

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb204t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	00C4	_	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	_	_	_	_	4440
IPC18	00C8	-	_	_	_	_	_	_	_	_		_	_	_	I	HLVDIP<2:0>		0004
IPC19	00CA	-	_	_	_	_	_	_	_	_	(CTMUIP<2:0	>	_	_	_	_	0040
IPC20	00CC	-	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	_	_	_	_	4440
IPC21	00CE	_	U4ERIP2	U4ERIP1	U4ERIP0	_	USB1IP2	USB1IP1	USB1IP0	_	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	_	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0	4444
IPC22	00D0	_	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0	_	SPI3IP2	SPI3IP1	SPI3IP0	_	U4TXIP2	U4TXIP1	U4TXIP0	_	U4RXIP2	U4RXIP1	U4RXIP0	4444
IPC26	00D8	_	_	_	_	_		FSTIP<2:0>		_		_	_	_	_	_	_	0400
IPC29	00DE	_	_	_	_	_	_	_	_	_		JTAGIP<2:0>	>	_	_	_	_	0040
INTTREG	00E0	CPUIRQ	r	VHOLD	—	ILR3	ILR2	ILR1	ILR0	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'; r = reserved bit, maintain as '0'. Reset values are shown in hexadecimal.

DSRPAG (Data Space Read Register)	DSWPAG (Data Space Write Register)	Source/Destination Address while Indirect Addressing	24-Bit EA Pointing to EDS	Comment
x ⁽¹⁾	x ⁽¹⁾	0000h to 1FFFh	000000h to 001FFFh	Near Data Space ⁽²⁾
Χ. ,	Χ',	2000h to 7FFFh	002000h to 007FFFh	
001h	001h		008000h to 00FFFEh	
002h	002h		010000h to 017FFEh	
003h	003h		018000h to 0187FEh	EPMP Memory Space
•	•	8000h to FFFFh	•	Li wi wemory space
•	•		•	
• 1FFh	• 1FFh		FF8000h to FFFFFEh	
000h	000h		Invalid Address	Address Error Trap ⁽³⁾

TABLE 4-35: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

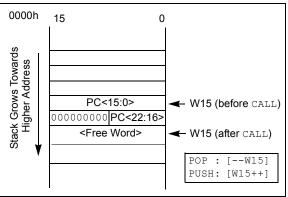
Note 1: If the source/destination address is below 8000h, the DSRPAG and DSWPAG registers are not considered.

2: This Data Space can also be accessed by Direct Addressing.

3: When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

4.2.6 SOFTWARE STACK

Apart from its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-7. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.


Note:	A PC push during exception processing
	will concatenate the SRL Register to the
	MSB of the PC prior to the push.

The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated using W15 as a Source or Destination Pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-7: CALL STACK FRAME

REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 8-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1TXIE	SPI1IE	T3IE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE
bit 7	OOZIL	IOZIL	DIVIAUL	1112	OUTIL	IOTIL	bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	ר,				
bit 14	•	A Channel 1 In		bit			
		equest is enab	•				
	0 = Interrupt r	equest is not e	nabled				
bit 13		Interrupt Enal					
		equest is enab equest is not e					
bit 12	•	T1 Transmitter		ole hit			
		equest is enab	-				
	0 = Interrupt request is not enabled						
bit 11		RT1 Receiver Ir	•	e bit			
		equest is enab equest is not e					
bit 10	SPI1TXIE: SF	PI1 Transmit Co	omplete Interru	pt Enable bit			
		equest is enab equest is not e					
bit 9	•	General Interr					
	1 = Interrupt r	equest is enab equest is not e	led				
bit 8	-	Interrupt Enab					
	1 = Interrupt r	equest is enab equest is not e	led				
bit 7	•	Interrupt Enab					
		equest is enab					
		equest is not e					
bit 6	•	ut Compare Ch		pt Enable bit			
		equest is enab equest is not e					
bit 5	•	Capture Channe		nable bit			
bit o	1 = Interrupt r	equest is enab equest is not e	led				
bit 4	-	A Channel 0 In		hit			
		equest is enab	-				
		equest is not e					
bit 3	T1IE: Timer1	Interrupt Enab	le bit				
		equest is enab equest is not e					

