

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb202-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Num	per/Grid	Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description
PMA0/PMALL	_	—	3	0		Parallel Master Port Address.
PMA1/PMALH			2	0	_	
PMA14/PMCS/ PMCS1	-	—	15	0	—	
PMA2/PMALU	—		12	0	_	
PMA3	—		38	0	_	
PMA4			37	0	_	
PMA5	_		4	0	_	
PMA6			5	0	_	
PMA7	_	_	13	0	_	
PMA8			32	0	_	
PMA9		—	35	0	_	
PMACK1		—	27	Ι	ST/TTL	Parallel Master Port Acknowledge Input 1.
PMBE0		_	36	0	_	Parallel Master Port Byte Enable 0 Strobe.
PMBE1		—	25	0	_	Parallel Master Port Byte Enable 1 Strobe.
PMCS1		_	30	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe.
PMD0			21	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed
PMD1	_		22	I/O	ST/TTL	Master mode) or Address/Data (Multiplexed
PMD2			23	I/O	ST/TTL	Master modes).
PMD3			1	I/O	ST/TTL	
PMD4		—	44	I/O	ST/TTL	
PMD5			43	I/O	ST/TTL	
PMD6			20	I/O	ST/TTL	
PMD7			19	I/O	ST/TTL	
PMRD			11	0	_	Parallel Master Port Read Strobe.
PMWR	_	—	24	0	—	Parallel Master Port Write Strobe.
RA0	2	27	19	I/O	ST	PORTA Digital I/Os.
RA1	3	28	20	I/O	ST	
RA2	9	6	30	I/O	ST	
RA3	10	7	31	I/O	ST	
RA4	12	9	34	Ι	ST	
RA7	_	—	13	I/O	ST	
RA8	_	—	32	I/O	ST	
		—	35	I/O	ST	
RA9			1		ST	1

TABLE 1-3: PIC24FJ128GB204 FAMILY PINOUT DESCRIPTION (CONTINUED)

 I^2C = ST with I^2C^{TM} or SMBus levels

2.6 External Oscillator Pins

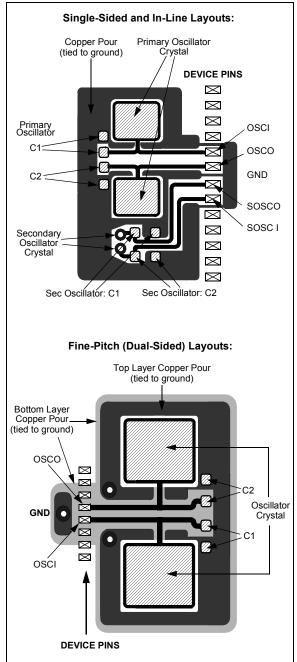
Many microcontrollers have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator (refer to Section 9.0 "Oscillator Configuration" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).


For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC™ and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

FIGURE 2-5:

PLACEMENT OF THE OSCILLATOR CIRCUIT

SUGGESTED

REGISTER 3-2: CORCON: CPU CORE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15		•					bit 8		
U-0	U-0	U-0	U-0	R/C-0	r-1	U-0	U-0		
—	_	—	—	IPL3 ⁽¹⁾	—	_	—		
bit 7							bit 0		
Legend:		C = Clearable	bit	r = Reserved	bit				
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 Reserved: Read as '1'

- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-1 for bit description.

