

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

-XF

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                             |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SmartCard, SPI, UART/USART                      |
| Peripherals                | AES, Brown-out Detect/Reset, DMA, I <sup>2</sup> S, HLVD, POR, PWM, WDT         |
| Number of I/O              | 20                                                                              |
| Program Memory Size        | 128KB (43K x 24)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 8K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                       |
| Data Converters            | A/D 9x10b/12b                                                                   |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                                  |
| Supplier Device Package    | 28-SSOP                                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb202t-i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|                           | Pin Number/Grid               |                 | Locator            |          |                      |                                                                               |
|---------------------------|-------------------------------|-----------------|--------------------|----------|----------------------|-------------------------------------------------------------------------------|
| Pin Function              | 28-Pin<br>SPDIP/SOIC/<br>SSOP | 28-Pin<br>QFN-S | 44-Pin<br>TQFP/QFN | I/O      | Input<br>Buffer      | Description                                                                   |
| CTED1                     | 2                             | 27              | 19                 | Ι        | ANA                  | CTMU External Edge Inputs.                                                    |
| CTED2                     | 3                             | 28              | 20                 | Ι        | ANA                  |                                                                               |
| CTED3                     | 16                            | 13              | 43                 | Ι        | ANA                  |                                                                               |
| CTED4                     | 18                            | 15              | 1                  | Ι        | ANA                  |                                                                               |
| CTED5                     | 25                            | 22              | 14                 | Ι        | ANA                  |                                                                               |
| CTED6                     | 26                            | 23              | 15                 | Ι        | ANA                  |                                                                               |
| CTED7                     |                               |                 | 5                  | Ι        | ANA                  |                                                                               |
| CTED8                     | 7                             | 4               | 24                 | Ι        | ANA                  |                                                                               |
| CTED9                     | 22                            | 19              | 9                  | Ι        | ANA                  |                                                                               |
| CTED10                    | 17                            | 14              | 44                 | Ι        | ANA                  |                                                                               |
| CTED11                    | 21                            | 18              | 8                  | Ι        | ANA                  |                                                                               |
| CTED12                    | 5                             | 2               | 22                 | Ι        | ANA                  |                                                                               |
| CTED13                    | 6                             | 3               | 23                 | Ι        | ANA                  |                                                                               |
| CTPLS                     | 24                            | 21              | 11                 | 0        |                      | CTMU Pulse Output.                                                            |
| CVREF                     | 25                            | 22              | 14                 | 0        | ANA                  | Comparator Voltage Reference Output.                                          |
| CVREF+                    | 2                             | 27              | 19                 | Ι        | ANA                  | Comparator Voltage Reference (high) Input.                                    |
| CVREF-                    | 3                             | 28              | 20                 | Ι        | ANA                  | Comparator Voltage Reference (low) Input.                                     |
| D+                        | 21                            | 18              | 8                  | I/O      |                      | USB Differential Plus Line (internal transceiver).                            |
| D-                        | 22                            | 19              | 9                  | I/O      |                      | USB Differential Minus Line (internal transceiver).                           |
| INT0                      | 16                            | 13              | 43                 | Ι        | ST                   | External Interrupt Input 0.                                                   |
| HLVDIN                    | 4                             | 1               | 21                 | Ι        | ANA                  | High/Low-Voltage Detect Input.                                                |
| MCLR                      | 1                             | 26              | 18                 | I        | ST                   | Master Clear (device Reset) Input. This line is brought low to cause a Reset. |
| OSCI                      | 9                             | 6               | 30                 | Ι        | ANA                  | Main Oscillator Input Connection.                                             |
| OSCO                      | 10                            | 7               | 31                 | 0        | —                    | Main Oscillator Output Connection.                                            |
| PGC1                      | 5                             | 2               | 22                 | I/O      | ST                   | In-Circuit Debugger/Emulator/ICSP™                                            |
| PGC2                      | 22                            | 19              | 9                  | I/O      | ST                   | Programming Clock.                                                            |
| PGC3                      | 3                             | 28              | 20                 | I/O      | ST                   |                                                                               |
| PGD1                      | 4                             | 1               | 21                 | I/O      | ST                   |                                                                               |
| PGD2                      | 21                            | 18              | 8                  | I/O      | ST                   |                                                                               |
| PGD3                      | 2                             | 27              | 19                 | I/O      | ST                   |                                                                               |
| Legend: ST = S<br>ANA = A | Schmitt Trigger               | input           |                    | TTL<br>O | = TTL co<br>= Output | pmpatible input I = Input<br>P = Power                                        |

| TABLE 1-3: | PIC24FJ128GB204 FAMILY PINOUT DESCRIPTION ( | CONTINUED) |  |
|------------|---------------------------------------------|------------|--|
|            |                                             |            |  |

ANA = Analog input  $I^2C$  = ST with  $I^2C^{TM}$  or SMBus levels

= Output

## 3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU with Extended Data Space (EDS)" (DS39732). The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The 16<sup>th</sup> Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The lower 32 Kbytes of the Data Space (DS) can be accessed linearly. The upper 32 Kbytes of the Data Space are referred to as Extended Data Space to which the extended data RAM, EPMP memory space or program memory can be mapped.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs. The core supports Inherent (no operand), Relative, Literal and Memory Direct Addressing modes, along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit x 16-bit or 8-bit x 8-bit, integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.

## 3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions.

A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory-mapped.