© 2013-2015 Microchip Technology Inc.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
	RTCIE	DMA5IE	SPI3RXIE	SPI2RXIE	SPI1RXIE		KEYSTRIE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
CRYDNIE	INT4IE ⁽¹⁾	INT3IE ⁽¹⁾	—	_	MI2C2IE	SI2C2IE	—
bit 7							bit 0
Legend:	1.11					(0)	
R = Readable		W = Writable	bit	•	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown
bit 15	Unimplemen	ted: Read as ')'				
bit 14	-			errupt Enable b	it		
bit i i		request is enab			it i		
	•	equest is not e					
bit 13	DMA5IE: DM	A Channel 5 In	terrupt Enable	bit			
		equest is enab					
	•	request is not e					
bit 12		PI3 Receive Int	-	bit			
		equest is enab equest is not e					
bit 11	•	PI2 Receive Int		h it			
DILTI		request is enab	•	DIL			
	•	request is enab					
bit 10	-	PI1 Receive Int		bit			
		equest is enab	•				
		equest is not e					
bit 9	Unimplemen	ted: Read as ')'				
bit 8	KEYSTRIE: (Cryptographic K	ey Store Progr	am Done Inter	rupt Enable bit		
		request is enab					
	•	request is not e					
bit 7				Interrupt Enable	e bit		
		equest is enab equest is not e					
bit 6	-	nal Interrupt 4					
DILO		request is enab					
	•	request is not e					
bit 5	-	nal Interrupt 3					
		equest is enab					
	0 = Interrupt r	request is not e	nabled				
bit 4-3	Unimplemen	ted: Read as ')'				
bit 2	MI2C2IE: Ma	ster I2C2 Even	t Interrupt Ena	ble bit			
		equest is enab					
	0 = Interrupt r	request is not e	nabled				

REGISTER 8-16: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 10-1: DSCON: DEEP SLEEP CONTROL REGISTER⁽¹⁾

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
DSEN	—	—	—	_	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	r-0	R/W-0	R/C-0, HS			
						DSBOR ⁽²⁾	RELEASE			
bit 7							bit 0			
Legend:		C = Clearable	bit	U = Unimplem	nented bit, read	as '0'				
R = Readabl	R = Readable bit W = Writable bit			HS = Hardware Settable bit r = Reserved bit						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15		Sleep Enable b								
		ep Sleep on ex								
		rmal Sleep on		WRSAV #0						
bit 14-3	•	ted: Read as ')'							
bit 2	Reserved: Ma									
bit 1	DSBOR: Dee	p Sleep BOR E	Event bit ⁽²⁾							
					ed during Deep	•				
	0 = The DSB0	OR was not act	ive, or was act	ive, but did not	t detect a BOR	event during D	eep Sleep			
bit 0	RELEASE: 1/0	O Pin State Re	lease bit							
		U 1			ir states previou					
		I/O pins from t bits to control		ious to Deep S	leep entry, and	allows their res	pective TRISx			

- **Note 1:** All register bits are reset only in the case of a POR event outside of Deep Sleep mode.
 - **2:** Unlike all other events, a Deep Sleep BOR event will NOT cause a wake-up from Deep Sleep; this re-arms the POR.

11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V), on any desired digital only pins, by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits (see Register 11-1 through Register 11-3), which decides if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

Table 11-2 summarizes the different voltage tolerances. For more information, refer to **Section 33.0 "Electrical Characteristics"** for more details.

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANSx = 1.
Analog Output	1	1	It is recommended to keep ANSx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

TABLE 11-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

Port or Pin	Tolerated Input	Description		
PORTA<10:7,4> ⁽¹⁾				
PORTB<11:10,8:4>	5.5V	Tolerates input levels above VDD; useful for most standard logic.		
PORTC<9:3> ⁽¹⁾		for most standard logic.		
PORTA<3:0>				
PORTB<15:13,9,3:0>	Vdd	Only VDD input levels are tolerated.		
PORTC<2:0> ⁽¹⁾				

Note 1: Not all of these pins are implemented in 28-pin devices. Refer to **Section 1.0 "Device Overview**" for a complete description of port pin implementation.