TABLE 4-28: PERIPHERAL PIN SELECT REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	03D6	_	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	_	_	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	03D8		—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0		_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	03DA		_			RP5R	<5:0>				-		_		_	_	_	0000
RPOR3	03DC	_	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0		—	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	03DE		—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0		_	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	03E0			RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	-	Ι	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	03E2	_	—			RP13F	<5:0>				—	_	_	_	_	_	_	0000
RPOR7	03E4		—	RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0		_	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	03E6	_	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0		_	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9	03E8	_	—	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0		—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10	03EA	_	_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0		-	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11	03EC		—	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0		_	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12	03EE	_	—	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	—	_	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: SYSTEM CONTROL (CLOCK AND RESET) REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0108	TRAPR	IOPUWR		RETEN	_	DPSLP	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0100	_	COSC2	COSC1	COSC0		NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	-	CF	POSCEN	SOSCEN	OSWEN	Note 2
CLKDIV	0102	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	CPDIV1	CPDIV0	PLLEN	_	_	_	_	_	0100
OSCTUN	0106	STEN	_	STSIDL	STSRC	STLOCK	STLPOL	STOR	STORPOL	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCONL	0168	ROEN	_	ROSIDL	ROOUT	ROSLP	_	ROSWEN	ROACTIVE	_	_	_	_	ROSEL3	ROSEL2	ROSEL1	ROSEL0	0000
REFOCONH	016A								RODIV	<14:0>								0000
REFOTRIML	016C				R	DTRIM<15:7	>				_	_	_	_	_	_	_	0000
HLVDCON	010C	HLVDEN	_	LSIDL	—	—	—	_	—	VDIR	BGVST	IRVST	_	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000
RCON2	010A	_	—	_	_	-	_	—	—	—	_	_	r	VDDBOR	VDDPOR	VBPOR	VBAT	Note 1

Legend: — = unimplemented, read as '0'; r = reserved bit. Reset values are shown in hexadecimal.

Note 1: The Reset value of the RCON register is dependent on the type of Reset event. For more information, refer to Section 7.0 "Resets".

2: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. For more information, refer to Section 9.0 "Oscillator Configuration".

REGISTER 5-3: DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DBUFWF ⁽¹⁾		CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
HIGHIF ^(1,2)	LOWIF ^(1,2)	DONEIF ⁽¹⁾	HALFIF ⁽¹⁾	OVRUNIF ⁽¹⁾	—	—	HALFEN
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable I	nit	U = Unimplem	ented hit read	1 as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nwn
					licu		
bit 15	DBUEWE: DI	MA Buffered Da	ta Write Flag I	_{Dit} (1)			
		tent of the DM/	•		to the location	on specified in	DMADSTn o
		Cn in Null Write					
		tent of the DN		been written t	the location	n specified in	DMADSTn o
	_	Cn in Null Write					
bit 14	•	ited: Read as '0					
bit 13-8		: DMA Channe		tion bits			
		1 for a complete		E 1 1 1 2			
bit 7		A High Address		-	bioboxthop F		un on lineit of the
	data RA	A channel has a M space	liempled to ac	cess an address	s nigher than L	DIMAR of the up	per limit of the
		A channel has n	ot invoked the	high address li	mit interrupt		
bit 6	LOWIF: DMA	A Low Address L	imit Interrupt	Flag bit ^(1,2)			
		A channel has a			R address low	er than DMAL,	but above the
		ge (07FFh)					
		A channel has n			nit interrupt		
bit 5		IA Complete Op	eration Interru	ipt Flag bit			
	$\frac{\text{If CHEN} = 1:}{1 = \text{The previ}}$	ious DMA sessi	on has ended	with completion			
		ent DMA session					
	If CHEN = 0:						
	•	ious DMA sessi		•			
	-	ious DMA sessi			ion		
bit 4		A 50% Waterma					
		n has reached f has not reach					
bit 3		MA Channel Ov					
		channel is trigg	0		the operation	based on the p	revious triage
		run condition ha					
bit 2-1	Unimplemen	nted: Read as 'o)'				
bit 0	HALFEN: Ha	Ifway Completio	on Watermark	bit			
		are invoked wh				t and at comple	etion
	0 = An interru	upt is invoked or	nly at the com	oletion of the tra	nsfer		
Note 1: Se	tting these flag	na in aaffwara da	oo not gonor	to on intervent			
	ung those had	i sollwale u		ate an interrupt.			

