2	7	4	24	I/O	l ² C	I2C2 Synchronous Serial Clock Input/Output.
SCLKI	12	9	34	Ι	—	Secondary Oscillator Digital Clock Input.
SDA1	18	15	1	I/O	l ² C	I2C1 Data Input/Output.
SDA2	6	3	23	I/O	l ² C	I2C2 Data Input/Output.
SOSCI	11	8	33	Ι	ANA	Secondary Oscillator/Timer1 Clock Input.
SOSCO	12	9	34	0	ANA	Secondary Oscillator/Timer1 Clock Output.
ANA =	Schmitt Trigger Analog input	-			= TTL co = Output	pompatible input I = Input P = Power

TABLE 1-3: PIC24FJ128GB204 FAMILY PINOUT DESCRIPTION (CONTINUED)

 $I^2C = ST$ with I^2C^{TM} or SMBus levels

NOTES:

6.0 FLASH PROGRAM MEMORY

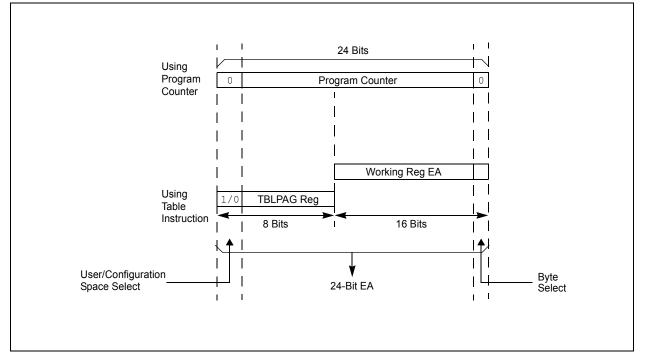
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Program Memory"** (DS39715). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ128GB204 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash memory can be programmed in four ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- JTAG
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ128GB204 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time and erase program memory in blocks of 512 instructions (1536 bytes) at a time.


6.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 6-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 6-1: ADDRESSING FOR TABLE REGISTERS

10.6 Clock Frequency and Clock Switching

In Run and Idle modes, all PIC24FJ devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

10.7 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.8 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing, with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMDx Control registers (XXXMD bits are in the PMD1, PMD2, PMD3, PMD4, PMD6, PMD7, PMD8 registers).

Both bits have similar functions in enabling or disabling its associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as the use of the PMD bits. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXSIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7	·		•		•	•	bit 0

REGISTER 11-27: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP9R<5:0>: RP9 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP9 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP8R<5:0>: RP8 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP8 (see Table 11-4 for peripheral function numbers).

REGISTER 11-28: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7	•		•				bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP11R<5:0>:** RP11 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP11 (see Table 11-4 for peripheral function numbers).

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP10R<5:0>:** RP10 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP10 (see Table 11-4 for peripheral function numbers).

REGISTER 11-35: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0
bit 15				- -			bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0
bit 7		•			•		bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13-8	RP25R<5:0>:	RP25 Output	Pin Mapping b	its			
	Peripheral Ou	tput Number n	is assigned to	pin, RP25 (see	Table 11-4 for	peripheral func	tion numbers).
bit 7-6	Unimplemented: Read as '0'						
bit 5-0	RP24R<5:0>: RP24 Output Pin Mapping bits						

5-0 **RP24R<5:0>:** RP24 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP24 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

14.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Input Capture with Dedicated Timer" (DS39722). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ128GB204 family contain six independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

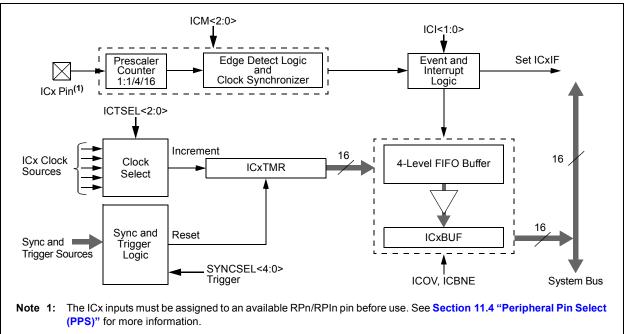
Key features of the input capture module include:

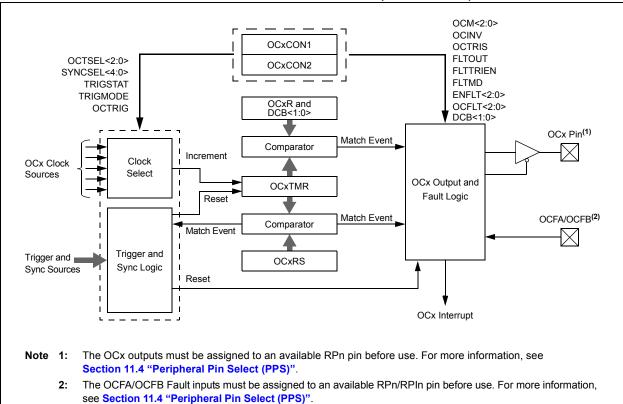
- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 30 user-selectable sync/trigger sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to 6 clock sources available for each module, driving a separate, internal 16-bit counter

The module is controlled through two registers: ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2). A general block diagram of the module is shown in Figure 14-1.

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES


When the input capture module operates in a Free-Running mode, the internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow. Its period is synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.


In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the internal counter to run.

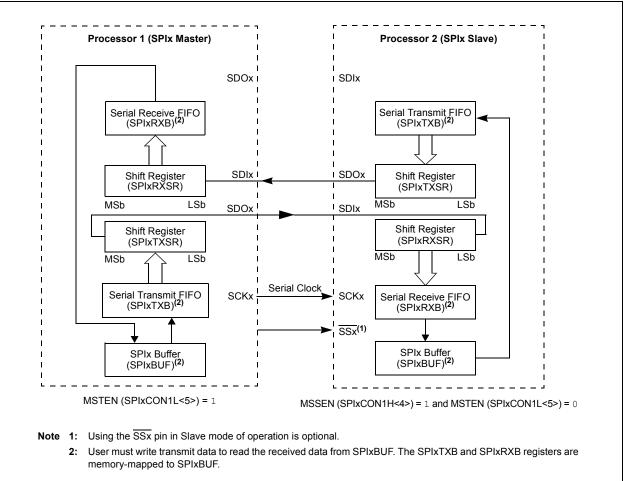
Standard, free-running operation is selected by setting the SYNCSELx bits (ICxCON2<4:0>) to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

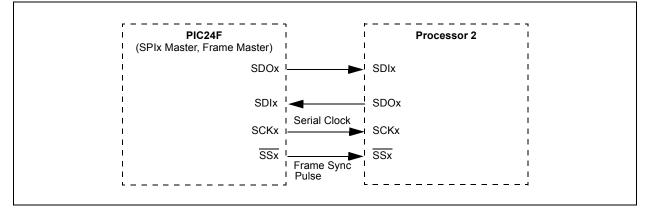
FIGURE 14-1: INPUT CAPTURE x BLOCK DIAGRAM

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

15.2 Compare Operations


In Compare mode (Figure 15-1), the output compare module can be configured for single-shot or continuous pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:


- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation ('0xx').
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure trigger operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the trigger or synchronization source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no sync/trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bit for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a trigger source event occurs.

FIGURE 16-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM

17.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 17-1.

EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾

$$I2CxBRG = \left(\left(\frac{1}{FSCL} - PGDx \right) \times \frac{FCY}{2} \right) - 2$$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

17.3 Slave Address Masking

The I2CxMSK register (Register 17-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the I²C[™] protocol, the addresses in Table 17-1 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

TABLE 17-1:	I ² C [™] RESERVED ADDRESSES ⁽¹⁾
-------------	---

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	Х	Cbus Address
0000 01x	х	Reserved
0000 1xx	Х	HS Mode Master Code
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	Х	Reserved

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

2: The address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

NOTES:

ALRMEN bit 15	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0			
bit 15					7 11/1 10/10					
							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0			
bit 7							bit 0			
Legend:										
R = Readat	ble bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own			
bit 15	ALRMEN: Ala	arm Enable bit								
	1 = A larm is e 0 = A larm is e	enabled (cleared a	automatically af	ter an alarm eve	nt whenever AR	PT<7:0> = 00h a	and CHIME = 0)			
bit 14	CHIME: Chim									
	-	enabled; ARPT<	<7·0> bits are a	illowed to roll ov	ver from 00h to	FFh				
		disabled; ARPT								
bit 13-10	AMASK<3:0>	>: Alarm Mask C	onfiguration bi	ts						
	0000 = Every	/ half second	-							
	0001 = Every									
	0010 = Every									
	0011 = Every minute 0100 = Every 10 minutes									
	0101 = Every hour									
	0110 = Once									
	0111 = Once 1000 = Once									
		a year (except v	when configure	d for February	29 th . once ever	v 4 vears)				
		rved – do not us		,	,	j · j · · · · · · · · · · · · · · · · · · ·				
	11xx = Rese	rved – do not us	e							
bit 9-8		:0>: Alarm Valu	-							
		corresponding Al								
		R<1:0> value de	crements on ev	ery read or write	e of ALRMVALF	I until it reaches	.00′.			
	ALRMVAL<15:8>: 00 = ALRMMIN									
	01 = ALRMWD									
	10 = ALRMMNTH									
	ALRMVAL<7:0>: 00 = ALRMSEC									
	01 = ALRMBEC									
	10 = ALRMD									
	11 = PWCSA	MP								
bit 7-0	ARPT<7:0>:	Alarm Repeat C	ounter Value b	its						
	11111111 =	Alarm will repea	t 255 more time	es						
	•									
	•									
		Alarm will not re decrements on								

