

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb202t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ64GB202 PIC24FJ128GB202
- PIC24FJ64GB204 PIC24FJ128GB204

The PIC24FJ128GB204 family expands the capabilities of the PIC24F family by adding a complete selection of Cryptographic Engines, ISO 7816 support and I²S support to its existing features. This combination, along with its ultra low-power features, Direct Memory Access (DMA) for peripherals and USB On-The-Go, make this family the new standard for mixed-signal PIC[®] microcontrollers in one economical and power-saving package.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 32 Kbytes (data)
- A 16-element Working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- Operational performance up to 16 MIPS

1.1.2 XLP POWER-SAVING TECHNOLOGY

The PIC24FJ128GB204 family of devices introduces a greatly expanded range of power-saving operating modes for the ultimate in power conservation. The new modes include:

- Retention Sleep with essential circuits being powered from a separate low-voltage regulator
- Deep Sleep without RTCC for the lowest possible power consumption under software control
- VBAT mode (with or without RTCC) to continue limited operation from a backup battery when VDD is removed

Many of these new low-power modes also support the continuous operation of the low-power, on-chip Real-Time Clock/Calendar (RTCC), making it possible for an application to keep time while the device is otherwise asleep.

Aside from these new features, PIC24FJ128GB204 family devices also include all of the legacy power-saving features of previous PIC24F microcontrollers, such as:

- On-the-Fly Clock Switching, allowing the selection of a lower power clock during run time
- Doze Mode Operation, for maintaining peripheral clock speed while slowing the CPU clock
- Instruction-Based Power-Saving Modes, for quick invocation of Idle and the many Sleep modes

1.1.3 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ128GB204 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes
- Two External Clock (EC) modes
- A Phase-Locked Loop (PLL) frequency multiplier, which allows clock speeds of up to 32 MHz
- A Fast Internal Oscillator (FRC) Nominal 8 MHz output with multiple frequency divider options and automatic frequency self-calibration during run time
- A separate Low-Power Internal RC Oscillator (LPRC) – 31 kHz nominal for low-power, timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, yet still selecting a Microchip device.