REGISTER 16-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	—
bit 15	·	·		·	·	•	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—		W	LENGTH<4:0>	(1,2)	
bit 7	·	·					bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-5	Unimplemen	ted: Read as ')'				
bit 4-0	-	4:0>: Variable V		ts ^(1,2)			
	11111 = 32- t		-				
	11110 = 31- k						
	11101 = 30- b	oit data					
	11100 = 29- k						
	11011 = 28- k						
	11010 = 27-b						
	11001 = 26-b 11000 = 25-b						
	10111 = 24- k						
	10110 = 23- k						
	10101 = 22-k	oit data					
	10100 = 21- k						
	10011 = 20-k						
	10010 = 19-k 10001 = 18-k						
	10000 = 17- k						
	01111 = 16- k						
	01110 = 15- k	oit data					
	01101 = 14-k	oit data					
	01100 = 13 -b						
	01011 = 12-k						
	01010 = 11-b 01001 = 10-b						
	01000 = 9-bit						
	00111 = 8-bi						
	00110 = 7-bi	t data					
	00101 = 6-bi						
	00100 = 5-bi						
	00011 = 4-bi 00010 = 3-bi						
	00010 = 3-01	i nala					
	00001 = 2-bi						

Note 1: These bits are effective when AUDEN = 0 only.

2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

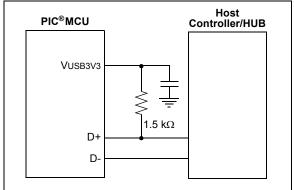
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	_	—	—	—	_	_	_					
bit 15	·			·			bit 8					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN					
bit 7							bit 0					
Legend:												
R = Reada	ble bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 15-7	•	ted: Read as 'C										
bit 6		ondition Interru	•		de only).							
		nterrupt on dete		condition								
bit 5	•	ection interrupts		2C Slove mode								
DIL D	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only) 1 = Enables interrupt on detection of Start or Restart conditions											
		0 = Start detection interrupts are disabled										
bit 4		r Overwrite Ena		ve mode only)								
		/ is updated and	0	nerated for a re	ceived address	s/data byte, igno	oring the state					
		COV bit only if the		in elece								
bit 3		/ is only update x Hold Time Se		is clear								
DIL S		of 300 ns hold		after the falling	edge of SCL x							
		of 100 ns hold										
bit 2	SBCDE: Slav	/e Mode Bus Co	ollision Detect	Enable bit (I ² C	Slave mode or	nly)						
		ng edge of SCL										
		t and the bus go	pes Idle. This I	Detection mode	is only valid d	uring data and	ACK transmit					
	sequences.	slave bus collisi	on interrupts									
		s collision interri		ed								
bit 1	AHEN: Addre	ess Hold Enable	e bit (I ² C Slave	mode only)								
	1 = Following	n the 8th fallin	a edge of SC	Ix for a mate	ching received	address byte;	SCI REL bit					
							001.111					
	•	NL<12>) will be	cleared and S		d low							
bit 0	0 = Address	NL<12>) will be holding is disab	cleared and S led	SCLx will be hel	d low							
bit 0	0 = Address DHEN: Data	NL<12>) will be	cleared and S led (I ² C Slave mo	SCLx will be hel de only)		hardware clears						
bit 0	0 = Address DHEN: Data 1 = Following bit (I2Cx)	NL<12>) will be holding is disab Hold Enable bit	cleared and S led (I ² C Slave mo edge of SCLx f	CLx will be hel de only) or a received da		hardware clears						

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect) 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (the character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (the character at the top of the receive FIFO) a = Framing error has not been detected
h :4 4	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only) 1 = Receive buffer has overflowed
	1 = Receive buffer has overflowed (clearing a previously set OERR bit (1 → 0 transition); will reset the receive buffer and the RSR to the empty state)
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1	: The value of this bit only affects the transmit properties of the module when the IrDA [®] encoder is enabled (IREN = 1).

