E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb202-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

	Pin Numl	ber/Grid	Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description
CTED1	2	27	19	Ι	ANA	CTMU External Edge Inputs.
CTED2	3	28	20	Ι	ANA	
CTED3	16	13	43	Ι	ANA	
CTED4	18	15	1	Ι	ANA	
CTED5	25	22	14	Ι	ANA	
CTED6	26	23	15	Ι	ANA	
CTED7			5	Ι	ANA	
CTED8	7	4	24	Ι	ANA	
CTED9	22	19	9	Ι	ANA	
CTED10	17	14	44	Ι	ANA	
CTED11	21	18	8	Ι	ANA	
CTED12	5	2	22	Ι	ANA	
CTED13	6	3	23	Ι	ANA	
CTPLS	24	21	11	0		CTMU Pulse Output.
CVREF	25	22	14	0	ANA	Comparator Voltage Reference Output.
CVREF+	2	27	19	Ι	ANA	Comparator Voltage Reference (high) Input.
CVREF-	3	28	20	Ι	ANA	Comparator Voltage Reference (low) Input.
D+	21	18	8	I/O		USB Differential Plus Line (internal transceiver).
D-	22	19	9	I/O		USB Differential Minus Line (internal transceiver).
INT0	16	13	43	Ι	ST	External Interrupt Input 0.
HLVDIN	4	1	21	Ι	ANA	High/Low-Voltage Detect Input.
MCLR	1	26	18	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	9	6	30	Ι	ANA	Main Oscillator Input Connection.
OSCO	10	7	31	0	—	Main Oscillator Output Connection.
PGC1	5	2	22	I/O	ST	In-Circuit Debugger/Emulator/ICSP™
PGC2	22	19	9	I/O	ST	Programming Clock.
PGC3	3	28	20	I/O	ST	
PGD1	4	1	21	I/O	ST	
PGD2	21	18	8	I/O	ST	
PGD3	2	27	19	I/O	ST	
Legend: ST = S ANA = A	Schmitt Trigger	input		TTL O	= TTL co = Output	pmpatible input I = Input P = Power

TABLE 1-3:	PIC24FJ128GB204 FAMILY PINOUT DESCRIPTION (CONTINUED)	

ANA = Analog input I^2C = ST with I^2C^{TM} or SMBus levels

= Output

TABLE 4-9: I²C[™] REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	02DA	_	—	_	_	—	_	_	_				I2C1 Receiv	ve Register				0000
I2C1TRN	02DC	_	_	_	_	_	_	_	_			I	2C1 Transr	nit Register	r			OOFF
I2C1BRG	02DE	_	_	_	_					I2C1 B	aud Rate G	enerator R	egister					0000
I2C1CONL	02E0	I2CEN	_	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1CONH	02E2	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
I2C1STAT	02E4	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	02E6	—	_	—	—	_	_					I2C1 Addre	ss Register					0000
I2C1MSK	02E8	_	_	_	_	_	_				120	1 Address	Mask Regis	ster				0000
I2C2RCV	02EA	_	_	_	_	_	_	_	_				I2C2 Receiv	ve Register				0000
I2C2TRN	02EC	_	_	_	_	_	_	_	_			I	2C2 Transr	nit Register	r			OOFF
I2C2BRG	02EE	_	_	_	_					12C2 B	aud Rate G	enerator R	egister					0000
I2C2CONL	02F0	I2CEN	_	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2CONH	02F2	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
I2C2STAT	02F4	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C2ADD	02F6		—			—	_					I2C2 Addre	ss Register	_				0000
I2C2MSK	02F8	_	—		_	—	_				120	2 Address	Mask Regis	ter				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, "Interrupts" (DS70000600). The information in this data sheet supersedes the information in the FRM.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- · Up to 8 processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- Unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