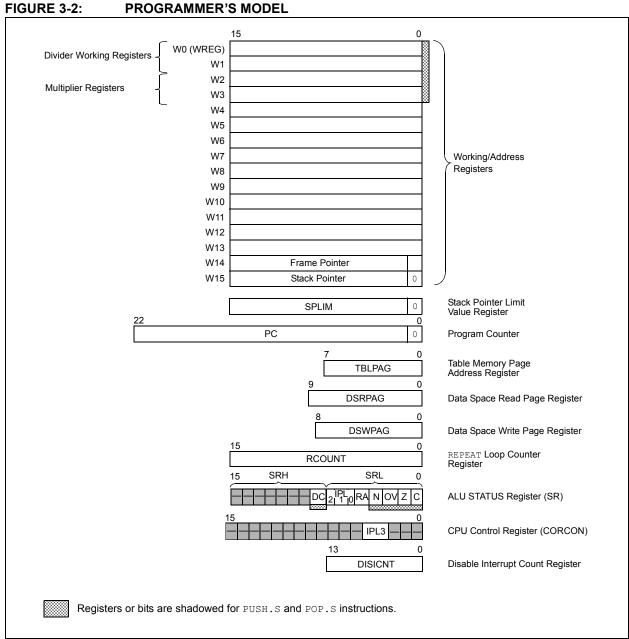

	Pin Num	Pin Number/Grid Locator							
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description			
AN0	2	27	19	I	ANA	12-Bit SAR A/D Converter Inputs.			
AN1	3	28	20	Ι	ANA				
AN2	4	1	21	Ι	ANA				
AN3	5	2	22	Ι	ANA				
AN4	6	3	23	Ι	ANA				
AN5	7	4	24	Ι	ANA				
AN6	25	22	14	I	ANA]			
AN7	24	21	11	I	ANA				
AN9	26	23	15	Ι	ANA				
AN10	_		25	I	ANA				
AN11	_		26	Ι	ANA				
AN12	_		27	Ι	ANA				
ASCL1	3	28	20	_					
ASDA1	2	27	19	_					
AVdd	_		17	Р	ANA	Positive Supply for Analog modules.			
AVss	_	24	16	Р	ANA	Ground Reference for Analog modules.			
C1INA	7	4	24	I	ANA	Comparator 1 Input A.			
C1INB	6	3	23	I	ANA	Comparator 1 Input B.			
C1INC	24	15	1	Ι	ANA	Comparator 1 Input C.			
C1IND	9	6	30	I	ANA	Comparator 1 Input D.			
C2INA	5	2	22	I	ANA	Comparator 2 Input A.			
C2INB	4	1	21	I	ANA	Comparator 2 Input B.			
C2INC	18	15	1	Ι	ANA	Comparator 2 Input C.			
C2IND	10	7	31	I	ANA	Comparator 2 Input D.			
C3INA	26	23	15	I	ANA	Comparator 3 Input A.			
C3INB	25	22	14	I	ANA	Comparator 3 Input B.			
C3INC	2	15	1	I	ANA	Comparator 3 Input C.			
C3IND	3	28	20	I	ANA	Comparator 3 Input D.			
CLKI	9	6	30	I	ANA	Main Clock Input Connection.			
CLKO	10	7	31	0	—	System Clock Output.			

TABLE 1-3:	PIC24FJ128GB204 FAMILY PINOUT DESCRIPTION

Legend: ST = Schmitt Trigge ANA = Analog input = Schmitt Trigger input

$$I^2C$$
 = ST with I^2C^{TM} or SMBus levels

TTL = TTL compatible input $\Omega = \Omega$ utput O = Output P = Power

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE BIT AND MULTI-BIT SHIFT OPERATION

Instruction	Description						
ASR	Arithmetic Shift Right Source register by one or more bits.						
SL	Shift Left Source register by one or more bits.						
LSR	Logical Shift Right Source register by one or more bits.						

TABI F 4-27 [.]	CRC REGISTER MAP
ADLL = -21.	

© 20	TABLE 4-2	27:	CRC RE	GISTE	R MAP						
2013-2015	File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
5 Microchin	CRCCON1	0158	CRCEN		CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	-
	CRCCON2	015A	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	
	CRCXORL	015C								X<15:1>	
	CRCXORH	015E								X<31:	1
	CRCDATL	0160							CRC	Data Input	F
	CRCDATH	0162							CRC	Data Input	F
	CRCWDATL	0164							CF	RC Result R	e
	CRCWDATH	0166							CF	RC Result R	e

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-28: PERIPHERAL PIN SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	038C	_	_	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	_	_	OCTRIG1R5	OCTRIG1R4	OCTRIG1R3	OCTRIG1R2	OCTRIG1R1	OCTRIG1R0	3F3F
RPINR1	038E	-	-	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	_	_	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	3F3F
RPINR2	0390	-	-	OCTRIG2R5	OCTRIG2R4	OCTRIG2R3	OCTRIG2R2	OCTRIG2R1	OCTRIG2R0	_	_	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0	3F3F
RPINR7	039A	_	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	_	_	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	3F3F
RPINR8	039C	—	_	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	_	_	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	3F3F
RPINR9	039E	_	_	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0	_	_	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	3F3F
RPINR11	03A2	—	_	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0	—	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	3F3F
RPINR17	03AE	—	_		U3RXR<5:0>				_	_	_	_	_	-	_	_	3F00	
RPINR18	03B0	_	_	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	_	_	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	3F3F
RPINR19	03B2	—	_	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0	—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	3F3F
RPINR20	03B4	—	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	—		SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	3F3F
RPINR21	03B6	_	_	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	_	_	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	3F3F
RPINR22	03B8	—	_	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	3F3F
RPINR23	03BA	—	—	TMRCKR5	TMRCKR4	TMRCKR3	TMRCKR2	TMRCKR1	TMRCKR0	—		SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	3F3F
RPINR27	03C2	_	_	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0	_	_	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0	3F3F
RPINR28	03C4	_	_	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0	_	-	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0	3F3F
RPINR29	03C6	_	_	_	_	_	_	_	_	_		- SS3R<5:0>				003F		
RPINR30	03C8	_	_	_	_	_	_	_	_	_	-	MDMIR<5:0>			003F			
RPINR31	03CA	_		MDC2R5	MDC2R4	MDC2R3	MDC2R2	MDC2R1	MDC2R0	_	-	MDC1R5	MDC1R4	MDC1R3	MDC1R2	MDC1R1	MDC1R0	3F3F