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

19.1 Hardware Configuration


19.1.1 DEVICE MODE

19.1.1.1 D+ Pull-up Resistor

PIC24FJ128GB204 family devices have a built-in 1.5 kΩ resistor on the D+ line that is available when the microcontroller is operating in Device mode. This is used to signal an external host that the device is operating in Full-Speed Device mode. It is engaged by setting the USBEN bit (U1CON<0>). If the OTGEN bit (U1OTGCON<2>) is set, then the D+ pull-up is enabled through the DPPULUP bit (U1OTGCON<7>).

Alternatively, an external resistor may be used on D+, as shown in Figure 19-2.

19.1.1.2 Power Modes

Many USB applications will likely have several different sets of power requirements and configuration. The most common power modes encountered are:

- Bus Power Only mode
- · Self-Power Only mode
- Dual Power with Self-Power Dominance mode

Bus Power Only mode (Figure 19-3) is effectively the simplest method. All power for the application is drawn from the USB.

To meet the inrush current requirements of the *"USB 2.0 Specification"*, the total effective capacitance appearing across VBUS and ground must be no more than 10 μ F.

In the USB Suspend mode, devices must consume no more than 2.5 mA from the 5V VBUS line of the USB cable. During the USB Suspend mode, the D+ or D-pull-up resistor must remain active, which will consume some of the allowed suspend current.

In Self-Power Only mode (Figure 19-4), the USB application provides its own power, with very little power being pulled from the USB. Note that an attach indication is added to indicate when the USB has been connected and the host is actively powering VBUS.

To meet compliance specifications, the USB module (and the D+ or D- pull-up resistor) should not be enabled until the host actively drives VBUS high. One of the 5.5V tolerant I/O pins may be used for this purpose.

The application should never source any current onto the 5V VBUS pin of the USB cable.

The Dual Power with Self-Power Dominance mode (Figure 19-5) allows the application to use internal power primarily, but switch to power from the USB when no internal power is available. Dual power devices must also meet all of the special requirements for inrush current and Suspend mode current previously described, and must not enable the USB module until VBUS is driven high.

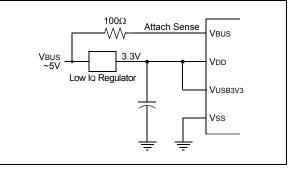


FIGURE 19-4: SELF-POWER ONLY

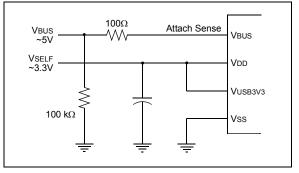
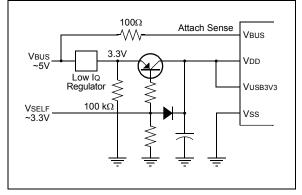



FIGURE 19-5:

DUAL POWER EXAMPLE

19.4.2 RECEIVING AN IN TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the "USB 2.0 Specification".
- 2. Create a data buffer and populate it with the data to send to the host.
- 3. In the appropriate (Even or Odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- When the USB module receives an IN token, it automatically transmits the data in the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Transfer Done Interrupt Flag, TRNIF (U1IR<3>).

19.4.3 RECEIVING AN OUT TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the "USB 2.0 Specification".
- 2. Create a data buffer with the amount of data you are expecting from the host.
- 3. In the appropriate (Even or Odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- 4. When the USB module receives an OUT token, it automatically receives the data sent by the host to the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Transfer Done Interrupt Flag, TRNIF (U1IR<3>).

19.5 Host Mode Operation

The following sections describe how to perform common Host mode tasks. In Host mode, USB transfers are invoked explicitly by the host software. The host software is responsible for the Acknowledge portion of the transfer. Also, all transfers are performed using the USB Endpoint 0 Control register (U1EP0) and Buffer Descriptors.