2: Testing for address limit violations (DMASRCn or DMADSTn is either greater than DMAH or less than DMAL) is NOT done before the actual access.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—		—	—	_			
bit 15							bit 8		
U-0	U-0	U-0	r-0	R/CO-1	R/CO-1	R/CO-1	R/CO-0		
—	—	—		VDDBOR ⁽¹⁾	VDDPOR ^(1,2)	VBPOR ^(1,3)	VBAT ⁽¹⁾		
bit 7							bit 0		
Legend:		CO = Clearabl	e Onlv bit	r = Reserved	bit				
R = Readab	le bit	W = Writable b	5	U = Unimpler	nented bit, read	1 as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own		
bit 15-5	Unimpleme	nted: Read as '0	,						
bit 4	Reserved: N	/aintain as '0'							
bit 3	VDDBOR: V	DD Brown-out Re	eset Flag bit ⁽¹)					
		rown-out Reset ł rown-out Reset ł			e)				
bit 2	VDDPOR: V	DD Power-on Re	set Flag bit ^{(1,}	2)					
		ower-on Reset h ower-on Reset h			e)				
bit 1	VBPOR: VB	POR Flag bit ^(1,3)							
	 1 = A VBAT POR has occurred (no battery is connected to the VBAT pin or VBAT power below the Deep Sleep Semaphore retention level is set by hardware) 0 = A VBAT POR has not occurred 								
bit 0	VBAT: VBAT	Flag bit ⁽¹⁾							
		exit has occurred exit from VBAT ha			the VBAT pin (se	et by hardware)			
Note 1: ⊺	his bit is set in l	hardware onlv: it	can only be o	cleared in softw	are.				

REGISTER 7-2: RCON2: RESET AND SYSTEM CONTROL REGISTER 2

- **Note 1:** This bit is set in hardware only; it can only be cleared in software.
 - 2: This bit indicates a VDD Power-on Reset. Setting the POR bit (RCON<0>) indicates a VCORE Power-on Reset.
 - 3: This bit is set when the device is originally powered up, even if power is present on VBAT.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	CLRWDT, PWRSAV Instructions, POR
SLEEP (RCON<3>)	PWRSAV #0 Instruction	POR
DPSLP (RCON<10>)	PWRSAV #0 Instruction while DSEN bit is Set	POR
IDLE (RCON<2>)	PWRSAV #1 Instruction	POR
BOR (RCON<1>)	POR, BOR	
POR (RCON<0>)	POR	

TABLE 7-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SPI1IP2	SPI1IP1	SPI1IP0	—	T3IP2	T3IP1	T3IP0
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		ʻ0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplomon	ted: Read as '	۰ ،				
bit 14-12	-	: UART1 Rece		Priority hits			
51(1412		ot is Priority 7 (-	-			
	•	, , ,	5 , ,	1 /			
	•						
	• 001 = Interrug	ot is Priority 1					
		ot source is dis	abled				
bit 11	Unimplement	ted: Read as ') '				
bit 10-8	SPI1TXIP<2:0	0>: SPI1 Trans	mit Interrupt P	riority bits			
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1 ot source is dis	abled				
bit 7		ted: Read as '					
bit 6-4	-	SPI1 General		itv bits			
		ot is Priority 7 (•	•			
	•			• •			
	•						
	001 = Interrup		ablad				
bit 3	-	ot source is dis ted: Read as '					
bit 2-0	-	imer3 Interrupt					
011 Z-0		ot is Priority 7 (-	(interrunt)			
	•		gilloot priority				
	•						
	• 001 = Interrup	ot is Priority 1					