8.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 8-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ128GB204 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 8-1 and Table 8-2.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The ALTIVT (INTCON2<15>) control bit provides access to the AIVT. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the PC to zero. The micro-controller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	OC3IP2	OC3IP1	OC3IP0	—	DMA2IP2	DMA2IP1	DMA2IP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as ')'				
bit 14-12	T4IP<2:0>: T	imer4 Interrupt	Priority bits				
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	ot source is dis	abled				
bit 11	Unimplemen	ted: Read as ')'				
bit 10-8	OC4IP<2:0>:	Output Compa	re Channel 4 I	nterrupt Priority	y bits		
	111 = Interrup	ot is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
		ot source is dis	abled				
bit 7	Unimplemen	ted: Read as '					
DIT 6-4		Output Compa	re Channel 3 I		y dits		
		pt is Priority 7 (nignest priority	(interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1	ablad				
h it 0							
		ted: Read as		wiewity / bite			
DIT 2-0		>: DIVIA Channe at is Priority 7 (ei z interrupt P				
	•		nighest phonty	menupi)			
	•						
	•						
	001 = Interrup	ot is Priority 1	ahled				

REGISTER 8-27: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

REGISTER 8-29:

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 CRYROLLIP2 CRYROLLIP1 **CRYROLLIP0** ____ **CRYFREEIP2 CRYFREEIP1 CRYFREEIP0** ____ bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 SPI2TXIP2 SPI2IP2 SPI2IP1 SPI2IP0 SPI2TXIP1 SPI2TXIP0 ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 CRYROLLIP<2:0>: Cryptographic Rollover Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 CRYFREEIP<2:0>: Cryptographic Buffer Free Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 SPI2TXIP<2:0>: SPI2 Transmit Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' SPI2IP<2:0>: SPI2 General Interrupt Priority bits bit 2-0 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled

IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit
	If FSCM is enabled (FCKSM1 = 1):
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is disabled (FCKSM1 = 0):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	IOLOCK: I/O Lock Enable bit ⁽²⁾
	1 = I/O lock is active
	0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit ⁽³⁾
	1 = PLL module is in lock or PLL module start-up timer is satisfied
	0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	POSCEN: Primary Oscillator (POSC) Sleep Enable bit
	1 = Primary Oscillator continues to operate during Sleep mode
	0 = Primary Oscillator is disabled during Sleep mode
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enables Secondary Oscillator
	0 = Disables Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiates an oscillator switch to a clock source specified by the NOSC<2:0> bits
	0 = Oscillator switch is complete
Noto 1:	Reset values for these hits are determined by the ENOSCy Configuration hits

- Reset values for these bits are determined by the FNOSCX Configuration bits.
 The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In
 - addition, if the IOL1WAY Configuration bit is '1', once the IOLOCK bit is set, it cannot be cleared.
 - **3:** This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC24FJ128GB204 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 82 external inputs that may be selected (enabled) for generating an interrupt request on a Change-of-State.

Registers, CNEN1 through CNEN3, contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins. Each CN pin has both a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source that is connected to the pin, while the pull-downs act as a current sink that is connected to the pin. These eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are separately enabled using the CNPU1 through CNPU3 registers (for pull-ups), and the CNPD1 through CNPD3 registers (for pull-downs). Each CN pin has individual control bits for its pull-up and pull-down. Setting a control bit enables the weak pull-up or pull-down for the corresponding pin.

When the internal pull-up is selected, the pin pulls up to VDD - 1.1V (typical). When the internal pull-down is selected, the pin pulls down to Vss.

Note: Pull-ups on Input Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT READ/WRITE IN ASSEMBLY

MOV 0x	FF00, W0 ;	Configure PORTB<15:8> as inputs
MOV WO	, TRISB ;	and PORTB<7:0> as outputs
NOP	;	Delay 1 cycle
BTSS PO	RTB, #13 ;	Next Instruction

EXAMPLE 11-2: PORT READ/WRITE IN 'C'

TRISB = 0xFF00;	// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
Nop();	// Delay 1 cycle
<pre>If (PORTBbits.RB13) { };</pre>	// Next Instruction