### REGISTER 8-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

| 11_0         | R/M/-0          | R/M/-0                               | R/M/0                    | R/M/_0                   | R/M/-0           | R/M_0           | R/M/0  |  |  |  |  |  |
|--------------|-----------------|--------------------------------------|--------------------------|--------------------------|------------------|-----------------|--------|--|--|--|--|--|
|              | DMA1IF          | AD1IF                                |                          | U1RXIE                   | SPI1TXIF         | SPI1IF          | T3IF   |  |  |  |  |  |
| bit 15       | Divitie         | ADTIE                                | OTIXIE                   | Onvie                    | OFTIME           | OFTIE           | bit 8  |  |  |  |  |  |
|              |                 |                                      |                          |                          |                  |                 |        |  |  |  |  |  |
| R/W-0        | R/W-0           | R/W-0                                | R/W-0                    | R/W-0                    | R/W-0            | R/W-0           | R/W-0  |  |  |  |  |  |
| T2IE         | OC2IE           | IC2IE                                | DMA0IE                   | T1IE                     | OC1IE            | IC1IE           | INTOIE |  |  |  |  |  |
| bit 7        |                 |                                      |                          |                          |                  |                 | bit 0  |  |  |  |  |  |
|              |                 |                                      |                          |                          |                  |                 |        |  |  |  |  |  |
| Legend:      |                 |                                      |                          |                          |                  |                 |        |  |  |  |  |  |
| R = Readab   | le bit          | W = Writable                         | bit                      | U = Unimpler             | nented bit, read | d as '0'        | as '0' |  |  |  |  |  |
| -n = Value a | t POR           | '1' = Bit is set                     |                          | $0^{\circ}$ = Bit is cle | ared             | x = Bit is unkr | nown   |  |  |  |  |  |
| hit 15       | Unimplemen      | tad: Read as '                       | ٦,                       |                          |                  |                 |        |  |  |  |  |  |
| hit 14       |                 | A Channel 1 In                       | ,<br>terrunt Enable      | bit                      |                  |                 |        |  |  |  |  |  |
| bit 14       | 1 = Interrupt r | equest is enab                       | led                      | bit                      |                  |                 |        |  |  |  |  |  |
|              | 0 = Interrupt r | equest is not e                      | nabled                   |                          |                  |                 |        |  |  |  |  |  |
| bit 13       | AD1IE: ADC1     | I Interrupt Enat                     | ole bit                  |                          |                  |                 |        |  |  |  |  |  |
|              | 1 = Interrupt r | equest is enab                       | led                      |                          |                  |                 |        |  |  |  |  |  |
| hit 12       |                 | equest is not e                      |                          | hla hit                  |                  |                 |        |  |  |  |  |  |
|              | 1 = Interrupt r | request is enab                      | led                      |                          |                  |                 |        |  |  |  |  |  |
|              | 0 = Interrupt r | equest is not e                      | nabled                   |                          |                  |                 |        |  |  |  |  |  |
| bit 11       | U1RXIE: UAF     | RT1 Receiver Ir                      | nterrupt Enable          | e bit                    |                  |                 |        |  |  |  |  |  |
|              | 1 = Interrupt r | equest is enab                       | led                      |                          |                  |                 |        |  |  |  |  |  |
| hit 10       |                 | equest is not e                      | nabled                   | unt Enchlo hit           |                  |                 |        |  |  |  |  |  |
|              | 1 = Interrupt r | request is enab                      | Ind                      | ipt Enable bit           |                  |                 |        |  |  |  |  |  |
|              | 0 = Interrupt r | equest is not e                      | nabled                   |                          |                  |                 |        |  |  |  |  |  |
| bit 9        | SPI1IE: SPI1    | General Interru                      | upt Enable bit           |                          |                  |                 |        |  |  |  |  |  |
|              | 1 = Interrupt r | equest is enab                       | led                      |                          |                  |                 |        |  |  |  |  |  |
| hit 0        | 0 = Interrupt r | equest is not e                      | nabled                   |                          |                  |                 |        |  |  |  |  |  |
| DILO         | 1 = Interrunt r | request is enab                      | e bil<br>Ied             |                          |                  |                 |        |  |  |  |  |  |
|              | 0 = Interrupt r | 0 = Interrupt request is not enabled |                          |                          |                  |                 |        |  |  |  |  |  |
| bit 7        | T2IE: Timer2    | Interrupt Enabl                      | e bit                    |                          |                  |                 |        |  |  |  |  |  |
|              | 1 = Interrupt r | equest is enab                       | led                      |                          |                  |                 |        |  |  |  |  |  |
| hit C        |                 | request is not e                     | nabled                   | unt Enchla hit           |                  |                 |        |  |  |  |  |  |
| DILO         | 1 = Interrupt r | request is enab                      | annei 2 interru<br>Ied   | ipt Enable bit           |                  |                 |        |  |  |  |  |  |
|              | 0 = Interrupt r | equest is not e                      | nabled                   |                          |                  |                 |        |  |  |  |  |  |
| bit 5        | IC2IE: Input C  | Capture Channe                       | el 2 Interrupt E         | nable bit                |                  |                 |        |  |  |  |  |  |
|              | 1 = Interrupt r | equest is enab                       | led                      |                          |                  |                 |        |  |  |  |  |  |
| hit 4        |                 | equest is not e                      | nabled<br>torrupt Epoblo | hit                      |                  |                 |        |  |  |  |  |  |
| DIL 4        | 1 = Interrupt r | equest is enab                       | lenupt Enable<br>led     | DIL                      |                  |                 |        |  |  |  |  |  |
|              | 0 = Interrupt r | request is not e                     | nabled                   |                          |                  |                 |        |  |  |  |  |  |
| bit 3        | T1IE: Timer1    | Interrupt Enabl                      | e bit                    |                          |                  |                 |        |  |  |  |  |  |
|              | 1 = Interrupt r | equest is enab                       | led                      |                          |                  |                 |        |  |  |  |  |  |
|              | 0 = Interrupt r | equest is not e                      | nabled                   |                          |                  |                 |        |  |  |  |  |  |

© 2013-2015 Microchip Technology Inc.