19.5.1 ENABLE HOST MODE AND DISCOVER A CONNECTED DEVICE

- Enable Host mode by setting the HOSTEN bit (U1CON<3>). This causes the Host mode control bits in other USB OTG registers to become available.
- Enable the D+ and D- pull-down resistors by setting the DPPULDWN and DMPULDWN bits (U10TGCON<5:4>). Disable the D+ and Dpull-up resistors by clearing the DPPULUP and DMPULUP bits (U10TGCON<7:6>).
- At this point, Start-of-Frame (SOF) generation begins with the SOF counter loaded with 12,000. Eliminate noise on the USB by clearing the SOFEN bit (U1CON<0>) to disable Start-of-Frame packet generation.
- 4. Enable the device attached interrupt by setting the ATTACHIE bit (U1IE<6>).
- Wait for the device attached interrupt (U1IR<6> = 1). This is signaled by the USB device changing the state of D+ or D- from '0' to '1' (SE0 to J-state). After it occurs, wait 100 ms for the device power to stabilize.
- Check the state of the JSTATE and SE0 bits in U1CON. If the JSTATE bit (U1CON<7>) is '0', the connecting device is low speed. If the connecting device is low speed, set the LSPDEN and LSPD bits (U1ADDR<7> and U1EP0<7>, respectively) to enable low-speed operation.
- Reset the USB device by setting the USBRST bit (U1CON<4>) for at least 50 ms, sending Reset signaling on the bus. After 50 ms, terminate the Reset by clearing USBRST.
- In order to keep the connected device from going into suspend, enable the SOF packet generation by setting the SOFEN bit.
- 9. Wait 10 ms for the device to recover from Reset.
- 10. Perform enumeration as described by Chapter 9 of the "USB 2.0 Specification".

19.5.3 SEND A FULL-SPEED BULK DATA TRANSFER TO A TARGET DEVICE

- Follow the procedure described in Section 19.5.1 "Enable Host Mode and Discover a Connected Device" and Section 19.5.2 "Complete a Control Transaction to a Connected Device" to discover and configure a device.
- To enable transmit and receive transfers with handshaking enabled, write 1Dh to U1EP0. If the target device is a low-speed device, also set the LSPD (U1EP0<7>) bit. If you want the hardware to automatically retry indefinitely, if the target device asserts a NAK on the transfer, clear the Retry Disable bit, RETRYDIS (U1EP0<6>).
- 3. Set up the BD for the current (Even or Odd) TX EP0 to transfer up to 64 bytes.
- 4. Set the USB device address of the target device in the USB Address register (U1ADDR<6:0>).
- 5. Write an OUT token to the desired endpoint to U1TOK. This triggers the module's transmit state machines to begin transmitting the token and the data.
- 6. Wait for the Transfer Done Interrupt Flag, TRNIF. This indicates that the BD has been released back to the microprocessor and the transfer has completed. If the Retry Disable bit (RETRYDIS) is set, the handshake (ACK, NAK, STALL or ERROR (0Fh)) is returned in the BD PID field. If a STALL interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a detach interrupt occurs (SE0 for more than 2.5 µs), then the target has detached (U1IR<0> is set).
- 7. Once the Transfer Done Interrupt Flag occurs (TRNIF is set), the BD can be examined and the next data packet queued by returning to Step 2.
- **Note:** USB speed, transceiver and pull-ups should only be configured during the module setup phase. It is not recommended to change these settings while the module is enabled.

19.6 OTG Operation

19.6.1 SESSION REQUEST PROTOCOL (SRP)

An OTG A-device may decide to power down the VBUS supply when it is not using the USB link through the Session Request Protocol (SRP). Software may do this by clearing VBUSON (U10TGCON<3>). When the VBUS supply is powered down, the A-device is said to have ended a USB session.

An OTG A-device or embedded host may repower the VBUS supply at any time (initiate a new session). An OTG B-device may also request that the OTG A-device repower the VBUS supply (initiate a new session). This is accomplished via the Session Request Protocol (SRP).

Prior to requesting a new session, the B-device must first check that the previous session has definitely ended. To do this, the B-device must check for two conditions:

1. VBUS supply is below the session valid voltage.

2. Both D+ and D- have been low for at least 2 ms.

The B-device will be notified of Condition 1 by the SESENDIF (U1OTGIR<2>) interrupt. Software will have to manually check for Condition 2.