NOTES:

24.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction the data is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

24.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions.

If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt. Note that when an interrupt occurs, the CRC calculation would not yet be complete. The module will still need (PLEN + 1)/2 clock cycles, after the interrupt is generated, until the CRC calculation is finished.

24.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- Configure the module for desired operation:

 a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits.

b) Configure the data width and shift direction using the DWIDTHx and LENDIAN bits.c) Select the desired Interrupt mode using the

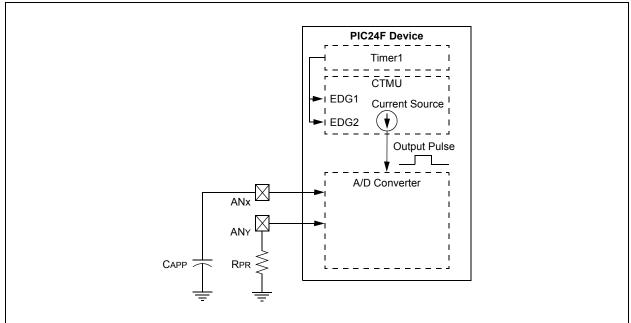
CRCISEL bit.

 Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left.

- Clear old results by writing 00h to CRCWDATL and CRCWDATH. The CRCWDAT registers can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

There are eight registers used to control programmable CRC operation:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH


The CRCCON1 and CRCCON2 registers (Register 24-1 and Register 24-2) control the operation of the module and configure the various settings.

The CRCXORL/H registers (Register 24-3 and Register 24-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word input data and CRC processed output, respectively.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADON	_	ADSIDL	DMABM ⁽¹⁾	DMAEN	MODE12	FORM1	FORM0			
bit 15							bit 8			
	D # 44 A	-	5444		-		<u> </u>			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC			
SSRC3	SSRC2	SSRC1	SSRC0		ASAM	SAMP	DONE			
bit 7							bit C			
Legend:		C = Clearable	bit	U = Unimplen	nented bit, read	l as '0'				
R = Reada	ble bit	W = Writable		•	/are Settable/C					
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own			
The Value		- Bitle cot					••••			
bit 15	ADON: ADC	1 Operating Mo	de bit							
	1 = A/D Conv	verter module is	operating							
	0 = A/D Conv	verter is off								
bit 14	Unimplemen	ted: Read as ')'							
bit 13	ADSIDL: AD	C1 Stop in Idle	Mode bit							
		ues module op s module opera			e mode					
bit 12	DMABM: Ext	ended DMA Bu	ffer Mode Sele	ct bit ⁽¹⁾						
		Buffer mode: E Buffer addres								
bit 11	DMAEN: Exte	0 = PIA mode: Buffer addresses are defined by the DMA Controller and AD1CON4<2:0> DMAEN: Extended DMA/Buffer Enable bit								
		DMA and buffe		enabled						
bit 10	MODE12: AD	OC1 12-Bit Ope	ration Mode bit							
	1 = 12-bit A/E 0 = 10-bit A/E									
bit 9-8		Data Output Fe	ormat bits (see	the following fo	ormats)					
	11 = Fraction	al result, signed	d, left justified							
	10 = Absolute fractional result, unsigned, left justified									
	 01 = Decimal result, signed, right justified 00 = Absolute decimal result, unsigned, right justified 									
bit 7-4	SSRC<3:0>:	Sample Clock	Source Select I	oits						
		plemented 1 U 5		tarts conversior	n (auto-convert)	; do not use in Aı	uto-Scan mode			
	0001 = INTO 0000 = The S	SAMP bit must	be cleared by s	oftware to star	t conversion					
bit 3	Unimplemen	ted: Read as ')'							
bit 2	ASAM: ADC	1 Sample Auto-	Start bit							
		begins immedi begins when S			MP bit is auto-	set				
Note di	This hit is only a	wailable when F		Duffer features	ara availabla (