REGISTER 8-23: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

R/W-0	U-0	R/W-0	R/W-0	R-0	R/W-0	R-0	R/W-0
STEN		STSIDL	STSRC ⁽¹⁾	STLOCK	STLPOL	STOR	STORPOL
bit 15							bit
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7		·					bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15	STEN: FRC	Self-Tune Enab	le bit				
		f-tuning is enabl			•	hito	
bit 14		f-tuning is disab nted: Read as '		may optionally		DIIS	
bit 13	-	C Self-Tune Sto					
bit 10	1 = Self-tuni	ng stops during	Idle mode				
bit 12		ng continues du C Self-Tune Ref	-	ource hit(1)			
		uned to approxi			ock tolerance		
		uned to approxi				e	
bit 11	STLOCK: FI	RC Self-Tune Lo	ock Status bit				
		curacy is current curacy may not l	•			•	
bit 10	STLPOL: FF	RC Self-Tune Lo	ock Interrupt Po	larity bit		-	
		ne lock interrup ne lock interrup					
bit 9		Self-Tune Out	-				
		reference clock reference clock					med
bit 8		FRC Self-Tune		•	•		
	1 = A self-tu	ne out of range ne out of range	interrupt is gen	erated when S	TOR is = 0		
bit 7-6		nted: Read as '					
bit 5-0	-	FRC Oscillator 1					
		laximum freque	-				
	•						
	•						
	• 000001 =						
		enter frequency	, oscillator is ru	nning at factory	calibrated free	quency	
	•						
	•						
	• 100001 =						
	T0000T -	linimum frequen					

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Use of either clock recovery source has specific application requirements. For more information, see Section 9.5 "FRC Self-Tuning".

NOTES:

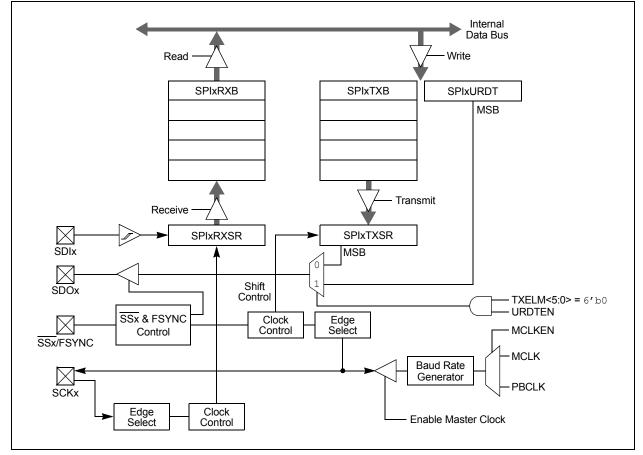
REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1 ⁽³⁾	DCB0 ⁽³⁾	OC32
bit 15			•	•	•	•	bit 8
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit (
Legend:		HS = Hardwa	re Settable bit				
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 15	FLTMD: Faul	t Mode Select I	oit				
			ed until the Fau	It source is ren	noved and the	corresponding	OCFLT0 bit i
		n software de is maintaine	d until the Faul	lt source is rem	oved and a ne	w PWM period	etarte
bit 14	FLTOUT: Fau						510/15
		put is driven hig	oh on a Fault				
		put is driven lov					
bit 13	FLTTRIEN: F	ault Output Sta	te Select bit				
			t on a Fault cor				
			ected by a Fau	llt			
bit 12		ut Compare x I	nvert bit				
	1 = OCx outp	ut is inverted ut is not inverte	d				
bit 11	•	ted: Read as '					
bit 10-9	•		e Least Signific	ant hite(3)			
DIL 10-9			e by $\frac{3}{4}$ of the ir		`		
			e by $\frac{1}{2}$ of the ir				
			e by ¼ of the in				
			s at the start of		-		
bit 8			odules Enable b	oit (32-bit opera	ation)		
		module operati module operati					
bit 7		-	Trigger/Sync S	Select hit			
			ource designate		CSELx bits		
			the source desi			s	
bit 6	TRIGSTAT: ⊺	imer Trigger St	atus bit				
			riggered and is	•			
			en triggered an	-			
bit 5			Output Pin Dir	ection Select b	vit		
	1 = OCx pin is 0 = Output Co		eral x is connec	ted to an OCx	pin		
	Never use an OC	x module as its			-	mode or anothe	er equivalent
	SYNCSELx settir Use these inputs	-	ces only and n	aver se evine or			
2:		as ingger sour	Ces only and the	ever as sync st			