Note:	When the A-device powers down the VBUS supply, the B-device must discon-
	nect its pull-up resistor from power. If the
	device is self-powered, it can do this by
	clearing DPPULUP (U1OTGCON<7>)
	and DMPULUP (U1OTGCON<6>).

The B-device may aid in achieving Condition 1 by discharging the VBUS supply through a resistor. Software may do this by setting VBUSDIS (U1OTGCON<0>).

After these initial conditions are met, the B-device may begin requesting the new session. The B-device begins by pulsing the D+ data line. Software should do this by setting DPPULUP (U10TGCON<7>). The data line should be held high for 5 to 10 ms.

The B-device then proceeds by pulsing the VBUS supply. Software should do this by setting PUVBUS (U1CNFG2<4>). When an A-device detects SRP signaling (either via the ATTACHIF (U1IR<6>) interrupt or via the SESVDIF (U1OTGIR<3>) interrupt), the A-device must restore the VBUS supply by either setting VBUSON (U1OTGCON<3>) or by setting the I/O port controlling the external power source.

The B-device should not monitor the state of the VBUS supply while performing VBUS supply pulsing. When the B-device does detect that the VBUS supply has been restored (via the SESVDIF (U1OTGIR<3>) interrupt), the B-device must reconnect to the USB link by pulling up D+ or D- (via the DPPULUP or DMPULUP bits).

The A-device must complete the SRP by driving USB Reset signaling.

21.0 ENHANCED PARALLEL MASTER PORT (EPMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Enhanced Parallel Master Port (EPMP)" (DS39730). The information in this data sheet supersedes the information in the FRM.

The Enhanced Parallel Master Port (EPMP) module provides a parallel, 4-bit (Master mode only) and 8-bit (Master and Slave modes) data bus interface to communicate with off-chip modules, such as memories, FIFOs, LCD controllers and other microcontrollers. This module can serve as either the master or the slave on the communication bus.

For EPMP Master modes, all external addresses are mapped into the internal Extended Data Space (EDS). This is done by allocating a region of the EDS for each chip select and then assigning each chip select to a particular external resource, such as a memory or external controller. This region should not be assigned to another device resource, such as RAM or SFRs. To perform a write or read on an external resource, the CPU simply performs a write or read within the address range assigned for the EPMP. Key features of the EPMP module are:

- Extended Data Space (EDS) Interface allows Direct Access from the CPU
- Up to 10 Programmable Address Lines
- Up to 2 Chip Select Lines
- Up to 1 Acknowledgment Line (one per chip select)
- · 4-Bit and 8-Bit Wide Data Bus
- Programmable Strobe Options (per chip select)
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Programmable Address/Data Multiplexing
- Programmable Address Wait States
- Programmable Data Wait States (per chip select)
- Programmable Polarity on Control Signals (per chip select)
- Legacy Parallel Slave Port (PSP) Support
- Enhanced Parallel Slave Port Support
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer

21.1 Memory Addressable in Different Modes

The memory space addressable by the device depends on the address/data multiplexing selection; it varies from 1K to 2 MB. Refer to Table 21-1 for different Memory-Addressable modes.