X<31:16>

CRC Data Input Register Low

CRC Data Input Register High

CRC Result Register Low

CRC Result Register High

Bit 7

CRCFUL

_

Bit 6

CRCMPT

Bit 5

CRCISEL

_

Bit 4

CRCGO

PLEN4

Bit 3

LENDIAN

PLEN3

Bit 2

_

PLEN2

Bit 1

_

PLEN1

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All

Resets

0040

0000

0000

0000

XXXX

XXXX

XXXX

XXXX

Bit 0

_

PLEN0

_

NOTES:

11.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 11-23 through Register 11-35). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-4).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

TABLE 11-4 :	SELECTABLE OUTPUT SOURCES	(MAPS FUNCTION TO OUTPUT)

Output Function Number ⁽¹⁾	Function	Output Name
0	NULL ⁽²⁾	Null
1	C1OUT	Comparator 1 Output
2	C2OUT	Comparator 2 Output
3	U1TX	UART1 Transmit
4	U1RTS ⁽³⁾	UART1 Request-to-Send
5	U2TX	UART2 Transmit
6	U2RTS ⁽³⁾	UART2 Request-to-Send
7	SDO1	SPI1 Data Output
8	SCK10UT	SPI1 Clock Output
9	SS1OUT	SPI1 Slave Select Output
10	SDO2	SPI2 Data Output
11	SCK2OUT	SPI2 Clock Output
12	SS2OUT	SPI2 Slave Select Output
13	OC1	Output Compare 1
14	OC2	Output Compare 2
15	OC3	Output Compare 3
16	OC4	Output Compare 4
17	OC5	Output Compare 5
18	OC6	Output Compare 6
19	U3TX	UART3 Transmit
20	U3RTS	UART3 Request-to-Send
21	U4TX	UART4 Transmit
22	U4RTS ⁽³⁾	UART4 Request-to-Send
23	SDO3	SPI3 Data Output
24	SCK3OUT	SPI3 Clock Output
25	SS3OUT	SPI3 Slave Select Output
26	C3OUT	Comparator 3 Output
27	MDOUT	DSM Modulator Output

Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.

2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.

3: IrDA[®] BCLK functionality uses this output.

For 32-bit cascaded operation, these steps are also necessary:

- Set the OC32 bits for both registers (OCyCON2<8>) and (OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSELx (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

15.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing '0x1F' to the SYNCSEL<4:0> bits (OCxCON2<4:0>) and '0' to the OCTRIG bit (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON1<12:10>).
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode in the OCM<2:0> bits (OCxCON1<2:0>).
- Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 15-1.
- 9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

21.0 ENHANCED PARALLEL MASTER PORT (EPMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Enhanced Parallel Master Port (EPMP)" (DS39730). The information in this data sheet supersedes the information in the FRM.

The Enhanced Parallel Master Port (EPMP) module provides a parallel, 4-bit (Master mode only) and 8-bit (Master and Slave modes) data bus interface to communicate with off-chip modules, such as memories, FIFOs, LCD controllers and other microcontrollers. This module can serve as either the master or the slave on the communication bus.

For EPMP Master modes, all external addresses are mapped into the internal Extended Data Space (EDS). This is done by allocating a region of the EDS for each chip select and then assigning each chip select to a particular external resource, such as a memory or external controller. This region should not be assigned to another device resource, such as RAM or SFRs. To perform a write or read on an external resource, the CPU simply performs a write or read within the address range assigned for the EPMP. Key features of the EPMP module are:

- Extended Data Space (EDS) Interface allows Direct Access from the CPU
- Up to 10 Programmable Address Lines
- Up to 2 Chip Select Lines
- Up to 1 Acknowledgment Line (one per chip select)
- · 4-Bit and 8-Bit Wide Data Bus
- Programmable Strobe Options (per chip select)
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Programmable Address/Data Multiplexing
- Programmable Address Wait States
- Programmable Data Wait States (per chip select)
- Programmable Polarity on Control Signals (per chip select)
- Legacy Parallel Slave Port (PSP) Support
- Enhanced Parallel Slave Port Support
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer

21.1 Memory Addressable in Different Modes

The memory space addressable by the device depends on the address/data multiplexing selection; it varies from 1K to 2 MB. Refer to Table 21-1 for different Memory-Addressable modes.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
PTWREN	PTRDEN	PTBE1EN	PTBE0EN	_	AWAITM1	AWAITM0	AWAITE		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_		_	_	_			_		
pit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15 bit 14 bit 13	1 = PMWR pc 0 = PMWR pc PTRDEN: PM 1 = PMRD/PM 0 = PMRD/PM PTBE1EN: PH 1 = PMBE1 pc 0 = PMBE1 pc	ort is disabled IP Read/Write 3 <u>AWR</u> port is en AWR port is dis MP High Nibble ort is enabled ort is disabled	Strobe Port En abled abled e/Byte Enable F	able bit Port Enable bit					
bit 12	1 = PMBE0 p	MP Low Nibble ort is enabled ort is disabled	/Byte Enable F	Port Enable bit					
pit 11	Unimplemen	ted: Read as ')'						
bit 10-9	AWAITM<1:0>: Address Latch Strobe Wait State bits 11 = Wait of 3½ Tcy 10 = Wait of 2½ Tcy 01 = Wait of 1½ Tcy 00 = Wait of ½ Tcy								
bit 8	AWAITE: Address Hold After Address Latch Strobe Wait State bit 1 = Wait of 1 ¹ / ₄ Tcy 0 = Wait of ¹ / ₄ Tcy								
	$0 = Walt of \frac{1}{4}$	TCY							

REGISTER 21-3: PMCON3: EPMP CONTROL REGISTER 3

REGISTER 21-6: PMCSxBS: EPMP CHIP SELECT x BASE ADDRESS REGISTER⁽²⁾

R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾
			BASE	<23:16>			
bit 15							bit 8
R/W ⁽¹⁾	U-0	U-0	U-0	R/W ⁽¹⁾	U-0	U-0	U-0
BASE15	_	—		BASE11	_		—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

bit 15-7 BASE<23:15>: Chip Select x Base Address bits⁽¹⁾

bit 6-4 Unimplemented: Read as '0'

bit 3 BASE11: Chip Select x Base Address bit⁽¹⁾

bit 2-0 Unimplemented: Read as '0'

Note 1: The value at POR is 0080h for PMCS1BS and 0880h for PMCS2BS.

2: If the whole PMCS2BS register is written together as 0x0000, then the last EDS address for Chip Select 1 will be FFFFFFh. In this case, Chip Select 2 should not be used. PMCS1BS has no such feature.

22.2 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

22.2.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTRx bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 22-1).

By writing the RTCVALH byte, the RTCPTR<1:0> bits (the RTCC Pointer value) decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 22-1: RTCVAL REGISTER MAPPING

RTCPTR<1:0>	RTCC Value Register Window						
RICPIRSI.02	RTCVAL<15:8>	RTCVAL<7:0>					
00	MINUTES	SECONDS					
01	WEEKDAY	HOURS					
10	MONTH	DAY					
11	—	YEAR					

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTRx bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 22-2).

By writing the ALRMVALH byte, the ALRMPTR<1:0> bits (the Alarm Pointer value) decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 22-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window				
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>			
00	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11	_	_			

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes, the ALRMPTR<1:0> value will be decremented. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and						
not write operations.							

22.2.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (see Example 22-1).

Note:	To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code
	therefore, it is recommended that code follow the procedure in Example 22-1.

22.2.3 SELECTING RTCC CLOCK SOURCE

The clock source for the RTCC module can be selected using the RTCLK<1:0> bits in the RTCPWC register. When the bits are set to '00', the Secondary Oscillator (SOSC) is used as the reference clock and when the bits are '01', LPRC is used as the reference clock. When RTCLK<1:0> = 10 and 11, the external power line (50 Hz and 60 Hz) is used as the clock source.