3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

16.3 Enhanced Slave Mode

To set up the SPIx module for the Enhanced Buffer Master mode of operation:


- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP<2:0> bits in the respective IPCx register.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with MSTEN (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 6. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

16.4 Enhanced Master Mode

To set up the SPIx module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP<2:0> bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- 7. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- 8. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

© 2013-2015 Microchip Technology Inc.

REGISTER 18-5: UxSCCON: UARTx SMART CARD CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	_	—	—	—	—	—
bit 15	5						
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	TXRPT1 ⁽²⁾	TXRPT0 ⁽²⁾	CONV	T0PD ⁽²⁾	PTRCL	SCEN
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
bit 15-6	Unimplemen	ted: Read as ')'				
bit 5-4	TXRPT<1:0>	: Transmit Rep	eat Selection b	its ⁽²⁾			
	11 = Retrans	mits the error b	yte four times				
		mits the error b		i			
		mits the error b mits the error b					
bit 3		Convention Se					
DILS	•	gic convention					
	0 = Direct log	•					
bit 2	-	own Duration fo	or T = 0 Error H	landling bit ⁽²⁾			
	1 = 2 ETU			5			
	0 = 1 ETU						
bit 1	PTRCL: Sma	rt Card Protoco	I Selection bit				
	1 = T = 1						
	0 = T = 0						
bit 0	SCEN: Smart Card Mode Enable bit						
	1 = Smart Card mode is enabled if UARTEN (UxMODE<15>) = 1						
	0 = Smart Ca	rd mode is disa	DIEG				
Note 1: 1	This register is or	nly available for	UART1 and U	ART2.			
2: 7	These bits are ap	plicable to T =	0 only, see PTI	RCL (UxSCCO	N<1>).		

19.7.1 USB OTG MODULE CONTROL REGISTERS

REGISTER 19-3: U10TGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		-	—
bit 15							bit 8

R-0, HSC	U-0	R-0, HSC	U-0	R-0, HSC	R-0, HSC	U-0	R-0, HSC
ID	—	LSTATE	—	SESVD	SESEND	—	VBUSVD
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	ID: ID Pin State Indicator bit
	 1 = No plug is attached or a Type B cable has been plugged into the USB receptacle 0 = A Type A plug has been plugged into the USB receptacle
bit 6	Unimplemented: Read as '0'
bit 5	LSTATE: Line State Stable Indicator bit
	 1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms 0 = The USB line state has not been stable for the previous 1 ms
bit 4	Unimplemented: Read as '0'
bit 3	SESVD: Session Valid Indicator bit
	 1 = The VBUS voltage is above VA_SESS_VLD (as defined in the "USB 2.0 Specification") on the A or B-device
	0 = The VBUS voltage is below VA_SESS_VLD on the A or B-device
bit 2	SESEND: B Session End Indicator bit
	 1 = The VBUS voltage is below VB_SESS_END (as defined in the "USB 2.0 Specification") on the B-device 0 = The VBUS voltage is above VB_SESS_END on the B-device
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVD: A VBUS Valid Indicator bit
	 1 = The VBUS voltage is above VA_VBUS_VLD (as defined in the "USB 2.0 Specification") on the A-device 0 = The VBUS voltage is below VA_VBUS_VLD on the A-device