REGISTER 25-1: AD1CON1: ADC1 CONTROL REGISTER 1

FIGURE 28-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

31.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

31.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

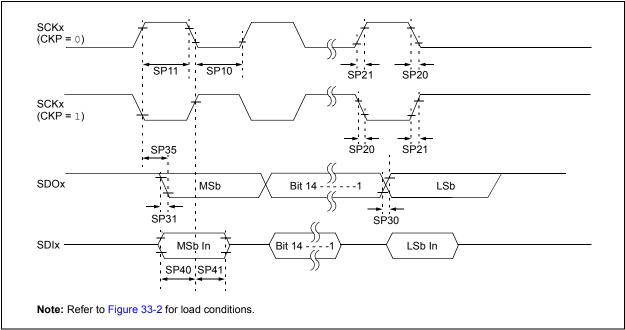
The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

31.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.


The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

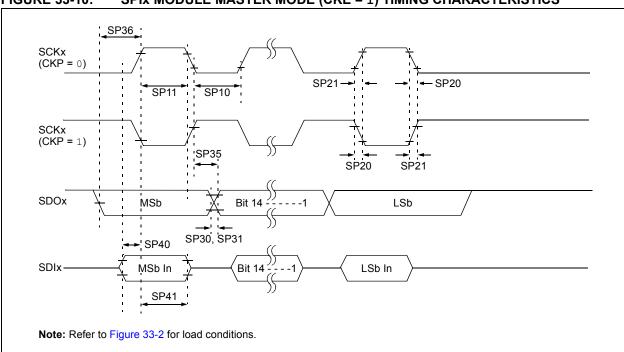
31.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

FIGURE 33-9: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 33-32: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions	
SP10	TscL	SCKx Output Low Time	Tcy/2	_	_	ns	(Note 3)	
SP11	TscH	SCKx Output High Time	Tcy/2	_	_	ns	(Note 3)	
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

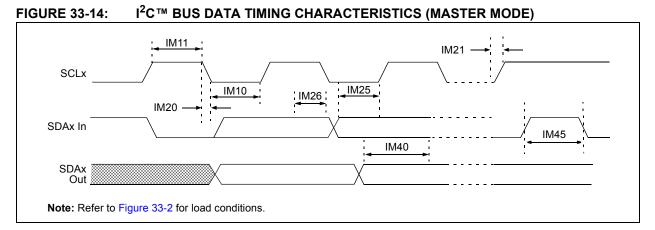
2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 33-10: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 33-33: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions	
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tcy/2	—		ns		
SP11	TscH	SCKx Output High Time ⁽³⁾	TCY/2	_	_	ns		
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	_	_	_	ns	See Parameter DO32	
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	_	—	_	ns	See Parameter DO31	
SP30	TdoF	SDOx Data Output Fall Time ⁽⁴⁾	_	_	_	ns	See Parameter DO32	
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	_	—		ns	See Parameter DO31	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 33-37: I²C[™] BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol TLO:SCL	Characteristic		Min ⁽¹⁾	Max	Units	Conditions	
IM10		Clock Low Time	100 kHz mode	Tcy (BRG + 1)		μs		
			400 kHz mode	Tcy (BRG + 1)		μs		
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)		μs		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy (BRG + 1)		μs		
			400 kHz mode	Tcy (BRG + 1)		μs		
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)		μs		
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from 10 to 400 pF	
			400 kHz mode	20 + 0.1 Св	300	ns		
			1 MHz mode ⁽²⁾	—	100	ns	-	
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from 10 to 400 pF	
			400 kHz mode	20 + 0.1 Св	300	ns		
			1 MHz mode ⁽²⁾	—	300	ns		
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns		
			400 kHz mode	100	_	ns		
			1 MHz mode ⁽²⁾	40	_	ns		
IM26	Thd:dat	Data Input Hold Time	100 kHz mode	0	_	ns		
			400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽²⁾	0.2	_	ns		
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode	—	3500	ns		
			400 kHz mode	—	1000	ns		
			1 MHz mode ⁽²⁾		400	ns		
IM45	Tbf:sda	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be	
			400 kHz mode	1.3	—	μs	free before a new	
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start	
IM50	Св	Bus Capacitive Lo	oading		400	pF		

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to **Section 17.2 "Setting Baud Rate When Operating as a Bus Master**" for details.

2: Maximum Pin Capacitance = 10 pF for all I²C pins (for 1 MHz mode only).