

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-5 (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb202-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0	-	U1ERIP2	U1ERIP1	U1ERIP0	—	—	—	—	4440
IPC18	00C8	-	_	_	_	_	_	_	_	_	_	_	_	_		HLVDIP<2:0>		0004
IPC19	00CA	-	_	_	_	_	_	_	_	_		CTMUIP<2:0	>	_	_	_	_	0040
IPC20	00CC	-	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	_	_	_	_	4440
IPC21	00CE	-	U4ERIP2	U4ERIP1	U4ERIP0	_	USB1IP2	USB1IP1	USB1IP0	_	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	_	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0	4444
IPC22	00D0	-	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0	_	SPI3IP2	SPI3IP1	SPI3IP0	_	U4TXIP2	U4TXIP1	U4TXIP0	_	U4RXIP2	U4RXIP1	U4RXIP0	4444
IPC26	00D8	-	_	_	_	_		FSTIP<2:0>		_	_	_	_	_	_	_	_	0400
IPC29	00DE	-	_	_	_	_	_	_	_	_		JTAGIP<2:0	>	_	_	_	_	0040
INTTREG	00E0	CPUIRQ	r	VHOLD	_	ILR3	ILR2	ILR1	ILR0	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'; r = reserved bit, maintain as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	026E	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0270	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0272							Οι	utput Compa	re 1 Second	ary Register							0000
OC1R	0274	Output Compare 1 Register									0000							
OC1TMR	0276							Ou	tput Compar	e Timer Valu	ue 1 Register							XXXX
OC2CON1	0278		_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	027A	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	027C							Οι	utput Compa	re 2 Second	ary Register							0000
OC2R	027E								Output C	ompare 2 R	egister							0000
OC2TMR	0280				-			Ou	tput Compar	e Timer Valu	ue 2 Register			-	_		-	xxxx
OC3CON1	0282	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0284	FLTMD	FLTOUT	FLTTRIEN	OCINV		DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0286	Output Compare 3 Secondary Register 000									0000							
OC3R	0288	Output Compare 3 Register 0								0000								
OC3TMR	028A				0	I		Ou	tput Compar	e Timer Valu	ue 3 Register		I	1	1	I	1	XXXX
OC4CON1	028C	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	028E	FLTMD	FLTOUT	FLTTRIEN	OCINV		DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0290							Οι	utput Compa	re 4 Second	ary Register							0000
OC4R	0292								Output C	ompare 4 R	egister							0000
OC4TMR	0294				1	1		Ou	tput Compar	e Timer Valu	ue 4 Register		1	1	1	1	1	XXXX
OC5CON1	0296	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT1	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC5CON2	0298	FLTMD	FLTOUT	FLTTRIEN	OCINV		DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC5RS	029A							Οι	utput Compa	re 5 Second	ary Register							0000
OC5R	029C								Output C	ompare 5 R	egister							0000
OC5TMR	029E						•	Ou	tput Compar	e Timer Valu	ue 5 Register			1			1	XXXX
OC6CON1	02A0	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC6CON2	02A2	FLTMD	FLTOUT	FLTTRIEN	OCINV		DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC6RS	02A4							Οι	utput Compa	re 6 Second	ary Register							0000
OC6R	02A6								Output C	ompare 6 R	egister							0000
OC6TMR	02A8							Ou	tput Compar	e Timer Valu	ue 6 Register							XXXX

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

4.2.5 EXTENDED DATA SPACE (EDS)

The Extended Data Space (EDS) allows PIC24F devices to address a much larger range of data than would otherwise be possible with a 16-bit address range. EDS includes any additional internal data memory not directly accessible by the lower 32-Kbyte data address space and any external memory through the Enhanced Parallel Master Port (EPMP).

In addition, EDS also allows read access to the program memory space. This feature is called Program Space Visibility (PSV) and is discussed in detail in Section 4.3.3 "Reading Data from Program Memory Using EDS".

Figure 4-4 displays the entire EDS space. The EDS is organized as pages, called EDS pages, with one page equal to the size of the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read register (DSRPAG) or Data Space Write register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA). The data addressing range of PIC24FJ128GB204 family devices depends on the version of the Enhanced Parallel Master Port implemented on a particular device; this is, in turn, a function of device pin count. Table 4-34 lists the total memory accessible by each of the devices in this family. For more details on accessing external memory using EPMP, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Enhanced Parallel Master Port (EPMP)"** (DS39730).