REGISTER 21-5: PMCSxCF: EPMP CHIP SELECT x CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
CSDIS	CSP	CSPTEN	BEP	—	WRSP	RDSP	SM
bit 15				-	•	•	bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
ACKP	PTSZ1	PTSZ0	<u> </u>				_
bit 7							bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	t as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	lown
bit 15	CSDIS: Chip	Select x Disab	le bit				
	1 = Disables	the Chip Selec	t x functionality	/			
	0 = Enables t	the Chip Select	x functionality				
bit 14	CSP: Chip Se	elect x Polarity	bit				
	1 = Active-hig						
	0 = Active-lov	. ,					
bit 13	-	ICSx Port Enal	ble bit				
		ort is enabled					
bit 12	•	elect x Nibble/E	Nte Enable Po	larity hit			
SIC 12	-	rte enable is ac	-	-			
		te enable is ac					
bit 11	-	ted: Read as '	-	· ·			
bit 10	WRSP: Chip	Select x Write	Strobe Polarity	/ bit			
	For Slave Mo	des and Maste	r Mode When	SM = 0:			
		be is active-hig	· <u>· · · ·</u> ·				
		be is active-low	. ,				
		lode When SM trobe is active-h					
		trobe is active-l	•				
bit 9		Select x Read		bit			
	•	des and Maste					
	1 = Read stro	be is active-hig	gh (PMRD)				
		bbe is active-low	. ,				
		lode When SM					
		te strobe is acti te strobe is acti					
bit 8		lect x Strobe M		// 101001()			
		te and enable s					
		d write strobes					
bit 7		Select x Ackno		•			
	-	ctive-high (PMA	-	,			
	0 = ACK is a	ctive-low (PMA	CK1)				
bit 6-5	PTSZ<1:0>:	Chip Select x F	Port Size bits				
	11 = Reserve						
	10 = Reserve		.0~)				
		rt size (PMD<3 rt size (PMD<7					
bit 4-0	-	ited: Read as '	-				
	ommplemen	neu. Neau as	U				

24.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction the data is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

24.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions.

If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt. Note that when an interrupt occurs, the CRC calculation would not yet be complete. The module will still need (PLEN + 1)/2 clock cycles, after the interrupt is generated, until the CRC calculation is finished.

24.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- Configure the module for desired operation:

 a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits.

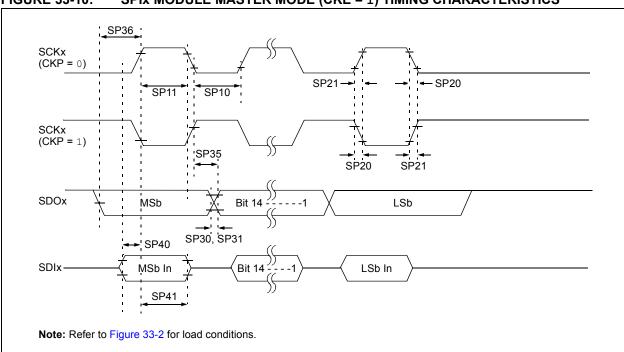
b) Configure the data width and shift direction using the DWIDTHx and LENDIAN bits.c) Select the desired Interrupt mode using the

CRCISEL bit.

 Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left.

- Clear old results by writing 00h to CRCWDATL and CRCWDATH. The CRCWDAT registers can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

There are eight registers used to control programmable CRC operation:


- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 24-1 and Register 24-2) control the operation of the module and configure the various settings.

The CRCXORL/H registers (Register 24-3 and Register 24-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word input data and CRC processed output, respectively.