R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	ACKTIM		_	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF
bit 7							bit 0
· · ·					0 11 1 10		
Legend:	- 1-14	C = Clearable	Dit Oottoblo bit	HSC = Hardw	are Settable/Cle	earable bit	
R = Readable		HS = Hardware	e Settable bit		nented bit, read		
-n = value at	POR	"1" = Bit is set		0° = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ACKSTAT: Ac	sknowledge Stat	us bit (undated	d in all Master	and Slave mod	es)	
	1 = Acknowle	dge was not rec	eived from sla	ve			
	0 = Acknowle	dge was receive	ed from slave				
bit 14	TRSTAT: Tran	nsmit Status bit (when operating	g as l ² C™ mas	ter; applicable	to master trans	mit operation)
	1 = Master tra 0 = Master tra	ansmit is in prog ansmit is not in p	ress (8 bits + A progress	ACK)			
bit 13	ACKTIM: Ack	nowledge Time	Status bit (vali	d in I ² C Slave	mode only)		
	1 = Indicates	I ² C bus is in an	Acknowledge	sequence, set	on 8th falling e	dge of SCLx cl	ock
	0 = Not an Ac	knowledge sequ	uence, cleared	on 9th rising e	edge of SCLx c	lock	
bit 12-11	Unimplement	ted: Read as '0	9		2		
bit 10	BCL: Bus Col	llision Detect bit	(Master/Slave	mode; cleared	d when I ² C mod	dule is disabled	I, I2CEN = 0)
	1 = A bus coll	ision has been (detected during	g a master or s	lave transmit o	peration	
hit 9	GCSTAT: Ger	neral Call Status	bit (cleared af	ter Ston detect	tion)		
Site	1 = General c	all address was	received				
	0 = General c	all address was	not received				
bit 8	ADD10: 10-B	it Address Statu	s bit (cleared a	after Stop deteo	ction)		
	1 = 10-bit add 0 = 10-bit add	lress was match Iress was not m	ied atched				
bit 7	IWCOL: I2Cx	Write Collision	Detect bit				
	1 = An attemp	pt to write to the	I2CxTRN regis	ster failed beca	use the I ² C mo	dule is busy; m	ust be cleared
	in softwar	re					
		on De la contra					
DIT 6	1 = 0 byte w	Receive Overflo	W Flag bit	N/ register in	otill bolding the	provious byt	
	u – A byte w "don't car	re" in Transmit r	node, must be	cleared in soft	ware	e previous byte	e, 1200 v 15 a
	0 = No overfloor	OW					
bit 5	D/A: Data/Add	dress bit (when	operating as I ²	C slave)			
	1 = Indicates	that the last byte	e received was	ansmitted was	an address		
bit 4	P: I2Cx Ston I	bit					
211	Updated wher	n Start, Reset or	Stop is detect	ed; cleared wh	ien the I ² C mod	dule is disabled	I, I2CEN = 0.
	1 = Indicates 0 = Stop bit w	that a Stop bit h as not detected	as been detec	ted last			, 0.

REGISTER 17-3: I2CxSTAT: I2Cx STATUS REGISTER

19.1.2 HOST AND OTG MODES

19.1.2.1 D+ and D- Pull-Down Resistors

PIC24FJ128GB204 family devices have a built-in 15 kΩ pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON<3>). If the OTGEN bit (U1OTGCON<2>) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON<5:4>).

19.1.2.2 Power Configurations

In Host mode, as well as Host mode in On-The-Go operation, the "USB 2.0 Specification" requires that the host application should supply power on VBUS. Since the microcontroller is running below VBUS, and is not able to source sufficient current, a separate power supply must be provided.

When the application is always operating in Host mode, a simple circuit can be used to supply VBUS and regulate current on the bus (Figure 19-6). For OTG operation, it is necessary to be able to turn VBUS on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 19-7.