TABLE 4-34:	TOTAL ACCESSIBLE DATA
	MEMORY

Family	Internal RAM	External RAM Access Using EPMP
PIC24FJXXXGB204	8K	Up to 16 Mbytes
PIC24FJXXXGB202	8K	Up to 64K

Note: Accessing Page 0 in the EDS window will generate an address error trap as Page 0 is the base data memory (data locations, 0800h to 7FFFh, in the lower Data Space).

FIGURE 4-4: EXTENDED DATA SPACE (EDS)

REGISTER 5-2: DMACHn: DMA CHANNEL n CONTROL REGISTER

U-0	U-0	U-0	r-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	NULLW	RELOAD ⁽¹⁾	CHREQ ⁽³⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	Reserved: Maintain as '0'
bit 11	Unimplemented: Read as '0'
bit 10	NULLW: Null Write Mode bit
	 1 = A dummy write is initiated to DMASRCn for every write to DMADSTn 0 = No dummy write is initiated
bit 9	RELOAD: Address and Count Reload bit ⁽¹⁾
	1 = DMASRCn, DMADSTn and DMACNTn registers are reloaded to their previous values upon the start of the next operation
	0 = DMASRCn, DMADSIn and DMACNIn are not reloaded on the start of the next operation(2)
bit 8	CHREQ: DMA Channel Software Request bit ⁽³⁾
	 1 = A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer 0 = No DMA request is pending
bit 7-6	SAMODE<1:0>: Source Address Mode Selection bits
	 11 = DMASRCn is used in Peripheral Indirect Addressing and remains unchanged 10 = DMASRCn is decremented based on the SIZE bit after a transfer completion 01 = DMASRCn is incremented based on the SIZE bit after a transfer completion 00 = DMASRCn remains unchanged after a transfer completion
bit 5-4	DAMODE<1:0>: Destination Address Mode Selection bits
	 11 = DMADSTn is used in Peripheral Indirect Addressing and remains unchanged 10 = DMADSTn is decremented based on the SIZE bit after a transfer completion 01 = DMADSTn is incremented based on the SIZE bit after a transfer completion 00 = DMADSTn remains unchanged after a transfer completion
bit 3-2	TRMODE<1:0>: Transfer Mode Selection bits
	 11 = Repeated Continuous mode 10 = Continuous mode 01 = Repeated One-Shot mode 00 = One-Shot mode
bit 1	SIZE: Data Size Selection bit
	1 = Byte (8-bit) 0 = Word (16-bit)
bit 0	CHEN: DMA Channel Enable bit
	1 = The corresponding channel is enabled
	0 = The corresponding channel is disabled
Note 1:	Only the original DMACNTn is required to be stored to recover the original DMASRCn and DMADSTn values.

- 2: DMACNTn will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.
- 3: The number of transfers executed while CHREQ is set depends on the configuration of TRMODE<1:0>.

6.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused address should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to, multiple times, before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times, without erasing, is not recommended.

All of the Table Write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

6.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

6.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

6.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 6-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. For more information, refer to **Section 6.6 "Programming Operations"**.

6.6 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0		
_	—	CTMUIF	_	—	—	—	HLVDIF		
bit 15						- -	bit 8		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0		
—	<u> </u>		_	CRCIF	U2ERIF	U1ERIF			
bit 7							bit 0		
Legend:									
R = Readat	ole bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-14	Unimplemen	ted: Read as '0)'						
bit 13	CTMUIF: CTI	MU Interrupt Fla	ag Status bit						
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	urred occurred						
bit 12-9	Unimplemen	ted: Read as ')'						
bit 8	HLVDIF: High	n/Low-Voltage E	Detect Interrup	t Flag Status bit	t				
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	urred occurred						
bit 7-4	Unimplemen	ted: Read as ')'						
bit 3	CRCIF: CRC	Generator Inte	rrupt Flag Stat	us bit					
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	urred occurred						
bit 2	U2ERIF: UAF	RT2 Error Interr	upt Flag Status	s bit					
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred								
bit 1	U1ERIF: UAF	RT1 Error Interr	upt Flag Status	s bit					
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	curred occurred						
bit 0	Unimplemen	ted: Read as 'd)'						