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8
R-0, HSC	R-1, HSC	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	—	
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit	HSC = Hardw	are Settable/C	learable bit	
R = Readab	le bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
oit 15	CRCEN: CF	RC Enable bit					
	1 = Enables		4				
		s module; all sta re NOT reset	ite machines, po	pinters and the (CDATH registe	ers reset; other
oit 14	Unimpleme	nted: Read as '	0'				
bit 13	CSIDL: CR	C Stop in Idle Mo	ode bit				
		nues module op es module opera			emode		
bit 12-8		0>: Pointer Valu		C			
511 12 0		e number of valio		IFO. Has a max	imum value of	8 when PLEN<	<4:0>≥7 or 16
bit 7	CRCFUL: C	RC FIFO Full bi	t				
	1 = FIFO is	full					
	0 = FIFO is						
bit 6		RC FIFO Empty	/ bit				
	1 = FIFO is 0 = FIFO is						
bit 5		CRC Interrupt Se	election bit				
		t on FIFO is emp		d of data is still	shifting throug	h the CRC	
		t on shift is com			0 0		
bit 4	CRCGO: St						
		RC serial shifter					
hit 0		rial shifter is turr Data Shift Direct					
bit 3		ord is shifted into		na with the I Sh	(little-endian)		
		ord is shifted into					
bit 2-0	Unimpleme	nted: Read as '	0'				

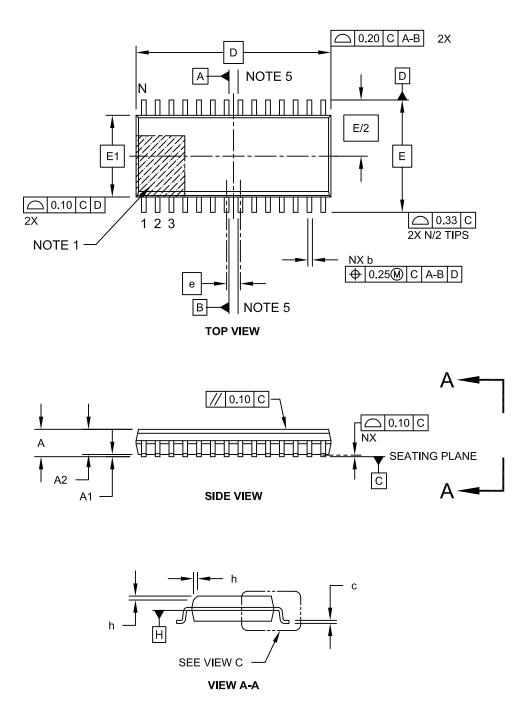
REGISTER 24-1: CRCCON1: CRC CONTROL 1 REGISTER

FIGURE 33-10: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 33-33: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				+85°C for Industrial
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tcy/2	—		ns	
SP11	TscH	SCKx Output High Time ⁽³⁾	TCY/2	_	_	ns	
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	_	_	_	ns	See Parameter DO32
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	_	—	_	ns	See Parameter DO31
SP30	TdoF	SDOx Data Output Fall Time ⁽⁴⁾	_	_	_	ns	See Parameter DO32
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	_	—		ns	See Parameter DO31
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	

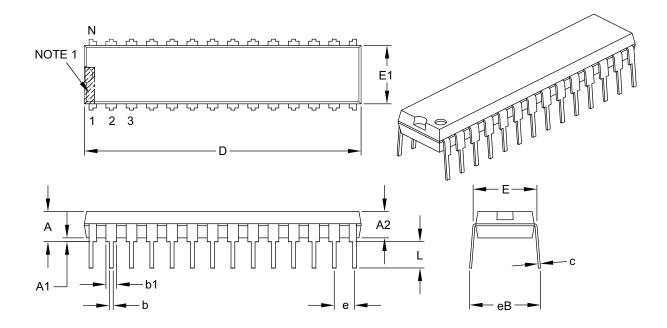
Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