| U-0           | R/W-0                 | R/W-0                 | R/W-0                     | R/W-0             | R/W-0            | U-0             | R/W-0    |
|---------------|-----------------------|-----------------------|---------------------------|-------------------|------------------|-----------------|----------|
| —             | RTCIE                 | DMA5IE                | SPI3RXIE                  | SPI2RXIE          | SPI1RXIE         | —               | KEYSTRIE |
| bit 15        |                       |                       |                           |                   |                  |                 | bit 8    |
|               |                       |                       |                           |                   |                  |                 |          |
| R/W-0         | R/W-0                 | R/W-0                 | U-0                       | U-0               | R/W-0            | R/W-0           | U-0      |
| CRYDNIE       | INT4IE <sup>(1)</sup> | INT3IE <sup>(1)</sup> |                           | —                 | MI2C2IE          | SI2C2IE         | —        |
| bit 7         |                       |                       |                           |                   |                  |                 | bit 0    |
|               |                       |                       |                           |                   |                  |                 |          |
| Legend:       |                       |                       |                           |                   |                  |                 |          |
| R = Readable  | e bit                 | W = Writable          | bit                       | U = Unimplem      | nented bit, read | as '0'          |          |
| -n = Value at | POR                   | '1' = Bit is set      |                           | '0' = Bit is clea | ared             | x = Bit is unkr | nown     |
|               |                       |                       |                           |                   |                  |                 |          |
| bit 15        | Unimplemen            | ted: Read as '        | 0'                        |                   |                  |                 |          |
| bit 14        | RTCIE: Real-          | Time Clock and        | d Calendar Inte           | errupt Enable bi  | it               |                 |          |
|               | 1 = Interrupt i       | request is enab       | led<br>nabled             |                   |                  |                 |          |
| hit 13        |                       | A Channel 5 In        | terrunt Enable            | bit               |                  |                 |          |
| bit to        | 1 = Interrupt i       | request is enab       | led                       | Sit               |                  |                 |          |
|               | 0 = Interrupt i       | request is not e      | nabled                    |                   |                  |                 |          |
| bit 12        | SPI3RXIE: SI          | PI3 Receive Int       | errupt Enable             | bit               |                  |                 |          |
|               | 1 = Interrupt r       | request is enab       | led                       |                   |                  |                 |          |
|               | 0 = Interrupt i       | request is not e      | nabled                    |                   |                  |                 |          |
| bit 11        | SPI2RXIE: SI          | PI2 Receive Int       | errupt Enable             | bit               |                  |                 |          |
|               | $\perp$ = Interrupt i | request is enab       | nabled                    |                   |                  |                 |          |
| bit 10        | SPI1RXIE: SI          | PI1 Receive Int       | errupt Enable             | bit               |                  |                 |          |
|               | 1 = Interrupt r       | request is enab       | led                       |                   |                  |                 |          |
|               | 0 = Interrupt r       | request is not e      | nabled                    |                   |                  |                 |          |
| bit 9         | Unimplemen            | ted: Read as '        | 0'                        |                   |                  |                 |          |
| bit 8         | KEYSTRIE: (           | Cryptographic K       | ey Store Progr            | ram Done Interr   | rupt Enable bit  |                 |          |
|               | 1 = Interrupt r       | request is enab       | led                       |                   |                  |                 |          |
|               |                       | request is not e      | nabled                    |                   |                  |                 |          |
| bit /         |                       | ryptographic Op       | peration Done I           | Interrupt Enable  | e bit            |                 |          |
|               | 1 = Interrupt         | request is enab       | nabled                    |                   |                  |                 |          |
| bit 6         | INT4IE: Exter         | rnal Interrupt 4      | Enable bit <sup>(1)</sup> |                   |                  |                 |          |
|               | 1 = Interrupt r       | request is enab       | led                       |                   |                  |                 |          |
|               | 0 = Interrupt r       | request is not e      | nabled                    |                   |                  |                 |          |
| bit 5         | INT3IE: Exter         | rnal Interrupt 3      | Enable bit <sup>(1)</sup> |                   |                  |                 |          |
|               | 1 = Interrupt r       | request is enab       | led                       |                   |                  |                 |          |
|               |                       | request is not e      | nabled                    |                   |                  |                 |          |
| DIT 4-3       |                       | ited: Read as '       |                           | hla hit           |                  |                 |          |
| dit 2         | MIZCZIE: Ma           | ster 1202 Even        | t interrupt Enal          | DIE DIT           |                  |                 |          |
|               | 1 = 1  interrupt      | request is enab       | nabled                    |                   |                  |                 |          |
|               |                       | 1                     |                           |                   |                  |                 |          |

#### REGISTER 8-16: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

| U-0          | U-0                            | U-0                                                | U-0              | U-0               | R/W-1            | R/W-0           | R/W-0  |  |
|--------------|--------------------------------|----------------------------------------------------|------------------|-------------------|------------------|-----------------|--------|--|
| _            |                                | _                                                  | _                | _                 | OC6IP2           | OC6IP1          | OC6IP0 |  |
| bit 15       |                                |                                                    |                  |                   |                  |                 | bit 8  |  |
|              |                                |                                                    |                  |                   |                  |                 |        |  |
| U-0          | R/W-1                          | R/W-0                                              | R/W-0            | U-0               | R/W-1            | R/W-0           | R/W-0  |  |
|              | OC5IP2                         | OC5IP1                                             | OC5IP0           |                   | IC6IP2           | IC6IP1          | IC6IP0 |  |
| bit 7        |                                |                                                    |                  |                   |                  |                 | bit 0  |  |
| Legend:      |                                |                                                    |                  |                   |                  |                 |        |  |
| R = Readal   | ble bit                        | W = Writable                                       | oit              | U = Unimpler      | nented bit, read | d as '0'        |        |  |
| -n = Value a | at POR                         | '1' = Bit is set                                   |                  | '0' = Bit is cle  | ared             | x = Bit is unkr | nown   |  |
| bit 15-11    | Unimplomon                     | tod: Read as '(                                    | ı <b>'</b>       |                   |                  |                 |        |  |
| DIT 15-11    | Unimplemen                     |                                                    |                  |                   |                  |                 |        |  |
| bit 10-8     | OC6IP<2:0>:                    | Output Compa                                       | re Channel 6     | Interrupt Priorit | y bits           |                 |        |  |
|              | ⊥⊥⊥ = Interru<br>•             | pt is Priority 7 (i                                | nignest priority | / Interrupt)      |                  |                 |        |  |
|              | •                              |                                                    |                  |                   |                  |                 |        |  |
|              | •                              |                                                    |                  |                   |                  |                 |        |  |
|              | 001 = Interru<br>000 = Interru | pt is Priority 1<br>pt source is disa              | abled            |                   |                  |                 |        |  |
| bit 7        | Unimplemen                     | ited: Read as '(                                   | )'               |                   |                  |                 |        |  |
| bit 6-4      | OC5IP<2:0>:                    | : Output Compare Channel 5 Interrupt Priority bits |                  |                   |                  |                 |        |  |
|              | 111 = Interru                  | pt is Priority 7 (I                                | highest priority | / interrupt)      |                  |                 |        |  |
|              | •                              |                                                    |                  |                   |                  |                 |        |  |
|              | •                              |                                                    |                  |                   |                  |                 |        |  |
|              | •<br>001 = Interru             | ot is Priority 1                                   |                  |                   |                  |                 |        |  |
|              | 000 = Interru                  | pt source is disa                                  | abled            |                   |                  |                 |        |  |
| bit 3        | Unimplemen                     | ted: Read as '                                     | )'               |                   |                  |                 |        |  |
| bit 2-0      | IC6IP<2:0>:                    | Input Capture C                                    | hannel 6 Inter   | rupt Priority bit | S                |                 |        |  |
|              | 111 = Interru                  | pt is Priority 7 (I                                | highest priority | / interrupt)      |                  |                 |        |  |
|              | •                              |                                                    |                  |                   |                  |                 |        |  |
|              | •                              |                                                    |                  |                   |                  |                 |        |  |
|              | 001 = Interru                  | pt is Priority 1                                   |                  |                   |                  |                 |        |  |
|              | 000 = Interru                  | pt source is dis                                   | abled            |                   |                  |                 |        |  |

## REGISTER 8-31: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

## 9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers:

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. The CLKDIV register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC Oscillator.

The OSCTUN register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately  $\pm 1.5\%$ . It also controls the FRC self-tuning features, described in Section 9.5 "FRC Self-Tuning".

### REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

| U-0    | R-0   | R-0   | R-0   | U-0 | R/W-x <sup>(1)</sup> | R/W-x <sup>(1)</sup> | R/W-x <sup>(1)</sup> |
|--------|-------|-------|-------|-----|----------------------|----------------------|----------------------|
| —      | COSC2 | COSC1 | COSC0 | —   | NOSC2                | NOSC1                | NOSC0                |
| bit 15 |       |       |       |     |                      |                      | bit 8                |

| R/SO-0  | R/W-0                 | R-0 <sup>(3)</sup> | U-0 | R/CO-0 | R/W-0  | R/W-0  | R/W-0 |
|---------|-----------------------|--------------------|-----|--------|--------|--------|-------|
| CLKLOCK | IOLOCK <sup>(2)</sup> | LOCK               | —   | CF     | POSCEN | SOSCEN | OSWEN |
| bit 7   |                       |                    |     |        |        |        | bit 0 |

| Legend:           | CO = Clearable Only bit | SO = Settable Only bit      |                    |
|-------------------|-------------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit        | U = Unimplemented bit, read | i as '0'           |
| -n = Value at POR | '1' = Bit is set        | '0' = Bit is cleared        | x = Bit is unknown |

bit 15 Unimplemented: Read as '0'

- bit 14-12 **COSC<2:0>:** Current Oscillator Selection bits
  - 111 = Fast RC Oscillator with Postscaler (FRCDIV)
  - 110 = Reserved
  - 101 = Low-Power RC Oscillator (LPRC)
  - 100 = Secondary Oscillator (SOSC)
  - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
  - 010 = Primary Oscillator (XT, HS, EC)
  - 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)
  - 000 = Fast RC Oscillator (FRC)

### bit 11 Unimplemented: Read as '0'

#### bit 10-8 NOSC<2:0>: New Oscillator Selection bits<sup>(1)</sup>

- 111 = Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = Reserved
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = Fast RC Oscillator (FRC)
- Note 1: Reset values for these bits are determined by the FNOSCx Configuration bits.
  - 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1', once the IOLOCK bit is set, it cannot be cleared.
  - 3: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

NOTES:

### REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

| R/W-0      | R/W-0                               | R/W-0                          | R/W-0                        | U-0                       | R/W-0               | R/W-0               | R/W-0         |
|------------|-------------------------------------|--------------------------------|------------------------------|---------------------------|---------------------|---------------------|---------------|
| FLTMD      | FLTOUT                              | FLTTRIEN                       | OCINV                        | —                         | DCB1 <sup>(3)</sup> | DCB0 <sup>(3)</sup> | OC32          |
| bit 15     |                                     |                                |                              |                           |                     |                     | bit 8         |
|            |                                     |                                |                              |                           |                     |                     |               |
| R/W-0      | R/W-0, HS                           | R/W-0                          | R/W-0                        | R/W-1                     | R/W-1               | R/W-0               | R/W-0         |
| OCTRIC     | G TRIGSTAT                          | OCTRIS                         | SYNCSEL4                     | SYNCSEL3                  | SYNCSEL2            | SYNCSEL1            | SYNCSEL0      |
| bit 7      |                                     |                                |                              |                           |                     |                     | bit 0         |
| · · ·      |                                     |                                | 0 11 1 1 1                   |                           |                     |                     |               |
| Legend:    |                                     | HS = Hardwa                    | re Settable bit              |                           |                     |                     |               |
| R = Read   |                                     |                                | DIt                          |                           | iented bit, read    |                     |               |
| -n = value | at POR                              | "1" = Bit is set               |                              | $0^{\circ} = Bit is clea$ | ared                | x = Bit is unkr     | lown          |
| hit 1E     |                                     | Mada Calaat k                  |                              |                           |                     |                     |               |
| DIL 15     |                                     | do is maintaing                | n<br>d until the Eau         | It cource is rea          | and the             | corrosponding       |               |
|            | cleared ir                          | n software                     |                              |                           |                     | corresponding       | OCFLT0 bit is |
|            | 0 = Fault mod                       | de is maintaine                | d until the Faul             | It source is rem          | loved and a ne      | w PWM period        | starts        |
| bit 14     | FLTOUT: Fau                         | lt Out bit                     |                              |                           |                     |                     |               |
|            | 1 = PWM outp                        | out is driven hig              | gh on a Fault                |                           |                     |                     |               |
| L:1 40     |                                     | out is driven iov              | v on a Fault                 |                           |                     |                     |               |
| DIC 13     | 1 - Din is force                    | ault Output Sta                | te Select bit                | adition                   |                     |                     |               |
|            | 0 = Pin I/O co                      | ndition is unaff               | ected by a Fau               | llt                       |                     |                     |               |
| bit 12     | OCINV: Output                       | ut Compare x I                 | nvert bit                    |                           |                     |                     |               |
|            | 1 = OCx outp                        | ut is inverted                 |                              |                           |                     |                     |               |
|            | 0 = OCx outp                        | ut is not inverte              | ed                           |                           |                     |                     |               |
| bit 11     | Unimplemen                          | ted: Read as '                 | )'                           | (2)                       |                     |                     |               |
| bit 10-9   | DCB<1:0>: P                         | WM Duty Cycle                  | e Least Signific             | ant bits                  |                     |                     |               |
|            | 11 = Delays (<br>10 = Delays (      | Cx falling edg                 | e by $\frac{3}{4}$ of the ir | nstruction cycle          | )<br>\              |                     |               |
|            | 01 = Delays (                       | Cx falling edg                 | e by ¼ of the ir             | nstruction cycle          | :                   |                     |               |
|            | 00 = OCx fall                       | ing edge occur                 | s at the start of            | the instruction           | cycle               |                     |               |
| bit 8      | OC32: Casca                         | de Two OC Mo                   | dules Enable b               | oit (32-bit opera         | ation)              |                     |               |
|            | 1 = Cascade                         | module operati                 | on is enabled                |                           |                     |                     |               |
| hit 7      |                                     | nut Compare y                  |                              | Select hit                |                     |                     |               |
|            | 1 = Triggers (                      | OCx from the s                 | ource designate              | ed by the SYN(            | CSELx bits          |                     |               |
|            | 0 = Synchron                        | izes OCx with f                | he source desi               | ignated by the            | SYNCSELx bits       | 5                   |               |
| bit 6      | TRIGSTAT: T                         | imer Trigger St                | atus bit                     |                           |                     |                     |               |
|            | 1 = Timer sou                       | irce has been t                | riggered and is              | running                   |                     |                     |               |
|            | 0 = Timer sou                       | irce has not be                | en triggered an              | id is being held          | clear               |                     |               |
| bit 5      | OCTRIS: Out                         | put Compare x                  | Output Pin Dir               | ection Select b           | it                  |                     |               |
|            | 1 = OCx pin is<br>0 = Output Co     | s tri-stated<br>ompare Periphe | eral x is connec             | ted to an OCx             | pin                 |                     |               |
| Note 1:    | Never use an OC<br>SYNCSEL x settin | x module as its<br>a.          | own trigger so               | ource, either by          | selecting this r    | mode or anothe      | er equivalent |
| 2:         | Use these inputs                    | as trigger sour                | ces only and ne              | ever as sync so           | ources.             |                     |               |

3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

| R/W-0                                                                                                                                                                                              | U-0                                             | R/W-0                                                                                                          | R/W-0                          | R/W-0                                   | R/W-0                                     | R/W-0           | R/W-0              |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|-------------------------------------------|-----------------|--------------------|--|--|--|--|
| SPIEN                                                                                                                                                                                              | —                                               | SPISIDL                                                                                                        | DISSDO                         | MODE32 <sup>(1,4)</sup>                 | MODE16 <sup>(1,4)</sup>                   | SMP             | CKE <sup>(1)</sup> |  |  |  |  |
| bit 15                                                                                                                                                                                             |                                                 |                                                                                                                |                                |                                         |                                           |                 | bit 8              |  |  |  |  |
|                                                                                                                                                                                                    |                                                 |                                                                                                                |                                |                                         |                                           |                 |                    |  |  |  |  |
| R/W-0                                                                                                                                                                                              | R/W-0                                           | R/W-0                                                                                                          | R/W-0                          | R/W-0                                   | R/W-0                                     | R/W-0           | R/W-0              |  |  |  |  |
| SSEN <sup>(2)</sup>                                                                                                                                                                                | CKP                                             | MSTEN                                                                                                          | DISSDI                         | DISSCK                                  | MCLKEN <sup>(3)</sup>                     | SPIFE           | ENHBUF             |  |  |  |  |
| bit 7                                                                                                                                                                                              |                                                 |                                                                                                                |                                |                                         |                                           |                 | bit 0              |  |  |  |  |
|                                                                                                                                                                                                    |                                                 |                                                                                                                |                                |                                         |                                           |                 |                    |  |  |  |  |
| Legend:                                                                                                                                                                                            |                                                 |                                                                                                                |                                |                                         |                                           |                 |                    |  |  |  |  |
| R = Readab                                                                                                                                                                                         | ole bit                                         | W = Writable b                                                                                                 | bit                            | U = Unimplen                            | nented bit, read                          | as '0'          |                    |  |  |  |  |
| -n = Value a                                                                                                                                                                                       | at POR                                          | '1' = Bit is set                                                                                               |                                | '0' = Bit is cle                        | ared                                      | x = Bit is unkr | IOWN               |  |  |  |  |
| <ul> <li>bit 15 SPIEN: SPIx On bit</li> <li>1 = Enables module</li> <li>0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications</li> </ul> |                                                 |                                                                                                                |                                |                                         |                                           |                 |                    |  |  |  |  |
| bit 14                                                                                                                                                                                             | Unimplemen                                      | ted: Read as '0                                                                                                | ,                              |                                         |                                           |                 |                    |  |  |  |  |
| bit 13                                                                                                                                                                                             | SPISIDL: SPI<br>1 = Halts in C<br>0 = Continues | SPISIDL: SPIx Stop in Idle Mode bit<br>1 = Halts in CPU Idle mode<br>0 = Continues to operate in CPU Idle mode |                                |                                         |                                           |                 |                    |  |  |  |  |
| bit 12                                                                                                                                                                                             | DISSDO: Disa                                    | able SDOx Out                                                                                                  | out Port bit                   |                                         |                                           |                 |                    |  |  |  |  |
|                                                                                                                                                                                                    | 1 = SDOx pin<br>0 = SDOx pin                    | is not used by is controlled by                                                                                | the module; p<br>the module    | oin is controlled                       | by the port funct                         | ion             |                    |  |  |  |  |
| bit 11-10                                                                                                                                                                                          | MODE<32,16                                      | >: Serial Word                                                                                                 | Length bits <sup>(1,</sup>     | 4)                                      |                                           |                 |                    |  |  |  |  |
|                                                                                                                                                                                                    | AUDEN = 0:                                      |                                                                                                                |                                |                                         |                                           |                 |                    |  |  |  |  |
|                                                                                                                                                                                                    | MODE3                                           | 2 MODE                                                                                                         | 16 CC                          | JMMUNICATIO<br>32-Bit                   | N                                         |                 |                    |  |  |  |  |
|                                                                                                                                                                                                    | 0                                               | 1                                                                                                              |                                | 16-Bit                                  |                                           |                 |                    |  |  |  |  |
|                                                                                                                                                                                                    | 0                                               | 0                                                                                                              |                                | 8-Bit                                   |                                           |                 |                    |  |  |  |  |
|                                                                                                                                                                                                    | <u>AUDEN = 1:</u>                               |                                                                                                                |                                |                                         |                                           |                 |                    |  |  |  |  |
|                                                                                                                                                                                                    | MODE3                                           | 2 MODE                                                                                                         | 16 CO                          | OMMUNICATIO                             |                                           | it Channol/64   | Rit Eramo          |  |  |  |  |
|                                                                                                                                                                                                    | 1                                               | 0                                                                                                              |                                | 32-Bit Data, 32                         | 2-Bit FIFO, 32-Bi<br>2-Bit FIFO, 32-Bi    | t Channel/64-   | -Bit Frame         |  |  |  |  |
|                                                                                                                                                                                                    | 0                                               | 1                                                                                                              |                                | 16-Bit Data, 16                         | 6-Bit FIFO, 32-Bi                         | t Channel/64-   | Bit Frame          |  |  |  |  |
|                                                                                                                                                                                                    | 0                                               | 0                                                                                                              |                                | 16-Bit Data, 16                         | 6-Bit FIFO, 16-Bi                         | t Channel/32-   | Bit Frame          |  |  |  |  |
| bit 9                                                                                                                                                                                              | SMP: SPIx Da                                    | ata Input Sampl                                                                                                | e Phase bit                    |                                         |                                           |                 |                    |  |  |  |  |
|                                                                                                                                                                                                    | Master Mode:                                    | is compled at t                                                                                                | bo and of da                   | ta output timo                          |                                           |                 |                    |  |  |  |  |
|                                                                                                                                                                                                    | 1 = 10000000000000000000000000000000000         | is sampled at t                                                                                                | the middle of                  | data output time                        | e                                         |                 |                    |  |  |  |  |
|                                                                                                                                                                                                    | <u>Slave Mode:</u>                              |                                                                                                                | ot the middle                  | of data autout                          | time, recordless                          | of the CMD b    | it ootting         |  |  |  |  |
| hit Q                                                                                                                                                                                              |                                                 |                                                                                                                |                                |                                         | ume, regardless                           |                 | it setting.        |  |  |  |  |
| Dit 0                                                                                                                                                                                              | 1 = Transmit  <br>0 = Transmit                  | happens on trar<br>happens on trar                                                                             | nsition from a nsition from lo | ctive clock state<br>lle clock state to | e to Idle clock sta<br>o active clock sta | ite<br>ite      |                    |  |  |  |  |
| Note 1: V<br>2: V                                                                                                                                                                                  | When AUDEN = 1<br>When FRMEN = 1                | 1, this module fi<br>1, SSEN is not                                                                            | unctions as if<br>used.        | CKE = 0, regar                          | dless of its actua                        | al value.       |                    |  |  |  |  |
| 3: 1                                                                                                                                                                                               |                                                 | y de written whe                                                                                               |                                | DIT = 0.                                |                                           | A./             |                    |  |  |  |  |
| 4:                                                                                                                                                                                                 | i nis channel is no                             | ot meaningful fo                                                                                               | r DSP/PCM i                    | node as LRC fo                          | DIIOWS FRMSYPV                            | 'V.             |                    |  |  |  |  |

### REGISTER 16-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

### REGISTER 16-6: SPIxIMSKL: SPIx INTERRUPT MASK REGISTER LOW

| U-0          | U-0                                | U-0                            | R/W-0                 | R/W-0              | U-0             | U-0             | R/W-0    |
|--------------|------------------------------------|--------------------------------|-----------------------|--------------------|-----------------|-----------------|----------|
|              |                                    |                                | FRMERREN              | BUSYEN             | —               |                 | SPITUREN |
| bit 15       |                                    |                                |                       |                    |                 |                 | bit 8    |
|              |                                    |                                |                       |                    |                 |                 |          |
| R/W-0        | R/W-0                              | R/W-0                          | U-0                   | R/W-0              | U-0             | R/W-0           | R/W-0    |
| SRMTEN       | SPIROVEN                           | SPIRBEN                        |                       | SPITBEN            | —               | SPITBFEN        | SPIRBFEN |
| bit 7        |                                    |                                |                       |                    |                 |                 | bit 0    |
|              |                                    |                                |                       |                    |                 |                 |          |
| Legend:      |                                    |                                |                       |                    |                 | (0)             |          |
| R = Readab   |                                    | W = Writable t                 | Dit                   | U = Unimpleme      | ented bit, read | as '0'          |          |
| -n = value a | TPOR                               | = Bit is set                   |                       | "0" = Bit is clear | ea              | x = Bit is unki | nown     |
| bit 15 13    | Unimplomon                         | tod: Pood as '                 | `,                    |                    |                 |                 |          |
| bit 12       | FRMERREN                           | Enable Interru                 | ,<br>nt Events via ER | MERR hit           |                 |                 |          |
|              | 1 = Frame er                       | ror generates a                | n interrupt event     |                    |                 |                 |          |
|              | 0 = Frame er                       | ror does not ge                | nerate an interru     | ipt event          |                 |                 |          |
| bit 11       | BUSYEN: En                         | able Interrupt E               | vents via SPIBL       | JSY bit            |                 |                 |          |
|              | 1 = SPIBUSY                        | generates an i                 | nterrupt event        |                    |                 |                 |          |
|              | 0 = SPIBUSY                        | does not gene                  | rate an interrupt     | event              |                 |                 |          |
| bit 10-9     | Unimplemen                         | ted: Read as '                 | )'                    |                    |                 |                 |          |
| bit 8        | SPITUREN: E                        | Enable Interrup                | Events via SPI        | rur bit            |                 |                 |          |
|              | $\perp$ = Transmit<br>0 = Transmit | Underrun (TOR<br>Underrun does | not generates an i    | interrupt event    |                 |                 |          |
| bit 7        | SRMTEN: En                         | able Interrupt E               | Events via SRMT       | bit                |                 |                 |          |
|              | 1 = Shift Reg                      | ister Empty (SR                | RMT) generates        | an interrupt ever  | nts             |                 |          |
|              | 0 = Shift Reg                      | ister Empty doe                | es not generate a     | an interrupt ever  | nts             |                 |          |
| bit 6        | SPIROVEN:                          | Enable Interrup                | t Events via SPI      | ROV bit            |                 |                 |          |
|              | 1 = SPIx rece                      | eive overflow ge               | nerates an inter      | rupt event         | at              |                 |          |
| hit 5        |                                    | nable Interrunt I              | Events via SPIR       | BE bit             |                 |                 |          |
| DIL J        | 1 = SPIX RX                        | huffer empty ge                | nerates an inter      | runt event         |                 |                 |          |
|              | 0 = SPIx RX                        | buffer empty do                | es not generate       | an interrupt eve   | ent             |                 |          |
| bit 4        | Unimplemen                         | ted: Read as '                 | )'                    |                    |                 |                 |          |
| bit 3        | SPITBEN: Er                        | nable Interrupt E              | Events via SPITE      | 3E bit             |                 |                 |          |
|              | 1 = SPIx tran                      | smit buffer emp                | ty generates an       | interrupt event    |                 |                 |          |
|              | 0 = SPIx tran                      | smit buffer emp                | ity does not gene     | erate an interrup  | ot event        |                 |          |
| bit 2        | Unimplemen                         | ted: Read as '                 |                       |                    |                 |                 |          |
| bit 1        | SPITBEEN: E                        | nable Interrupt                | Events via SPI        |                    |                 |                 |          |
|              | 1 = SPIx trans                     | smit buffer full               | does not genera       | ite an interrupt e | vent            |                 |          |
| bit 0        | SPIRBFEN:                          | Enable Interrupt               | Events via SPII       | RBF bit            | -               |                 |          |
|              | 1 = SPIx rece                      | eive buffer full g             | enerates an inte      | rrupt event        |                 |                 |          |
|              | 0 = SPIx rece                      | eive buffer full d             | oes not generate      | e an interrupt ev  | ent             |                 |          |

## 18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582). The information in this data sheet supersedes the information in the FRM.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins. The UART module includes the ISO 7816 compliant Smart Card support and the IrDA<sup>®</sup> encoder/decoder unit.

The PIC24FJ128GB204 family devices are equipped with four UART modules, referred to as UART1, UART2, UART3 and UART4.

The primary features of the UARTx modules are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with the UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Range from 15 bps to 1 Mbps at 16 MIPS in 16x mode

- Baud Rates Range from 61 bps to 4 Mbps at 16 MIPS in 4x mode
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9<sup>th</sup> bit = 1)
- Separate Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- Polarity Control for Transmit and Receive Lines
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA<sup>®</sup> Encoder and Decoder Logic
- Includes DMA Support
- 16x Baud Clock Output for IrDA Support
- Smart Card ISO 7816 Support (UART1 and UART2 only):
  - T = 0 protocol with automatic error handling
  - T = 1 protocol
  - Dedicated Guard Time Counter (GTC)
  - Dedicated Waiting Time Counter (WTC)

A simplified block diagram of the UARTx module is shown in Figure 18-1. The UARTx module consists of these key important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver
  - **Note:** Throughout this section, references to register and bit names that may be associated with a specific UART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "UxSTA" might refer to the Status register for either UART1, UART2, UART3 or UART4.

## REGISTER 22-11: RTCCSWT: RTCC POWER CONTROL AND SAMPLE WINDOW TIMER REGISTER<sup>(1)</sup>

| R/W-x    | x R/W-x R/W-x R/W-x |          | R/W-x    | R/W-x    | R/W-x    | R/W-x R/W-x |          |  |
|----------|---------------------|----------|----------|----------|----------|-------------|----------|--|
| PWCSTAB7 | PWCSTAB6            | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1    | PWCSTAB0 |  |
| bit 15   |                     |          |          |          |          |             | bit 8    |  |

| R/W-x                   |
|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| PWCSAMP7 <sup>(2)</sup> | PWCSAMP6 <sup>(2)</sup> | PWCSAMP5 <sup>(2)</sup> | PWCSAMP4 <sup>(2)</sup> | PWCSAMP3 <sup>(2)</sup> | PWCSAMP2 <sup>(2)</sup> | PWCSAMP1 <sup>(2)</sup> | PWCSAMP0 <sup>(2)</sup> |
| bit 7                   |                         |                         |                         |                         |                         |                         | bit 0                   |

| Legend:    |                                                                                                                                             |                                                                                                                      |                       |                    |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|--|--|--|--|--|--|
| R = Reada  | ble bit                                                                                                                                     | W = Writable bit                                                                                                     | U = Unimplemented bit | , read as '0'      |  |  |  |  |  |  |
| -n = Value | at POR                                                                                                                                      | '1' = Bit is set                                                                                                     | '0' = Bit is cleared  | x = Bit is unknown |  |  |  |  |  |  |
| bit 15-8   | PWCST                                                                                                                                       | PWCSTAB<7:0>: Power Control Stability Window Timer bits                                                              |                       |                    |  |  |  |  |  |  |
|            | 1111111<br>1111111                                                                                                                          | 11111111 = Stability window is 255 TPWCCLK clock periods<br>11111110 = Stability window is 254 TPWCCLK clock periods |                       |                    |  |  |  |  |  |  |
|            | •                                                                                                                                           |                                                                                                                      |                       |                    |  |  |  |  |  |  |
|            | •                                                                                                                                           |                                                                                                                      |                       |                    |  |  |  |  |  |  |
|            | 00000001 = Stability window is 1 TPWCCLK clock period<br>00000000 = No stability window; sample window starts when the alarm event triggers |                                                                                                                      |                       |                    |  |  |  |  |  |  |
| bit 7-0    | <b>PWCSAMP&lt;7:0&gt;:</b> Power Control Sample Window Timer bits <sup>(2)</sup>                                                            |                                                                                                                      |                       |                    |  |  |  |  |  |  |
|            | 11111111 = Sample window is always enabled, even when PWCEN = 0                                                                             |                                                                                                                      |                       |                    |  |  |  |  |  |  |

- 11111110 = Sample window is 254 TPWCCLK clock periods
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .</li
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.
  - 2: The sample window always starts when the stability window timer expires, except when its initial value is 00h.

## 23.6 Control Registers

#### REGISTER 23-1: CRYCONL: CRYPTOGRAPHIC CONTROL LOW REGISTER

| R/W-0  | U-0 | R/W-0                  | R/W-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup> | U-0 | R/W-0, HC <sup>(1)</sup> |
|--------|-----|------------------------|----------------------|----------------------|----------------------|-----|--------------------------|
| CRYON  |     | CRYSIDL <sup>(3)</sup> | ROLLIE               | DONEIE               | FREEIE               | —   | CRYGO                    |
| bit 15 |     |                        |                      |                      |                      |     | bit 8                    |

| R/W-0 <sup>(1)</sup>   | R/W-0 <sup>(1)</sup>    | R/W-0 <sup>(1)</sup>    | R/W-0 <sup>(1)</sup>    |
|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|-------------------------|
| OPMOD3 <sup>(2)</sup> | OPMOD2 <sup>(2)</sup> | OPMOD1 <sup>(2)</sup> | OPMOD0 <sup>(2)</sup> | CPHRSEL <sup>(2)</sup> | CPHRMOD2 <sup>(2)</sup> | CPHRMOD1 <sup>(2)</sup> | CPHRMOD0 <sup>(2)</sup> |
| bit 7                 |                       |                       |                       |                        |                         |                         | bit 0                   |

| Legend:           | HC = Hardware Clearable bit |                             |                    |  |  |
|-------------------|-----------------------------|-----------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit            | U = Unimplemented bit, read | as '0'             |  |  |
| -n = Value at POR | '1' = Bit is set            | '0' = Bit is cleared        | x = Bit is unknown |  |  |

| bit 15 | CRYON: Cryptographic Enable bit                                                                              |
|--------|--------------------------------------------------------------------------------------------------------------|
|        | 1 = Module is enabled                                                                                        |
|        | 0 = Module is disabled                                                                                       |
| bit 14 | Unimplemented: Read as '0'                                                                                   |
| bit 13 | CRYSIDL: Cryptographic Stop in Idle Control bit <sup>(3)</sup>                                               |
|        | 1 = Stops module operation in Idle mode                                                                      |
|        | 0 = Continues module operation in Idle mode                                                                  |
| bit 12 | ROLLIE: CRYTXTB Rollover Interrupt Enable bit <sup>(1)</sup>                                                 |
|        | 1 = Generates an interrupt event when the counter portion of CRYTXTB rolls over to '0'                       |
|        | 0 = Does not generate an interrupt event when the counter portion of CRYTXTB rolls over to '0'               |
| bit 11 | DONEIE: Operation Done Interrupt Enable bit <sup>(1)</sup>                                                   |
|        | 1 = Generates an interrupt event when the current cryptographic operation completes                          |
|        | 0 = Does not generate an interrupt event when the current cryptographic operation completes; software        |
|        | must poll the CRYGO or CRYBSY bit to determine when current cryptographic operation is complete              |
| bit 10 | FREEIE: Input Text Interrupt Enable bit <sup>(1)</sup>                                                       |
|        | 1 = Generates an interrupt event when the input text (plaintext or ciphertext) is consumed during the        |
|        | current cryptographic operation                                                                              |
|        | 0 = Does not generate an interrupt event when the input text is consumed                                     |
| bit 9  | Unimplemented: Read as '0'                                                                                   |
| bit 8  | CRYGO: Cryptographic Engine Start bit <sup>(1)</sup>                                                         |
|        | 1 = Starts the operation specified by OPMOD<3:0> (cleared automatically when operation is done)              |
|        | 0 = Stops the current operation (when cleared by software); also indicates the current operation has         |
|        | completed (when cleared by hardware)                                                                         |
| Note 1 | : These bits are reset on system Resets or whenever the CRYMD bit is set.                                    |
| 2      | : Writes to these bit fields are locked out whenever an operation is in progress (CRYGO bit is set).         |
| 3      | : If the device enters Idle mode when CRYSIDL = 1, the module will stop its current operation. Entering into |
|        | Idle mode while an OTP write operation is in process can result in irreversible corruption of the OTP.       |

## FIGURE 25-3: 10-BIT A/D CONVERTER ANALOG INPUT MODEL



## EQUATION 25-1: A/D CONVERSION CLOCK PERIOD

$$T_{AD} = T_{CY} \left( ADCS + 1 \right)$$

$$ADCS = \frac{TAD}{TCY} - 1$$

Note: Based on TCY = 2/FOSC; Doze mode and PLL are disabled.





#### REGISTER 30-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)

bit 5 OSCIOFCN: OSCO Pin Configuration bit  $\frac{If POSCMD < 1:0 > = 11 \text{ or } 00:}{1 = OSCO/CLKO/RA3 \text{ functions as CLKO (Fosc/2)}}{0 = OSCO/CLKO/RA3 \text{ functions as port I/O (RA3)}}$   $\frac{If POSCMD < 1:0 > = 10 \text{ or } 01:}{OSCIOFCN \text{ has no effect on OSCO/CLKO/RA3.}}$ 

bit 4-3 WDTCLK<1:0>: WDT Clock Source Select bits When WDTCMX = 1: 11 = LPRC 10 = Either the 31 kHz FRC source or LPRC, depending on device configuration<sup>(1)</sup> 01 = SOSC input 00 = System clock when active, LPRC while in Sleep mode

When WDTCMX = 0:

LPRC is always the WDT clock source.

- bit 2 Reserved: Configure as '1'
- bit 1-0 **POSCMD<1:0>:** Primary Oscillator Configuration bits
  - 11 = Primary Oscillator mode is disabled
  - 10 = HS Oscillator mode is selected
  - 01 = XT Oscillator mode is selected
  - 00 = EC Oscillator mode is selected
- **Note 1:** The 31 kHz FRC source is used when a Windowed WDT mode is selected and the LPRC is not being used as the system clock. The LPRC is used when the device is in Sleep mode and in all other cases.
  - 2: When VBUS functionality is used, this Configuration bit must be programmed to '1'.

### 30.3 Watchdog Timer (WDT)

For PIC24FJ128GB204 family devices, the WDT is driven by the LPRC Oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT Time-out (TWDT) period of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS<3:0> Configuration bits (CW1<3:0>), which allows the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranges from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE (RCON<3:2>) bits will need to be cleared in software after the device wakes up. The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

| Note: | The CLRWD                                 | T and | PWRSAV | instructions |  |  |  |
|-------|-------------------------------------------|-------|--------|--------------|--|--|--|
|       | clear the prescaler and postscaler counts |       |        |              |  |  |  |
|       | when execut                               | ted.  |        |              |  |  |  |

#### 30.3.1 WINDOWED OPERATION

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the window width, 25%, 37.5%, 50% or 75% of the programmed WDT period, controlled by the WDTWIN<1:0> Configuration bits (CW3<10:9>). A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the WINDIS Configuration bit (CW1<5>) to '0'.

### 30.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits. When the Configuration bits, FWDTEN<1:0> = 11, the WDT is always enabled.

The WDT can be optionally controlled in software when the Configuration bits, FWDTEN<1:0> = 10. When FWDTEN<1:0> = 00, the Watchdog Timer is always disabled. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.



#### FIGURE 30-2: WDT BLOCK DIAGRAM

NOTES:





### TABLE 33-31: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

| AC CHARACTERISTICS |        | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |     |     |     |       |            |
|--------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-------|------------|
| Param<br>No.       | Symbol | Characteristic <sup>(1)</sup>                                                                                                                                                                                                                                                         | Min | Тур | Max | Units | Conditions |
| OC15               | Tfd    | Fault Input to PWM I/O<br>Change                                                                                                                                                                                                                                                      | _   | _   | 50  | ns    |            |
| OC20               | TFLT   | Fault Input Pulse Width                                                                                                                                                                                                                                                               | 50  | _   |     | ns    |            |

**Note 1:** These parameters are characterized but not tested in manufacturing.



#### FIGURE 33-11: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

#### TABLE 33-34: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

| AC CHARACTERISTICS |                       |                                                                    | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |                    |     |       |                    |
|--------------------|-----------------------|--------------------------------------------------------------------|-------------------------------------------------------|--------------------|-----|-------|--------------------|
| Param<br>No.       | Symbol                | Characteristic <sup>(1)</sup>                                      | Min                                                   | Typ <sup>(2)</sup> | Max | Units | Conditions         |
| SP70               | TscL                  | SCKx Input Low Time                                                | 30                                                    | _                  | _   | ns    |                    |
| SP71               | TscH                  | SCKx Input High Time                                               | 30                                                    |                    |     | ns    |                    |
| SP72               | TscF                  | SCKx Input Fall Time <sup>(3)</sup>                                | —                                                     | 10                 | 25  | ns    |                    |
| SP73               | TscR                  | SCKx Input Rise Time <sup>(3)</sup>                                | —                                                     | 10                 | 25  | ns    |                    |
| SP30               | TdoF                  | SDOx Data Output Fall Time <sup>(3)</sup>                          | —                                                     | _                  | _   | ns    | See Parameter DO32 |
| SP31               | TdoR                  | SDOx Data Output Rise Time <sup>(3)</sup>                          | —                                                     |                    |     | ns    | See Parameter DO31 |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid After<br>SCKx Edge                          | —                                                     | —                  | 30  | ns    |                    |
| SP40               | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data Input<br>to SCKx Edge                      | 20                                                    | —                  | _   | ns    |                    |
| SP41               | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input<br>to SCKx Edge                       | 20                                                    | —                  |     | ns    |                    |
| SP50               | TssL2scH,<br>TssL2scL | $\overline{\text{SSx}}\downarrow$ to SCKx $\uparrow$ or SCKx Input | 120                                                   | —                  |     | ns    |                    |
| SP51               | TssH2doZ              | SSx ↑ to SDOx Output High-Impedance <sup>(3)</sup>                 | 10                                                    | _                  | 50  | ns    |                    |
| SP52               | TscH2ssH,<br>TscL2ssH | SSx After SCKx Edge                                                | 1.5 Tcy + 40                                          | —                  | _   | ns    |                    |

Note 1: These parameters are characterized but not tested in manufacturing.

**2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

**3:** Assumes 50 pF load on all SPIx pins.