REGISTER 21-5: PMCSxCF: EPMP CHIP SELECT x CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
CSDIS	CSP	CSPTEN	BEP	—	WRSP	RDSP	SM			
bit 15				-	•	•	bit 8			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
ACKP	PTSZ1	PTSZ0				<u> </u>	—			
bit 7							bit (
Legend:										
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	t as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	lown			
bit 15	CSDIS: Chip	Select x Disab	le bit							
	1 = Disables	the Chip Selec	t x functionality	/						
	0 = Enables t	the Chip Select	x functionality							
bit 14	CSP: Chip Se	elect x Polarity	bit							
	1 = Active-hig									
	0 = Active-lov	. ,								
bit 13	-	ICSx Port Enal	ble bit							
		1 = PMCSx port is enabled 0 = PMCSx port is disabled								
bit 12	•		Note Enable Po	larity hit						
SIC 12	-	BEP: Chip Select x Nibble/Byte Enable Polarity bit 1 = Nibble/byte enable is active-high (PMBE0, PMBE1)								
	0 = Nibble/byte enable is active-high (PMBE0, PMBE1)									
bit 11	-	ted: Read as '	-	· ·						
bit 10	WRSP: Chip	Select x Write	Strobe Polarity	/ bit						
	For Slave Mo	For Slave Modes and Master Mode When $SM = 0$:								
		be is active-hig	<u> </u>							
		be is active-low	· ,							
		For Master Mode When SM = 1: 1 = Enable stroke is active high								
		 1 = Enable strobe is active-high 0 = Enable strobe is active-low 								
bit 9		Select x Read		bit						
	•		,							
	1 = Read stro	For Slave Modes and Master Mode When SM = 0: 1 = Read strobe is active-high (PMRD)								
	0 = Read strobe is active-low (PMRD)									
	For Master Mode When SM = 1:									
	 1 = Read/write strobe is active-high (PMRD/PMWR) 0 = Read/write strobe is active-low (PMRD/PMWR) 									
bit 8				// 101001()						
	SM: Chip Select x Strobe Mode bit 1 = Read/write and enable strobes (PMRD/PMWR)									
	1 = Read/white and enable strobes (PMRD/PMWR) 0 = Read and write strobes (PMRD and PMWR)									
bit 7	ACKP: Chip	Select x Ackno	wledge Polarit	y bit						
	-	ACKP: Chip Select x Acknowledge Polarity bit 1 = ACK is active-high (PMACK1)								
	0 = ACK is a	ctive-low (PMA	CK1)							
bit 6-5	PTSZ<1:0>:	Chip Select x F	Port Size bits							
	11 = Reserve									
	10 = Reserve		·0~)							
		rt size (PMD<3 rt size (PMD<7								
bit 4-0	-	ited: Read as '	-							
	ommplemen		0							

REGISTER 23-5: **CFGPAGE: SECURE ARRAY CONFIGURATION BITS (OTP PAGE 0)** REGISTER

r-x	R/PO-x	U-x	U-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x
—	TSTPGM ⁽¹⁾	—	—	KEY4TYPE1	KEY4TYPE0	KEY3TYPE1	KEY3TYPE0
bit 31							bit 24

R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x
KEY2TYPE1	KEY2TYPE0	KEY1TYPE1	KEY1TYPE0	SKEYEN	LKYSRC7	LKYSRC6	LKYSRC5
bit 23 bit 16							

R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x
LKYSRC4	LKYSRC3	LKYSRC2	LKYSRC1	LKYSRC0	SRCLCK	WRLOCK8	WRLOCK7
bit 15							bit 8

R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x
WRLOCK6	WRLOCK5	WRLOCK74	WRLOCK3	WRLOCK2	WRLOCK1	WRLOCK0	SWKYDIS
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	Reserved: Do not modify
bit 30	TSTPGM: Customer Program Test bit ⁽¹⁾
	 1 = CFGPAGE has been programmed 0 = CFGPAGE has not been programmed
bit 29-28	Unimplemented: Read as '0'
bit 27-26	KEY4TYPE<1:0>: Key Type for OTP Pages 7 and 8 bits
	 00 = Keys in these pages are for DES/DES2 operations only 01 = Keys in these pages are for DES3 operations only 10 = Keys in these pages are for 128-bit AES operations only 11 = Keys in these pages are for 192-bit/256-bit AES operations only
bit 25-24	KEY3TYPE<1:0>: Key Type for OTP Pages 5 and 6 bits
	 00 = Keys in these pages are for DES/DES2 operations only 01 = Keys in these pages are for DES3 operations only 10 = Keys in these pages are for 128-bit AES operations only 11 = Keys in these pages are for 192-bit/256-bit AES operations only
bit 23-22	KEY2TYPE<1:0>: Key Type for OTP Pages 3 and 4 bits
	 00 = Keys in these pages are for DES/DES2 operations only 01 = Keys in these pages are for DES3 operations only 10 = Keys in these pages are for 128-bit AES operations only 11 = Keys in these pages are for 192-bit/256-bit AES operations only
bit 21-20	KEY1TYPE<1:0>: Key Type for OTP Pages 1 and 2 bits
	 00 = Keys in these pages are for DES/DES2 operations only 01 = Keys in these pages are for DES3 operations only 10 = Keys in these pages are for 128-bit AES operations only 11 = Keys in these pages are for 192-bit/256-bit AES operations only
Noto 1:	This hit's state is mirrored by the PGMTST hit (CRYOTP<7>)