EXAMPLE 22-1: SETTING THE RTCWREN BIT

```
asm volatile("push w7");
asm volatile("push w8");
asm volatile("disi #5");
asm volatile("mov #0x55, w7");
asm volatile("mov w7, _NVMKEY");
asm volatile("mov #0xAA, w8");
asm volatile("mov w8, _NVMKEY");
asm volatile("bset _RCFGCAL, #13"); //set the RTCWREN bit
asm volatile("pop w8");
asm volatile("pop w7");
```

REGISTER 22-11: RTCCSWT: RTCC POWER CONTROL AND SAMPLE WINDOW TIMER REGISTER⁽¹⁾

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 15 | | | | | | | bit 8 |

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
PWCSAMP7 ⁽²⁾	PWCSAMP6 ⁽²⁾	PWCSAMP5 ⁽²⁾	PWCSAMP4 ⁽²⁾	PWCSAMP3 ⁽²⁾	PWCSAMP2 ⁽²⁾	PWCSAMP1(2)	PWCSAMP0 ⁽²⁾
bit 7							bit 0

Legend:				
R = Readable bit		W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	PWCSTA	B<7:0>: Power Control Stat	ility Window Timer bits	
11111111 = Stabilit		1 = Stability window is 255 T 0 = Stability window is 254 T	1	
	•			
	•			
		1 = Stability window is 1 TPv 0 = No stability window; sam	VCCLK clock period uple window starts when the al	arm event triggers
bit 7-0 PWCSAMP		IP<7:0>: Power Control Sar	nple Window Timer bits ⁽²⁾	
		1 = Sample window is alway 0 = Sample window is 254 T	vs enabled, even when PWCE	N = 0

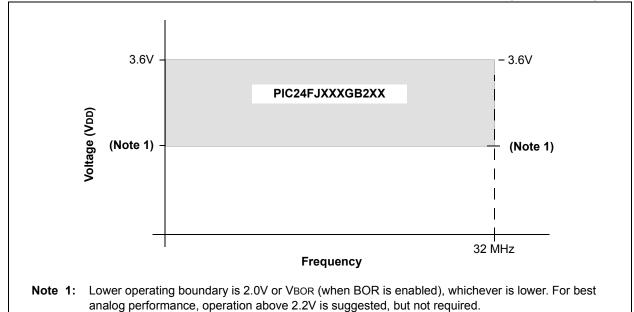
- 11111110 = Sample window is 254 TPWCCLK clock periods
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .</li
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.
 - 2: The sample window always starts when the stability window timer expires, except when its initial value is 00h.

REGISTER 30-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

- bit 4 FWPSA: WDT Prescaler Ratio Select bit
 - 1 = Prescaler ratio of 1:128
 - 0 = Prescaler ratio of 1:32
- bit 3-0 WDTPS<3:0>: Watchdog Timer Postscaler Select bits
 - 1111 = 1:32,768 1110 = 1:16,384 1101 **= 1:8,192** 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 **= 1:512** 1000 **= 1:256** 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 **= 1:8** 0010 = 1:4 0001 = 1:2 0000 = 1:1

REGISTER 30-4: CW4: FLASH CONFIGURATION WORD 4

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16


R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	R/PO-1
IOL1WAY	I2C1SEL	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0	—	DSSWEN
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
DSWDTEN	DSBOREN	DSWDTOSC	DSWDTPS4	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0
bit 7 bit							

Legend:	r = Reserved bit	eserved bit PO = Program Once bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has been completed; once set, the Peripheral Pin Select registers cannot be written to a second time 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been completed
bit 14	I2C1SEL: Alternate I2C1 Location Select bit
	 I = I2C1 uses the SCL1 and SDA1 pins I2C1 uses the ASCL1 and ASDA1 pins
bit 13-10	PLLDIV<3:0>: USB 96 MHz PLL Prescaler Select bits
	1111 = PLL is disabled
	1110 = 8x PLL is selected 1101 = 6x PLL is selected
	1100 = 4x PLL is selected
	1011
	= Reserved, do not use
	1000 0111 = Oscillator input divided by 12 (48 MHz input)
	0110 = Oscillator input divided by 8 (32 MHz input)
	0101 = Oscillator input divided by 6 (24 MHz input)
	0100 = Oscillator input divided by 5 (20 MHz input)
	0011 = Oscillator input divided by 4 (16 MHz input) 0010 = Oscillator input divided by 3 (12 MHz input)
	0001 = Oscillator input divided by 2 (8 MHz input)
	0000 = Oscillator input used directly (4 MHz input)
bit 9	Reserved: Always maintain as '1'
bit 8	DSSWEN: Deep Sleep Software Control Select bit
	 1 = Deep Sleep operation is enabled and controlled by the DSEN bit 0 = Deep Sleep operation is disabled
bit 7	DSWDTEN: Deep Sleep Watchdog Timer Enable bit
	1 = Deep Sleep WDT is enabled
	0 = Deep Sleep WDT is disabled