FIGURE 19-6: USB HOST INTERFACE EXAMPLE

FIGURE 19-7: USB OTG INTERFACE EXAMPLE

Mode of		KEVSBC-2:0>	Key	Source	OTP Address	
Operation	KETWOD-1.02	RE13RC-3.02	SKEYEN = 0	SKEYEN = 1	OTP Address	
		0000 (1)	CRYKE	Y<127:0>		
		0001	AES Key #1	Key Config Error ⁽²⁾	<127:0>	
	00	0010	AES	Key #2	<255:128>	
128-Bit AES		0011	AES	Key #3	<383:256>	
		0100	AES	Key #4	<511:384>	
		1111	Rese			
		All Others	Key Con	_		
		0000 (1)	CRYKE			
		0001	AES Key #1 Key Config Error ⁽²		<191:0>	
192-Bit AES	01	0010	AES	<383:192>		
		1111	Rese	erved ⁽²⁾		
		All Others	Key Con	fig Error ⁽²⁾		
		0000 (1)	CRYKE	Y<255:0>	_	
		0001	AES Key #1	Key Config Error ⁽²⁾	<255:0>	
256-Bit AES	10	0010	AES	AES Key #2		
		1111	Reserved ⁽²⁾			
		All Others	Key Config Error ⁽²⁾			
(Reserved)	11	XXXX	Key Con	fig Error ⁽²⁾	_	

TABLE 23-2: AES KEY MODE/SOURCE SELECTION

Note 1: This configuration is considered a Key Configuration Error (KEYFAIL bit is set) if SWKYDIS is also set.

2: The KEYFAIL bit (CRYSTAT<1>) is set when these configurations are selected and remains set until a valid configuration is selected.

REGISTER 25-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

- bit 1 SAMP: ADC1 Sample Enable bit 1 = A/D Sample-and-Hold amplifiers are sampling 0 = A/D Sample-and-Hold amplifiers are holding
- bit 0 DONE: ADC1 Conversion Status bit 1 = A/D conversion cycle has completed 0 = A/D conversion cycle has not started or is in progress
- Note 1: This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15	·		•		•	•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	ADRC: ADC1	Conversion C	lock Source bit	t			
	$1 = RC \operatorname{clock}$	ived from evete					
L:1 4 4		tonded Complia					
DIL 14	$1 = \Lambda/D$ is still	Lended Samplin					
	0 = A/D is suit	shed sampling					
bit 13	PUMPEN: Ch	narge Pump En	able bit				
	1 = Charge p	ump for switche	es is enabled				
	0 = Charge p	ump for switche	es is disabled				
bit 12-8	SAMC<4:0>:	Auto-Sample 1	Fime Select bits	S			
	11111 = 31	Tad					
	•						
	•						
	00001 = 1 T	AD					
	00000 = 0 T	AD					
bit 7-0	ADCS<7:0>:	ADC1 Convers	sion Clock Sele	ect bits			
	•	256 • ICY = IA	D				
	•						
	•						
	00000001 =	$2 \cdot ICY = TAD$					

REGISTER 25-3: AD1CON3: ADC1 CONTROL REGISTER 3

NOTES:

29.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725).

The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The HLVD Control register (see Register 29-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

FIGURE 29-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
HLVDEN	—	LSIDL	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
VDIR	BGVST	IRVST	—	HLVDL3	HLVDL2	HLVDL1	HLVDL0
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	HLVDEN: Hig	h/Low-Voltage	Detect Power	Enable bit			
	1 = HLVD is e	enabled					
hit 14		tod: Pood os '	``				
Dit 14		Stop in Idlo M	, odo bit				
DIL 15	1 = Discontinu		oue bil eration when d	avica antars Idl	e mode		
	0 = Continues	s module opera	tion in Idle mod	de	e mode		
bit 12-8	Unimplemen	ted: Read as '0)'				
bit 7	VDIR: Voltage	e Change Direc	tion Select bit				
	1 = Event occ	urs when voltage	ge equals or ex	ceeds the trip	point (HLVDL<	3:0>)	
	0 = Event occ	urs when volta	ge equals or fa	Ils below the tri	ip point (HLVDI	_<3:0>)	
bit 6	BGVST: Band	d Gap Voltage S	Stable Flag bit				
	1 = Indicates	that the band g	ap voltage is s	table			
1.11.E		that the band g	ap voltage is u	nstable			
DIT 5		al Reference V	oltage Stable F	lag bit	ataat lagia gan	arataa tha intar	rupt flog of the
	specified	voltage range	e is stable, the	nign-voltage D	elect logic gen	erates the inter	upt hag at the
	0 = Internal r	eference voltag	je is unstable; t	he High-Voltag	e Detect logic	will not generat	e the interrupt
	flag at the	e specified volta	age range and	the HLVD inter	rupt should not	be enabled	
bit 4	Unimplemen	ted: Read as '0)'				
bit 3-0	HLVDL<3:0>:	: High/Low-Volt	age Detection	Limit bits			
	1111 = Extern	nal analog inpu	t is used (input	comes from th	e HLVDIN pin)		
	1110 = Trip P 1101 = Trip P	point $2^{(1)}$					
	1100 = Trip P	point 3 ⁽¹⁾					
	•						
	•						
	- 0100 = Trip P	oint 11 ⁽¹⁾					
	00xx = Unuse	ed					