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

REGISTER 8-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—		SPI3TXIF	SPI3IF	U4TXIF	U4RXIF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U4ERIF	USB1IF	I2C2BCIF	I2C1BCIF	U3TXIF	U3RXIF	U3ERIF	_
bit 7							bit 0
Logond							
R = Readable	e hit	W = Writable I	nit	U = Unimplen	nented hit read	d as '0'	
-n = Value at	POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkn	nown
n value ut	1.011						
bit 15-12	Unimplemen	ted: Read as '0)'				
bit 11	SPI3TXIF: SI	PI3 Transmit Int	errupt Flag Sta	atus bit			
	1 = Interrupt	request has occ	urred				
	0 = Interrupt	request has not	occurred				
bit 10	SPI3IF: SPI3	General Interru	pt Flag Status	bit			
	1 = Interrupt	request has occ	curred				
hit Q		RT4 Transmitter	Interrunt Flag	Status hit			
bit 5	1 = Interrupt	request has occ	urred	Oldius bit			
	0 = Interrupt	request has not	occurred				
bit 8	U4RXIF: UAF	RT4 Receiver In	terrupt Flag St	tatus bit			
	1 = Interrupt	request has occ	urred				
	0 = Interrupt	request has not	occurred				
bit 7	U4ERIF: UA	RT4 Error Interr	upt Flag Status	s bit			
	\perp = Interrupt 0 = Interrupt	request has occ request has not	occurred				
bit 6	USB1IF: USF	B1 (USB OTG)	nterrupt Flag S	Status bit			
	1 = Interrupt	request has occ	urred				
	0 = Interrupt	request has not	occurred				
bit 5	12C2BCIF: 12	C2 Bus Collisio	n Interrupt Fla	g Status bit			
	1 = Interrupt	request has occ	urred				
hit 1		request has not	OCCUITED	a Statua hit			
DIL 4	1 = Interrupt		n interrupt Flag	g Status bit			
	0 = Interrupt	request has not	occurred				
bit 3	U3TXIF: UAF	RT3 Transmitter	Interrupt Flag	Status bit			
	1 = Interrupt	request has occ	urred				
	0 = Interrupt	request has not	occurred				
bit 2	U3RXIF: UAR	RT3 Receiver In	terrupt Flag St	tatus bit			
	1 = Interrupt	request has occ	curred				
bit 1		RT3 Error Intern	int Flag Status	s bit			
	1 = nterrunt	request has occ	urred				
	0 = Interrupt	request has not	occurred				
bit 0	Unimplemen	nted: Read as ')'				

REGISTER 8-45: INTTREG: INTERRUPT CONTROLLER TEST REGISTER

R-0	r-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0				
bit 7							bit 0				
Legend:		r = Reserved	bit								
R = Readable	e bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown				
bit 15	CPUIRQ: CPU	U Interrupt Req	uest from Inter	rupt Controller	bit						
	1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU										
	0 = No interrupt request is unacknowledged										
bit 14	Reserved: Ma	aintain as '0'									
bit 13	VHOLD: Vect	or Number Cap	oture Configura	ation bit							
	1 = VECNUM 0 = VECNUM	1<7:0> bits con 1<7:0> bits cont	tain the value o tain the value o	of the highest p f the last Ackno	riority pending wledged interr	interrupt upt (i.e., the las	st interrupt that				
	has occu	rred with highe	r priority than t	he CPU, even i	f other interrup	ts are pending))				
bit 12	Unimplement	ted: Read as '0)'								
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Leve	l bits							
	1111 = CPU I	Interrupt Priorit	y Level is 15								
	•										
	•										
	0001 = CPU I	Interrupt Priority	y Level is 1								
	0000 = CPU I	Interrupt Priority	y Level is 0								
bit 7-0	VECNUM<7:0	>: Vector Num	ber of Pending	g Interrupt or La	ast Acknowledg	jed Interrupt bit	s				
	When VHOLD) = <u>1:</u>		• · · · · · ·							
	Indicates the	vector number	(from 0 to 118)	of the last inte	rrupt to occur.						
	vvnen VHOLL	v = 0:	(from 0 to 118)	of the interrup	t request curre	ntly being band	lled				
				or the interrup							

REGISTER 11-16: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 11-17: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	TMRCKR5	TMRCKR4	TMRCKR3	TMRCKR2	TMRCKR1	TMRCKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 TMRCKR<5:0>: Assign General Timer External Input (TMRCK) to Corresponding RPn or RPIn Pin bits bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

REGISTER 11-31: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15				•			bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

0-0	0-0	10/00-0	10/00-0	10/00-0	10/00-0	10/00-0	10/00-0
_	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP17R<5:0>: RP17 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP17 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP16R<5:0>: RP16 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP16 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

REGISTER 11-32: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				

bit 15-14 Unimplemented: Read as '0'

-n = Value at POR

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits

'1' = Bit is set

Peripheral Output Number n is assigned to pin, RP19 (see Table 11-4 for peripheral function numbers).

'0' = Bit is cleared

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

x = Bit is unknown

REGISTER 11-35: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	
bit 15	-						bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	
bit 7			•		•	•	bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-14	Unimplemen	ted: Read as '	כ'					
bit 13-8	RP25R<5:0>: RP25 Output Pin Mapping bits							
	Peripheral Output Number n is assigned to pin, RP25 (see Table 11-4 for peripheral function numbers).							
bit 7-6	Unimplemented: Read as '0'							
bit 5-0	RP24R<5:0>: RP24 Output Pin Mapping bits							

5-0 **RP24R<5:0>:** RP24 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP24 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
TON	—	TSIDL	_		—	TECS1	TECS0			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
	TGATE	TCKPS1	TCKPS0		TSYNC	TCS				
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15	TON: Timer1	On bit								
	1 = Starts 16-	bit Timer1								
hit 14		ted: Read as '()'							
bit 13		1 Stop in Idle M	, Iode hit							
bit 10	1 = Discontinu	les module ope	eration when d	evice enters Id	le mode					
	0 = Continues	s module opera	tion in Idle mo	de						
bit 12-10	Unimplemented: Read as '0'									
bit 9-8	TECS<1:0>:	Timer1 Extende	ed Clock Source	e Select bits (s	elected when -	TCS = 1)				
	When TCS =	<u>1:</u>								
	11 = Generic	Timer (TMRCK	i) external inpu	ıt						
	01 = T1CK ex	scillator (ternal clock int	out							
	00 = SOSC									
	When TCS =	0:								
	These bits are	e ignored; Time	r1 is clocked f	rom the interna	I system clock	(Fosc/2).				
bit 7	Unimplemented: Read as '0'									
bit 6	TGATE: Time	r1 Gated Time	Accumulation	Enable bit						
	This bit is igno	<u>1:</u> pred								
	When TCS =	0:								
	1 = Gated tim	e accumulation	is enabled							
	0 = Gated tim	e accumulation	is disabled							
bit 5-4	TCKPS<1:0>: Timer1 Input Clock Prescale Select bits									
	11 = 1:256									
	01 = 1:8									
	00 = 1:1									
bit 3	Unimplement	ted: Read as '()'							
Note 1. C	hanging the valu	e of T1CON w	hile the timer i	s running (TON	l = 1) causes th	ne timer nresca	le counter to			

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER⁽¹⁾

Note 1: Changing the value of T1CON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

NOTES:

REGISTER 19-11: U1SOF: USB OTG START-OF-FRAME COUNT REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	_	—
bit 15		· · ·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT	<7:0>			
bit 7							bit 0
Legend:							
P - Roadahlo I	hit	M = Mritable bi	ŧ	II – Unimplen	nonted hit read	1 26 '0'	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 CNT<7:0>: Start-of-Frame Size bits

Value represents 10 + (packet size of n bytes). For example:

0100 1010 = 64-byte packet

0010 1010 = **32-byte packet** 0001 0010 = **8-byte packet**

© 2013-2015 Microchip Technology Inc.

REGISTER 21-9: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

Legend: R = Readable bit W = Writable bit			bit	LI = Unimplem	ented bit read	as '0'	
bit 7							bit 0
—	—	—	—	—			PMPTTL
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
bit 15				•			bit 8
—	_	—	—	—	_	_	_
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0

PMPTTL: EPMP Module TTL Input Buffer Select bit

1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = EPMP module inputs use Schmitt Trigger input buffers

REGISTER 24-2: CR	RCCON2: CRC	CONTROL 2	REGISTER
-------------------	-------------	------------------	----------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	
bit 15	-		-				bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown		
bit 15-13	Unimplemen	ted: Read as '	0'					
bit 12-8	DWIDTH<4:0	>: Data Word \	Width Configura	ation bits				
	Configures the width of the data word (Data Word Width – 1).							

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **PLEN<4:0>:** Polynomial Length Configuration bits Configures the length of the polynomial (Polynomial Length – 1).

REGISTER 30-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

- bit 4 FWPSA: WDT Prescaler Ratio Select bit
 - 1 = Prescaler ratio of 1:128
 - 0 = Prescaler ratio of 1:32
- bit 3-0 WDTPS<3:0>: Watchdog Timer Postscaler Select bits
 - 1111 = 1:32,768 1110 = 1:16,384 1101 **= 1:8,192** 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 **= 1:512** 1000 **= 1:256** 0111 = 1:128 0110 **= 1:64** 0101 = 1:32 0100 = 1:16 0011 **= 1:8** 0010 = 1:4 0001 **= 1:2** 0000 = 1:1

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

		MILLIMETERS		
Dimension	MIN	NOM	MAX	
Contact Pitch E		0.65 BSC		
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2

NOTES: