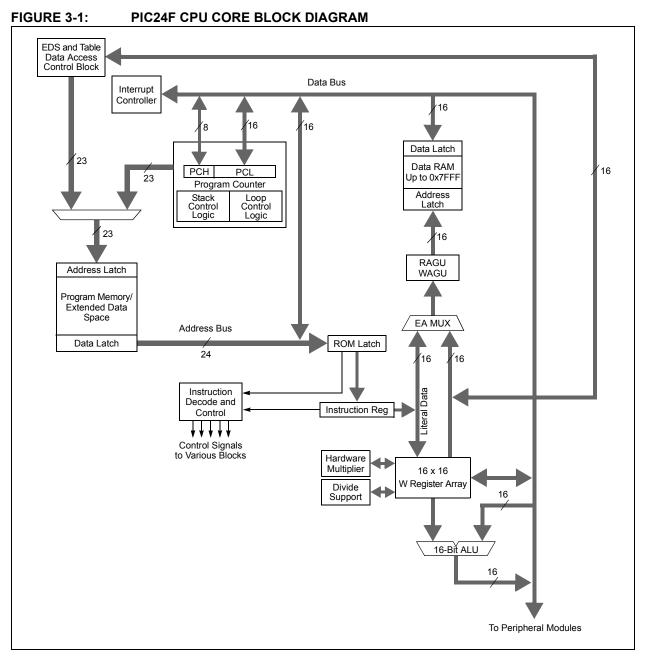
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb202-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1:CPU CORE REGISTERS

Register(s) Name	Description						
W0 through W15	Working Register Array						
PC	23-Bit Program Counter						
SR	ALU STATUS Register						
SPLIM	Stack Pointer Limit Value Register						
TBLPAG	Table Memory Page Address Register						
RCOUNT	REPEAT Loop Counter Register						
CORCON	CPU Control Register						
DISICNT	Disable Interrupt Count Register						
DSRPAG	Data Space Read Page Register						
DSWPAG	Data Space Write Page Register						

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	00C4	_	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	_	_	_	_	4440
IPC18	00C8	_	_	_	_	_	_	_	_	_		_	_	_	I	HLVDIP<2:0>		0004
IPC19	00CA	_	_	_	_	_	_	_	_	_	(CTMUIP<2:0	>	_	_	_	_	0040
IPC20	00CC	_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	_	_	_	_	4440
IPC21	00CE	_	U4ERIP2	U4ERIP1	U4ERIP0	_	USB1IP2	USB1IP1	USB1IP0	_	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	_	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0	4444
IPC22	00D0	_	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0	_	SPI3IP2	SPI3IP1	SPI3IP0	_	U4TXIP2	U4TXIP1	U4TXIP0	_	U4RXIP2	U4RXIP1	U4RXIP0	4444
IPC26	00D8	_	_	_	_	_		FSTIP<2:0>		_		_	_	_	_	_	_	0400
IPC29	00DE	_	_	_	_	_	_	_	_	_		JTAGIP<2:0>	>	_	_	_	_	0040
INTTREG	00E0	CPUIRQ	r	VHOLD	—	ILR3	ILR2	ILR1	ILR0	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'; r = reserved bit, maintain as '0'. Reset values are shown in hexadecimal.

TABI F 4-27 [.]	CRC REGISTER MAP
ADLL = -21.	

© 20	TABLE 4-2	27:	CRC RE	GISTE	R MAP						
2013-2015	File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
5 Microchin	CRCCON1	0158	CRCEN		CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	-
	CRCCON2	015A	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	1
	CRCXORL	015C								X<15:1>	
	CRCXORH	015E								X<31:	1
	CRCDATL	0160							CRC	Data Input	F
	CRCDATH	0162							CRC	Data Input	F
	CRCWDATL	0164							CF	RC Result R	e
	CRCWDATH	0166							CF	RC Result R	e