REGISTER 29-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

31.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

31.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

31.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

31.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C. DC. N. OV. Z
	SUBB	#lit10.Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C DC N OV Z
	CIIDD		$Wd = Wb - Ws - (\overline{C})$	1	1	
	SUBB		$Wd = Wb = \overline{W} = \overline{(C)}$	1	1	
QUIDD	SUBB	wb,#1105,Wd	f = WBEC = f	1	1	C, DC, N, OV, Z
SUBR	SUBR			1	1	C, DC, N, OV, Z
	SUBR	I,WREG		1	1	C, DC, N, OV, Z
	SUBR	WD, WS, WO		1	1	C, DC, N, OV, Z
011055	SUBK	wb,#1103,Wa				C, DC, N, OV, Z
SUBBR	SUBBR	±	f = WREG - f - (C)	1	1	C, DC, N, OV, Z
	SUBBR	f,WREG	WREG = WREG $- f - (C)$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,Ws,Wd	Wd = Ws - Wb - (C)	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None

DC CHARACTERISTICS		Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)					
		Operating temperature		$-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial - $40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽³⁾					
DI10		I/O Pins with ST Buffer	Vss		0.2 VDD	V	
DI11		I/O Pins with TTL Buffer	Vss		0.15 VDD	V	
DI15		MCLR	Vss		0.2 VDD	V	
DI16		OSCI (XT mode)	Vss		0.2 VDD	V	
DI17		OSCI (HS mode)	Vss		0.2 VDD	V	
DI18		I/O Pins with I ² C™ Buffer	Vss		0.3 VDD	V	
DI19		I/O Pins with SMBus Buffer	Vss		0.8	V	SMBus enabled
	VIH	Input High Voltage ⁽³⁾					
DI20		I/O Pins with ST Buffer: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	—	Vdd 5.5	V V	
DI21		I/O Pins with TTL Buffer: with Analog Functions Digital Only	0.25 Vdd + 0.8 0.25 Vdd + 0.8		Vdd 5.5	V V	
DI25		MCLR	0.8 VDD		Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd		Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd		Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd	—	Vdd 5.5	V V	
DI29		I/O Pins with SMBus Buffer: with Analog Functions Digital Only	2.1 2.1	—	Vdd 5.5	V V	$2.5V \leq V\text{PIN} \leq V\text{DD}$
DI30	ICNPU	CNxx Pull-up Current	150	340	550	μA	VDD = 3.3V, VPIN = VSS
DI30A	ICNPD	CNxx Pull-Down Current	150	310	550	μA	VDD = 3.3V, VPIN = VDD
	lı∟	Input Leakage Current ⁽²⁾					
DI50		I/O Ports	—	—	±1	μA	$VSS \le VPIN \le VDD$, pin at high-impedance
DI51		Analog Input Pins	_	—	±1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ & {\sf pin} \text{ at high-impedance} \end{split}$
DI55		MCLR	—	—	±1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSCI/CLKI	—	—	±1	μA	Vss \leq VPIN \leq VDD, EC, XT and HS modes

TABLE 33-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Negative current is defined as current sourced by the pin.

3: Refer to Table 1-3 for I/O pin buffer types.