33.1 DC Characteristics

FIGURE 33-1: PIC24FJ128GB204 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

TABLE 33-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
PIC24FJ128GB204:					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/O			W
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJA			W

TABLE 33-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 7.50 mm 28-Pin SOIC	θJA	49	_	°C/W	(Note 1)
Package Thermal Resistance, 6x6x0.9 mm 28-Pin QFN-S	θJA	33.7	_	°C/W	(Note 1)
Package Thermal Resistance, 8x8 mm 44-Pin QFN	θJA	28	—	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1 mm 44-Pin TQFP	θJA	39.3	_	°C/W	(Note 1)
Package Thermal Resistance, 5.30 mm 28-Pin SSOP	θJA	_	_	°C/W	(Note 1)
Package Thermal Resistance, 300 mil 28-Pin SPDIP	θJA	_	_	°C/W	(Note 1)

Note 1: Junction to ambient thermal resistance; Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARAC	TERISTICS		$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array} $					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Operating Temperature	VDD	Conditions		
Incremental C	Current Brow	/n-out Rese	t (∆BOR) ⁽²⁾					
DC25	3.1	5.0	μA	-40°C to +125°C	2.0V	480R ⁽²⁾		
	4.3	6.0	μA	-40°C to +125°C	3.3V			
Incremental C	Current Watc	hdog Timer	. (∆WDT) ⁽²⁾					
DC71	0.8	1.5	μA	-40°C to +125°C	2.0V	۵WDT ⁽²⁾		
	0.8	1.5	μA	-40°C to +125°C	3.3V			
Incremental C	Current High	Low-Voltag	e Detect (Al	HLVD) ⁽²⁾				
DC75	4.2	15	μA	-40°C to +125°C	2.0V	AHLVD ⁽²⁾		
	4.2	15	μA	-40°C to +125°C	3.3V			
Incremental C	Current Real-	Time Clock	and Calend	lar (∆RTCC) ⁽²⁾				
DC77	0.3	1.0	μA	-40°C to +125°C	2.0V	△RTCC (with SOSC) ⁽²⁾		
	0.35	1.0	μA	-40°C to +125°C	3.3V			
DC77A	0.3	1.0	μA	-40°C to +125°C	2.0V	∆RTCC (with LPRC) ⁽²⁾		
	0.35	1.0	μΑ	-40°C to +125°C	3.3V			
Incremental C	Current Deep	Sleep BOF		(2)				
DC81	0.11	0.40	μΑ	-40°C to +125°C	2.0V	∆Deep Sleep BOR ⁽²⁾		
	0.12	0.40	μA	-40°C to +125°C	3.3V			
Incremental C	Current Deep	Sleep Wat	chdog Time	r Reset (∆DSWDT) ⁽²⁾	•		
DC80	0.24	0.40	μΑ	-40°C to +125°C	2.0V	∆Deep Sleep WDT ⁽²⁾		
	0.24	0.40	μΑ	-40°C to +125°C	3.3V			
VBAT A/D MOI	nitor ⁽³⁾							
DC91	1.5	_	μA	-40°C to +125°C	3.3V	VBAT = 2V		
	4	_	μA	-40°C to +125°C	3.3V	VBAT = 3.3V		

TABLE 33-7: DC CHARACTERISTICS: △ CURRENT (BOR, WDT, DSBOR, DSWDT)⁽⁴⁾

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Incremental current while the module is enabled and running.

3: The A/D channel is connected to the VBAT pin internally; this is the current during A/D VBAT operation.

4: The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

TABLE 33-35: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
SP70	TscL	SCKx Input Low Time	30			ns	
SP71	TscH	SCKx Input High Time	30	_	_	ns	
SP72	TscF	SCKx Input Fall Time ⁽³⁾	—	10	25	ns	
SP73	TscR	SCKx Input Rise Time ⁽³⁾	_	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	_	_	ns	See Parameter DO32
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	_	_	ns	See Parameter DO31
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	_	30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	-		ns	
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↓ or SCKx ↑ Input	120	_	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	
SP52	TscH2ssH TscL2ssH	SSx ↑ After SCKx Edge	1.5 Tcy + 40	—		ns	
SP60	TssL2doV	SDOx Data Output Valid After SSx Edge	—	—	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support