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-28: PERIPHERAL PIN SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	038C	_	_	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	_	_	OCTRIG1R5	OCTRIG1R4	OCTRIG1R3	OCTRIG1R2	OCTRIG1R1	OCTRIG1R0	3F3F
RPINR1	038E	-	-	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	_	_	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	3F3F
RPINR2	0390	-	-	OCTRIG2R5	OCTRIG2R4	OCTRIG2R3	OCTRIG2R2	OCTRIG2R1	OCTRIG2R0	_	_	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0	3F3F
RPINR7	039A	_	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	_	_	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	3F3F
RPINR8	039C	—	_	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	_	_	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	3F3F
RPINR9	039E	_	_	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0	_	_	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	3F3F
RPINR11	03A2	—	_	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0	—	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	3F3F
RPINR17	03AE	—	—		U3RXR<5:0>					_	—	_	_	_	-	_	_	3F00
RPINR18	03B0	_	_	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	_	_	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	3F3F
RPINR19	03B2	—	_	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0	—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	3F3F
RPINR20	03B4	—	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	—		SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	3F3F
RPINR21	03B6	_	_	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	_	_	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	3F3F
RPINR22	03B8	—	_	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	3F3F
RPINR23	03BA	—	—	TMRCKR5	TMRCKR4	TMRCKR3	TMRCKR2	TMRCKR1	TMRCKR0	—		SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	3F3F
RPINR27	03C2	_	_	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0	_	_	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0	3F3F
RPINR28	03C4	_	_	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0	_	-	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0	3F3F
RPINR29	03C6	_	_	_	_	_	_	_	_	_				SS3R	<5:0>			003F
RPINR30	03C8	_	_	_	_	_	_	_	_	_	-			MDMIF	<5:0>			003F
RPINR31	03CA	_		MDC2R5	MDC2R4	MDC2R3	MDC2R2	MDC2R1	MDC2R0	_	-	MDC1R5	MDC1R4	MDC1R3	MDC1R2	MDC1R1	MDC1R0	3F3F

X<31:16>

CRC Data Input Register Low

CRC Data Input Register High

CRC Result Register Low

CRC Result Register High

Bit 7

CRCFUL

_

Bit 6

CRCMPT

Bit 5

CRCISEL

_

Bit 4

CRCGO

PLEN4

Bit 3

LENDIAN

PLEN3

Bit 2

_

PLEN2

Bit 1

_

PLEN1

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All

Resets

0040

0000

0000

0000

XXXX

XXXX

XXXX

XXXX

Bit 0

_

PLEN0

_

REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0						
bit 15							bit						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
	SPI1IP2	SPI1IP1	SPI1IP0	—	T3IP2	T3IP1	T3IP0						
bit 7							bit (
Legend:													
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'							
-n = Value at	POR	'1' = Bit is set		ʻ0' = Bit is cle	eared	x = Bit is unkr	nown						
bit 15	Unimplomon	ted: Read as '	۰ ،										
bit 14-12	-			Priority hits									
51(1412	U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)												
	•	, , ,	5 , ,	1 /									
	•												
	• 001 = Interrug	ot is Priority 1											
		ot source is dis	abled										
bit 11	Unimplement	ted: Read as ') '										
bit 10-8	SPI1TXIP<2:0>: SPI1 Transmit Interrupt Priority bits												
	 111 = Interrupt is Priority 7 (highest priority interrupt) • 												
	•												
	•												
	001 = Interrup	ot is Priority 1 ot source is dis	abled										
bit 7		ted: Read as '											
bit 6-4	-			itv bits									
	SPI1IP<2:0>: SPI1 General Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)												
	•			• •									
	•												
	001 = Interrup		ablad										
bit 3	-	ot source is dis ted: Read as 'i											
bit 2-0	-												
011 Z-0	T3IP<2:0>: Timer3 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)												
	•		gilloot priority										
	•												
	• 001 = Interrup	ot is Priority 1											

REGISTER 8-23: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

If a MCLR Reset event occurs during Deep Sleep, the DSGPRx, DSCON and DSWAKE registers will remain valid, and the RELEASE bit will remain set. The state of the SOSC will also be retained. The I/O pins, however, will be reset to their MCLR Reset state. Since RELEASE is still set, changes to the SOSCEN bit (OSCCON<1>) cannot take effect until the RELEASE bit is cleared.

In all other Deep Sleep wake-up cases, application firmware must clear the RELEASE bit in order to reconfigure the I/O pins.

10.4.5 DEEP SLEEP WDT

To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (CW4<7>). The device WDT need not be enabled for the DSWDT to function. Entry into Deep Sleep modes automatically resets the DSWDT.

The DSWDT clock source is selected by the DSWDTOSC Configuration bit (CW4<5>). The postscaler options are programmed by the DSWDTPS<4:0> Configuration bits (CW4<4:0>). The minimum time-out period that can be achieved is 1 ms and the maximum is 25.7 days. For more information on the CW4 Configuration register and DSWDT configuration options, refer to Section 30.0 "Special Features".

10.4.5.1 Switching Clocks in Deep Sleep Mode

Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption.

Running the RTCC from LPRC will result in a loss of accuracy in the RTCC of approximately 5 to 10%. If a more accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the RTCLK<1:0> bits (RTCPWC<11:10>).

Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled), without the need for software intervention. However, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.

10.4.6 CHECKING AND CLEARING THE STATUS OF DEEP SLEEP

Upon entry into Deep Sleep mode, the status bit, DPSLP (RCON<10>), becomes set and must be cleared by the software.

On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, the following three cases can be considered:

- Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit.
- The DPSLP bit is clear, but the POR bit is set; this is a normal Power-on Reset.
- Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.

10.4.7 POWER-ON RESETS (PORs)

VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep mode functionally looks like a POR, the technique described in Section 10.4.6 "Checking and Clearing the Status of Deep Sleep" should be used to distinguish between Deep Sleep and a true POR event. When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers, RTCC, DSWDT, etc.) is reset.

10.5 VBAT Mode

This mode represents the lowest power state that the microcontroller can achieve and still resume operation. VBAT mode is automatically triggered when the micro-controller's main power supply on VDD fails. When this happens, the microcontroller's on-chip power switch connects to a backup power source, such as a battery, supplied to the VBAT pin. This maintains a few key systems at an extremely low-power draw until VDD is restored.

The power supplied on VBAT only runs two systems: the RTCC and the Deep Sleep Semaphore registers (DSGPR0 and DSGPR1). To maintain these systems during a sudden loss of VDD, it is essential to connect a power source, other than VDD or AVDD, to the VBAT pin.

When the RTCC is enabled, it continues to operate with the same clock source (SOSC or LPRC) that was selected prior to entering VBAT mode. There is no provision to switch to a lower power clock source after the mode switch.

Since the loss of VDD is usually an unforeseen event, it is recommended that the contents of the Deep Sleep Semaphore registers be loaded with the data to be retained at an early point in code execution.

10.5.1 VBAT MODE WITH NO RTCC

By disabling RTCC operation during VBAT mode, power consumption is reduced to the lowest of all power-saving modes. In this mode, only the Deep Sleep Semaphore registers are maintained.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 2 **TSYNC:** Timer1 External Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = Synchronizes external clock input}$ 0 = Does not synchronize external clock input $\frac{When TCS = 0:}{This bit is ignored.}$
- bit 1 **TCS:** Timer1 Clock Source Select bit 1 = Extended clock selected by the TECS<1:0> bits 0 = Internal clock (Fosc/2)
- bit 0 Unimplemented: Read as '0'
- **Note 1:** Changing the value of T1CON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

NOTES:

REGISTER 16-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
	1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the slave select inpu 0 = SSx pin is not used by the macro (SSx pin will be controlled by the port I/O)
bit 6	CKP: Clock Polarity Select bit
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode 0 = Slave mode
bit 4	DISSDI: Disable SDIx Input Port bit
	 1 = SDIx pin is not used by the module; pin is controlled by the port function 0 = SDIx pin is controlled by the module
bit 3	DISSCK: Disable SCKx Output Port bit
	 1 = SCKx pin is not used by the module; pin is controlled by the port function 0 = SCKx pin is controlled by the module
bit 2	MCLKEN: Master Clock Enable bit ⁽³⁾
	 1 = MCLK is used by the BRG 0 = PBCLK is used by the BRG
bit 1	SPIFE: Frame Sync Pulse Edge Select bit
	 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0	ENHBUF: Enhanced Buffer Mode Enable bit
	 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note 1:	When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.

- **2:** When FRMEN = 1, SSEN is not used.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 16-4: SPIxSTATL: SPIx STATUS REGISTER LOW

U-0	U-0	U-0	R/C-0, HS	R-0, HSC	U-0	U-0	R-0, HSC						
	_	_	FRMERR	SPIBUSY		_	SPITUR ⁽¹⁾						
bit 15							bit 8						
R-0, HSC	R/C-0, HS	R-1, HSC	U-0	R-1, HSC	U-0	R-0, HSC	R-0, HSC						
SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF						
bit 7							bit 0						
r													
Legend:		C = Clearable	e bit	HSC = Hardw	vare Settable/	Clearable bit							
R = Readabl		x = Bit is unkr			nented bit, rea								
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	HS = Hardwar	e Settable bit						
bit 15-13	Unimplemented: Read as '0' FRMERR: SPIx Frame Error Status bit												
bit 12			Status bit										
	1 = Frame err	or is detected error is detected	he										
bit 11													
	SPIBUSY: SPIx Activity Status bit 1 = Module is currently busy with some transactions												
	0 = No ongoing transactions (at time of read)												
bit 10-9	Unimplement	Unimplemented: Read as '0'											
bit 8	SPITUR: SPIx Transmit Underrun (TUR) Status bit ⁽¹⁾												
	 1 = Transmit buffer has encountered a Transmit Underrun condition 0 = Transmit buffer does not have a Transmit Underrun condition 												
1.11.7													
bit 7	SRMT: Shift Register Empty Status bit 1 = No current or pending transactions (i.e., neither SPIxTXB or SPIxTXSR contains data to transmit)												
	0 = Current or pending transactions												
bit 6	SPIROV: SPIx Receive Overflow (ROV) Status bit												
		e/half-word/wo			ived when the	SPIxRXB was f	ull						
bit 5	SPIRBE: SPI	x RX Buffer En	npty Status bit										
	1 = RX buffer is empty 0 = RX buffer is not empty												
	Standard Buffer Mode:												
	Automatically set in hardware when SPIxBUF is read from, reading SPIxRXB. Automatically cleared in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB.												
	Enhanced Buffer Mode: Indicates RXELM<5:0> = 6' b000000.												
bit 4	Unimplement	ted: Read as '	o '										
bit 3	SPITBE: SPIx Transmit Buffer Empty Status bit												
	1 = SPIxTXB is empty 0 = SPIxTXB is not empty												
		Standard Buffer Mode:											
						B to SPIxTXSR	Automatically						
	cleared in har Enhanced But		FIXBUF IS Writt	en, loading SP	IXI AB.								
		LM<5:0> = 6'	b000000.										

Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

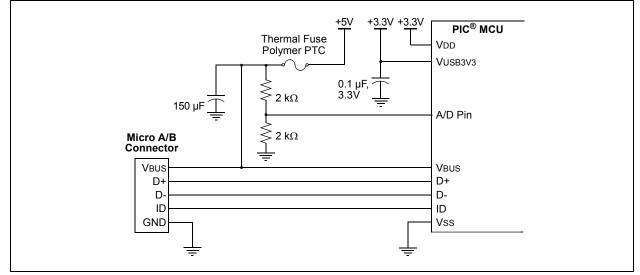
REGISTER 17-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit 7	GCEN: General Call Enable bit (I ² C Slave mode only)
	 1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception 0 = General call address is disabled
bit 6	STREN: SCLx Clock Stretch Enable bit
	In I ² C Slave mode only; used in conjunction with the SCLREL bit. 1 = Enables clock stretching 0 = Disables clock stretching
bit 5	ACKDT: Acknowledge Data bit
	In I ² C Master mode, during Master Receive mode – The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.
	In I ² C Slave mode when AHEN = 1 or DHEN = 1 – The value that the slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception. 1 = A NACK is sent 0 = An ACK is sent
bit 4	ACKEN: Acknowledge Sequence Enable bit
	In I ² C Master mode only; applicable during Master Receive mode. 1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit 0 = Acknowledge sequence is Idle
bit 3	RCEN: Receive Enable bit (I ² C Master mode only)
	 1 = Enables Receive mode for I²C, automatically cleared by hardware at the end of the 8-bit receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (I ² C Master mode only)
DIL 2	1 = Initiates Stop condition on the SDAx and SCLx pins 0 = Stop condition is Idle
bit 1	RSEN: Restart Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Restart condition on the SDAx and SCLx pins 0 = Restart condition is Idle
bit 0	SEN: Start Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Start condition on the SDAx and SCLx pins 0 = Start condition is Idle
Note 1	: Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception.

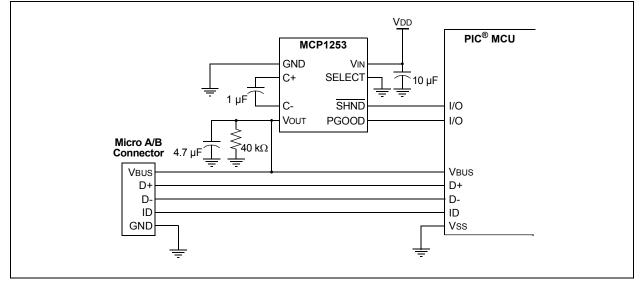
2: Automatically cleared to '0' at the beginning of slave transmission.

19.1.2 HOST AND OTG MODES

19.1.2.1 D+ and D- Pull-Down Resistors


PIC24FJ128GB204 family devices have a built-in 15 kΩ pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON<3>). If the OTGEN bit (U1OTGCON<2>) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON<5:4>).

19.1.2.2 Power Configurations


In Host mode, as well as Host mode in On-The-Go operation, the "USB 2.0 Specification" requires that the host application should supply power on VBUS. Since the microcontroller is running below VBUS, and is not able to source sufficient current, a separate power supply must be provided.

When the application is always operating in Host mode, a simple circuit can be used to supply VBUS and regulate current on the bus (Figure 19-6). For OTG operation, it is necessary to be able to turn VBUS on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 19-7.

FIGURE 19-6: USB HOST INTERFACE EXAMPLE

FIGURE 19-7: USB OTG INTERFACE EXAMPLE

19.2 USB Buffer Descriptors and the BDT

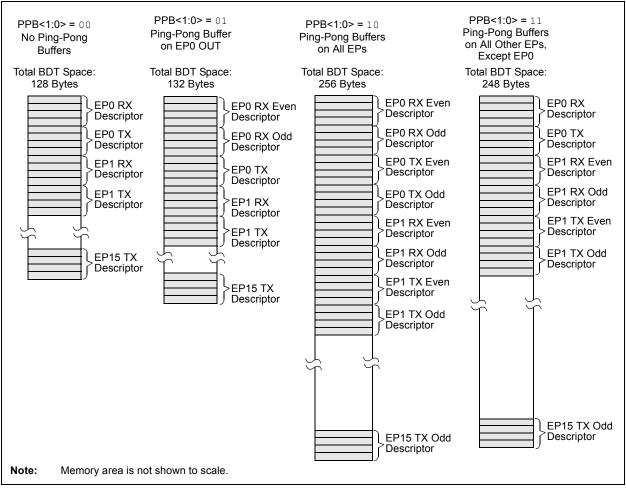
Endpoint buffer control is handled through a structure called the Buffer Descriptor Table (BDT). This provides a flexible method for users to construct and control endpoint buffers of various lengths and configurations.

The BDT can be located in any available, 512-byte aligned block of data RAM. The BDT Pointer (U1BDTP1) contains the upper address byte of the BDT and sets the location of the BDT in RAM. The user must set this pointer to indicate the table's location.

The BDT is composed of Buffer Descriptors (BDs) which are used to define and control the actual buffers in the USB RAM space. Each BD consists of two, 16-bit "soft" (non-fixed address) registers, BDnSTAT and BDnADR, where n represents one of the 64 possible BDs (range of 0 to 63). BDnSTAT is the status register for BDn, while BDnADR specifies the starting address for the buffer associated with BDn.

Note: Since BDnADR is a 16-bit register, only the first 64 Kbytes of RAM can be accessed by the USB module.

Depending on the endpoint buffering configuration used, there are up to 64 sets of Buffer Descriptors, for a total of 256 bytes. At a minimum, the BDT must be at least 8 bytes long. This is because the *"USB 2.0 Specification"* mandates that every device must have Endpoint 0 with both input and output for initial setup.

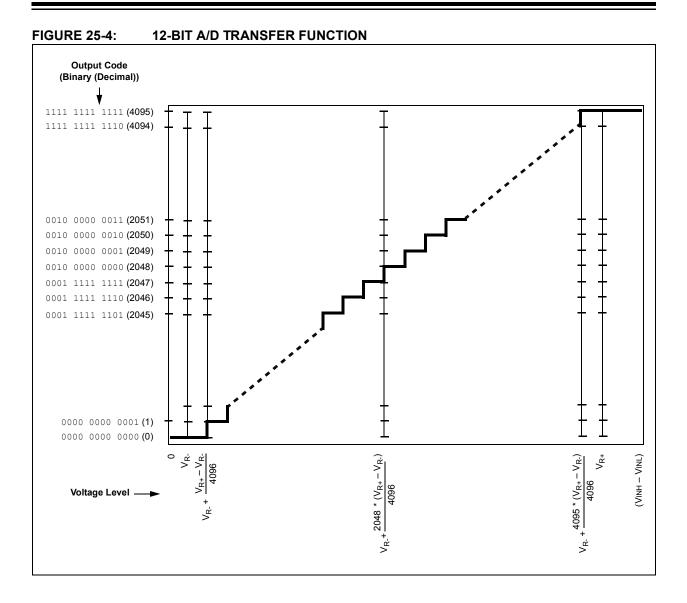

Endpoint mapping in the BDT is dependent on three variables:

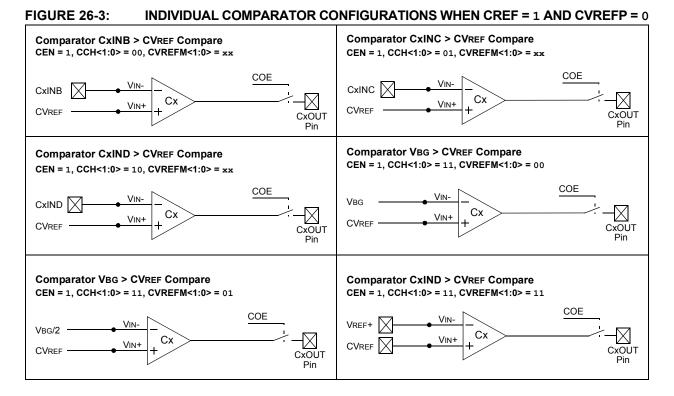
- Endpoint number (0 to 15)
- Endpoint direction (RX or TX)
- Ping-pong settings (U1CNFG1<1:0>)

Figure 19-8 illustrates how these variables are used to map endpoints in the BDT.

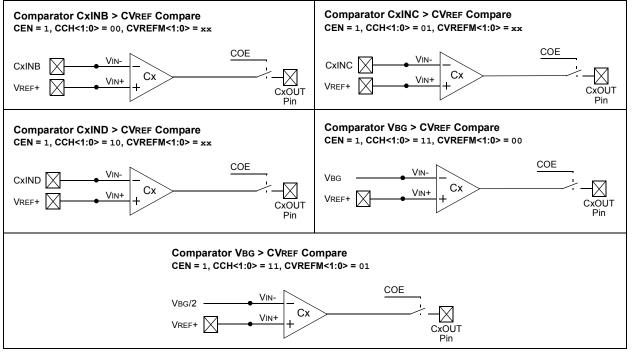
In Host mode, only Endpoint 0 Buffer Descriptors are used. All transfers utilize the Endpoint 0 Buffer Descriptor and USB Endpoint Control register (U1EP0). For received packets, the attached device's source endpoint is indicated by the value of ENDPT<3:0> in the USB Status register (U1STAT<7:4>). For transmitted packets, the attached device's destination endpoint is indicated by the value written to the USB Token register (U1TOK).

FIGURE 19-8: BDT MAPPING FOR ENDPOINT BUFFERING MODES



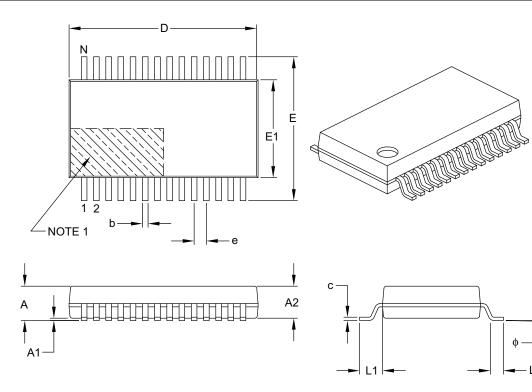

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTWREN	PTRDEN	PTBE1EN	PTBE0EN		AWAITM1	AWAITM0	AWAITE
bit 15		•			•		bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—	—	—			
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15 bit 14	1 = PMWR pc 0 = PMWR pc PTRDEN: PM 1 = PMRD/ <u>PN</u>	ort is disabled IP Read/Write : <u>/WR</u> port is en	Strobe Port En abled				
bit 13	PTBE1EN: PI 1 = PMBE1 p	ort is enabled		Port Enable bit			
bit 12	PTBE0EN: PI 1 = PMBE0 p	ort is disabled MP Low Nibble ort is enabled ort is disabled	/Byte Enable F	Port Enable bit			
bit 11	Unimplemen	ted: Read as ')'				
bit 10-9	AWAITM<1:0 11 = Wait of 3 10 = Wait of 2 01 = Wait of 1 00 = Wait of 1	2½ TCY 1½ TCY	ch Strobe Wait	State bits			
bit 8	AWAITE: Add 1 = Wait of 11 0 = Wait of 14	¼ TCY	r Address Latc	h Strobe Wait S	State bit		
	0 Wait 01 /4	101					

REGISTER 21-3: PMCON3: EPMP CONTROL REGISTER 3


R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0		
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 14 bit 13 bit 12-8	 0 = Clock derived from system clock EXTSAM: Extended Sampling Time bit 1 = A/D is still sampling after SAMP = 0 0 = A/D is finished sampling PUMPEN: Charge Pump Enable bit 1 = Charge pump for switches is enabled 0 = Charge pump for switches is disabled SAMC<4:0>: Auto-Sample Time Select bits 11111 = 31 TAD 								
bit 7-0	• • • • • • • • • • • • • • • • • • •	AD AD ADC1 Convers 256 • TCY = TA		ect bits					

REGISTER 25-3: AD1CON3: ADC1 CONTROL REGISTER 3

FIGURE 26-4: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 1



REGISTER 30-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

- bit 4 FWPSA: WDT Prescaler Ratio Select bit
 - 1 = Prescaler ratio of 1:128
 - 0 = Prescaler ratio of 1:32
- bit 3-0 WDTPS<3:0>: Watchdog Timer Postscaler Select bits
 - 1111 = 1:32,768 1110 = 1:16,384 1101 **= 1:8,192** 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 **= 1:512** 1000 **= 1:256** 0111 = 1:128 0110 **= 1:64** 0101 = 1:32 0100 = 1:16 0011 **= 1:8** 0010 = 1:4 0001 **= 1:2** 0000 = 1:1

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

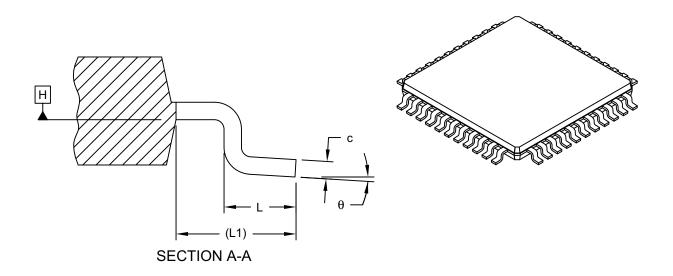
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	5
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	0.65 BSC		
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint		1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	ф	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension	MIN	NOM	MAX		
Number of Leads	N	44			
Lead Pitch	е	0.80 BSC			
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Overall Width	E	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	θ	0°	3.5°	7°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2