Output Compare	
32-Bit Cascaded Mode	217
Compare Mode Operations	218
Synchronous and Trigger Modes	217
Output Compare with Dedicated Timers	217

Ρ		
Packaging	447	
Details	449	
Marking	447	
Peripheral Pin Select (PPS)	178	
Available Peripherals and Pins	178	
Configuration Control	181	
Considerations for Use	182	
Control Registers	183	
Input Mapping	179	
Mapping Exceptions	181	
Output Mapping	180	
Peripheral Priority	178	
Selectable Output Sources	180	
Pinout Description	15	
Power-Saving Features	161	
Clock Frequency, Clock Switching	171	
Doze Mode	171	
Instruction-Based Modes	162	
Deep Sleep	164	
Idle	163	
Sleep	163	
Overview of Modes	161	
VBAT Mode	166	
Product Identification System	475	
Program Memory		
Access Using Table Instructions	67	
Address Space		
Addressing Program Space	65	
Flash Configuration Words		
Hard Memory Vectors		
Memory Maps		
Organization		
Reading from Program Memory Using EDS	68	
Program Verification		
Pulse-Width Modulation (PWM) Mode	219	
Pulse-Width Modulation. See PWM.		
PWM		
Duty Cycle and Period	220	
5		

R

Real-Time Clock and Calendar. See RTCC.
Register Maps
A/D Converter51
Analog Configuration52
Comparators56
CPU Core
CRC
Cryptographic Engine59
CTMU
Data Signal Modulator (DSM)56
Deep Sleep
DMA53
Enhanced Parallel Master/Slave Port55
I ² C46
ICN
Input Capture44
Interrupt Controller
NVM

Output Compare	45
Pad Configuration (PADCFG1)	50
Peripheral Module Disable (PMD)	60
Peripheral Pin Select (PPS)	57
PORTA	50
PORTB	50
PORTC	50
Real-Time Clock and Calendar (RTCC)	56
SPI1	48
SPI2	48
	49
System Control (Clock and Reset)	58
LIMERS	43
	47
DSB 01G	94
AD1CHITL (ADC1 Seen Compare Hit	
ADTORITE (ADOT Scall Compare Rill,	265
AD1CHS (ADC1 Sample Select)	305 363
AD1CON1 (ADC1 Control 1)	303
AD1CON2 (ADC1 Control 2)	350
AD1CON2 (ADC1 Control 3)	360
AD1CON4 (ADC1 Control 4)	361
AD1CON5 (ADC1 Control 5)	362
AD1CSSH (ADC1 Input Scan Select	502
High Word)	366
AD1CSSI (ADC1 Input Scan Select	000
Low Word)	366
AD1CTMENI (ADC1 CTMU Enable	000
Low Word)	367
ALCEGRPT (Alarm Configuration)	320
ALMINSEC (Alarm Minutes and	
Seconds Value)	324
ALMTHDY (Alarm Month and Day Value)	323
ALWDHR (Alarm Weekday and Hours Value)	
ANCEG (A/D Band Gap Reference	
Configuration)	364
ANSA (PORTA Analog Function Selection)	175
ANSB (PORTB Analog Function Selection)	175
ANSC (PORTC Analog Function Selection)	176
BDnSTAT (Buffer Descriptor n Status Prototype,	
CPU Mode)	273
BDnSTAT (Buffer Descriptor n Status Prototype,	
USB Mode)	272
CFGPAGE (Secure Array Configuration Bits)	340
CLKDIV (Clock Divider)	151
CMSTAT (Comparator Status)	375
CMxCON (Comparator x Control,	
Comparators 1-3)	374
CORCON (CPU Core Control)	. 33, 97
CRCCON1 (CRC Control 1)	348
CRCCON2 (CRC Control 2)	349
CRCXORH (CRC XOR Polynomial, High Byte)	350
CRCXORL (CRC XOR Polynomial, Low Byte)	350
CRYCONH (Cryptographic Control High)	337
CRYCONL (Cryptographic Control Low)	335
CRYOTP (Cryptographic OTP Page	
Program Control)	339
CRYSTAT (Cryptographic Status)	338
CTMUCON1 (CTMU Control 1)	382
CTMUCON2 (CTMU Control 2)	383
CTMUICON (CTMU Current Control)	385
CVRCON (Comparator Voltage	_
Reference Control)	378