SPIxSTATL (SPIx Status Low)	236
SR (ALU STATUS)	
T1CON (Timer1 Control)	202
TxCON (Timer2 and Timer4 Control)	208
TyCON (Timer3 and Timer5 Control)	
U1ADDR (USB Address)	286
U1CNFG1 (USB Configuration 1)	288
U1CNFG2 (USB Configuration 2)	289
U1CON (USB Control, Device Mode)	
U1CON (USB Control, Host Mode)	285
U1EIE (USB Error Interrupt Enable)	
U1EIR (USB Error Interrupt Status)	
U1EPn (USB Endpoint n Control)	
U1IE (USB Interrupt Enable, All Modes)	
U1IR (USB Interrupt Status, Device Mode)	
U1IR (USB Interrupt Status, Host Mode)	
U10TGCON (USB OTG Control)	281
U1OTGIE (USB OTG Interrupt Enable,	
Host Mode)	291
U1OTGIR (USB OTG Interrupt Status,	
Host Mode)	
U1OTGSTAT (USB OTG Status, Host Mode)	
U1PWRC (USB Power Control)	
U1SOF (USB OTG SOF Count, Host Mode)	
U1STAT (USB Status)	
U1TOK (USB Token, Host Mode)	
UxADMD (UARTx Address Match Detect)	
UxMODE (UARTx Mode)	
UxSCCON (UARTx Smart Card Control)	
UxSCINT (UARTx Smart Card Interrupt)	
UxSTA (UARTx Status and Control)	
UxTXREG (UARTx Transmit)	
WKDYHR (RTCC Weekday and Hours Value) YEAR (RTCC Year Value)	
Resets	321
and Fail-Safe Clock Monitor	00
BOR (Brown-out Reset)	
Brown-out Reset (BOR)	
Clock Source Selection	
CM (Configuration Mismatch Reset)	
Delay Times	
Device Times	
IOPUWR (Illegal Opcode Reset)	
MCLR (Master Clear Pin Reset)	
POR (Power-on Reset)	
RCON Flags, Operation	
SFR States	
SWR (RESET Instruction)	
TRAPR (Trap Conflict Reset)	
UWR (Uninitialized W Register Reset)	
WDT (Watchdog Timer Reset)	85
Revision History	465
RTCC	
Alarm Configuration	
Alarm Mask Settings (figure)	
ALRMVAL Register Mappings	
Calibration	
Clock Source Selection	
Control Registers	
Module Registers	
Power Control	
Register Mapping	316

RTCVAL Register Mappings	321
Source Clock	315
VBAT Operation	327
Write Lock	316

S

-	
Selective Peripheral Module Control	171
Serial Peripheral Interface (SPI)	227
Serial Peripheral Interface. See SPI.	
SFR Space	38
Software Simulator	
MPLAB X SIM	405
Software Stack	64
Special Features	10
SPI	
Audio Mode	230
Control Registers	230
Enhanced Master Mode	229
Enhanced Slave Mode	229
Standard Master Mode	228
Standard Slave Mode	228

Т

Timer1	201
Timer2/3 and Timer4/5	205
Timing Diagrams	
CLKO and I/O Characteristics	430
External Clock	428
I ² C Bus Data (Master Mode)	
I ² C Bus Data (Slave Mode)	
I ² C Bus Start/Stop Bits (Master Mode)	441
I ² C Bus Start/Stop Bits (Slave Mode)	443
Input Capture x (ICx)	434
OCx/PWM Characteristics	435
Output Compare x (OCx)	434
SPIx Master Mode (CKE = 0)	436
SPIx Master Mode (CKE = 1)	437
SPIx Slave Mode (CKE = 0)	438
SPIx Slave Mode (CKE = 1)	439
Timer1, 2, 3, 4, 5 External Clock	
Triple Comparator	371
Triple Comparator Module	371

U

UART	
Baud Rate Generator (BRG)	255
Control Registers	258
Infrared Support	256
Operation of UxCTS and UxRTS Pins	
Receiving	
8-Bit or 9-Bit Data Mode	256
Smart Card ISO 7816 Support	257
Transmitting	
8-Bit Data Mode	256
9-Bit Data Mode	256
Break and Sync Sequence	256
Universal Asynchronous Receiver Transmitter. See UART	Г.
Universal Serial Bus. See USB OTG.	
USB On-The-Go (OTG)	. 10