This bit's state is mirrored by the PGMTST bit (CRYOTP<7>). NOTE 1:

24.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction the data is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

24.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions.

If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt. Note that when an interrupt occurs, the CRC calculation would not yet be complete. The module will still need (PLEN + 1)/2 clock cycles, after the interrupt is generated, until the CRC calculation is finished.

24.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

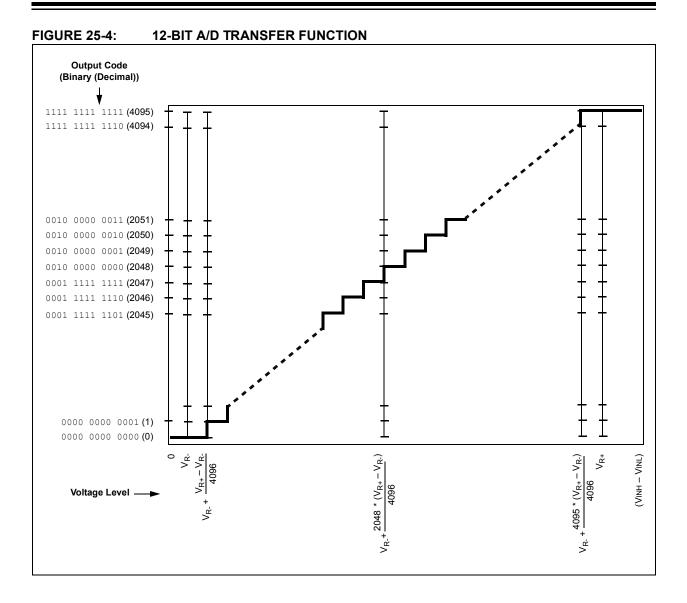
- 1. Set the CRCEN bit to enable the module.
- Configure the module for desired operation:

 a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits.

b) Configure the data width and shift direction using the DWIDTHx and LENDIAN bits.c) Select the desired Interrupt mode using the

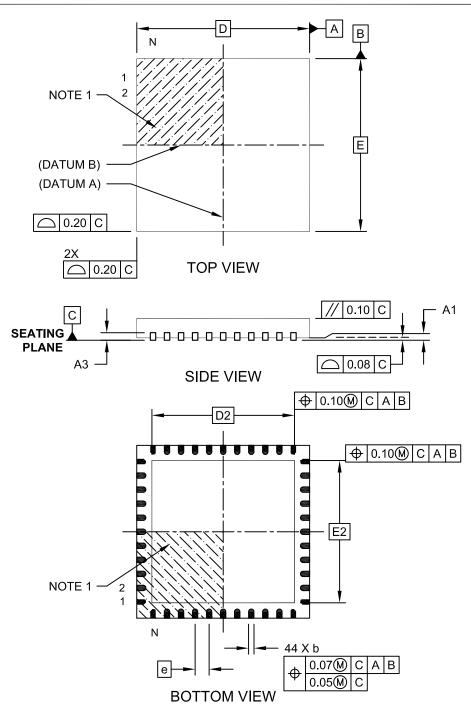
CRCISEL bit.

 Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left.


- Clear old results by writing 00h to CRCWDATL and CRCWDATH. The CRCWDAT registers can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

There are eight registers used to control programmable CRC operation:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH


The CRCCON1 and CRCCON2 registers (Register 24-1 and Register 24-2) control the operation of the module and configure the various settings.

The CRCXORL/H registers (Register 24-3 and Register 24-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word input data and CRC processed output, respectively.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2

NOTES: