

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb202-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 4-11: SPI1 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1CON1L	0300	SPIEN	—	SPISIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF	0000
SPI1CON1H	0302	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDMOD1	AUDMOD0	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0	0000
SPI1CON2L	0304	_	_											0000				
SPI1STATL	0308	_	_	_	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	0028
SPI1STATH	030A		—	RXELM5	RXELM4	RXELM3	RXELM2	RXELM1	RXELM0	_	_	TXELM5	TXELM4	TXELM3	TXELM2	TXELM1	TXELM0	0000
SPI1BUFL	030C	SPI1BUFL<15:0>											0000					
SPI1BUFH	030E								SPI1BU	FH<31:16>								0000
SPI1BRGL	0310	_	_	_						ç	SPI1BRG<12:0)>						0000
SPI1IMSKL	0314	_	_	_	FRMERREN	BUSYEN	_	_	SPITUREN	SRMTEN	SPIROVEN	SPIRBEN	_	SPITBEN	_	SPITBFEN	SPIRBFEN	0000
SPI1IMSKH	0316	RXWIEN	_	RXMSK5	RXMSK4	RXMSK3	RXMSK2	RXMSK1	RXMSK0	TXWIEN	_	TXMSK5	TXMSK4	TXMSK3	TXMSK2	TXMSK1	TXMSK0	0000
SPI1URDTL	0318								SPI1UR	DTL<15:0>								0000
SPI1URDTH	031A								SPI1URI	DTH<31:16>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SPI2 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2CON1L	031C	SPIEN	—	SPISIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF	0000
SPI2CON1H	031E	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDMOD1	AUDMOD0	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0	0000
SPI2CON2L	0320	_	_	_	WLENGTH<4:0>									0000				
SPI2STATL	0324		—	_	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	_	SPITBF	SPIRBF	0028
SPI2STATH	0326	_	_	RXELM5	RXELM4	RXELM3	RXELM2	RXELM1	RXELM0	_	_	TXELM5	TXELM4	TXELM3	TXELM2	TXELM1	TXELM0	0000
SPI2BUFL	0328								SPI2BUFL	<15:0>								0000
SPI2BUFH	032A								SPI2BUFH	<31:16>								0000
SPI2BRGL	032C	_	_	_						SI	PI2BRG<12:0>	•						0000
SPI2IMSKL	0330	_	_	_	FRMERREN	BUSYEN	_	_	SPITUREN	SRMTEN	SPIROVEN	SPIRBEN	—	SPITBEN	-	SPITBFEN	SPIRBFEN	0000
SPI2IMSKH	0332	RXWIEN	—	RXMSK5	RXMSK4	RXMSK3	RXMSK2	RXMSK1	RXMSK0	TXWIEN	—	TXMSK5	TXMSK4	TXMSK3	TXMSK2	TXMSK1	TXMSK0	0000
SPI2URDTL	0334	4 SPI2URDTL<15:0>											0000					
SPI2URDTH	0336								SPI2URDTH	+<31:16>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DSRPAG (Data Space Read Register)	DSWPAG (Data Space Write Register)	Source/Destination Address while Indirect Addressing	24-Bit EA Pointing to EDS	Comment
v(1)	v(1)	0000h to 1FFFh	000000h to 001FFFh	Near Data Space ⁽²⁾
X. /	X' /	2000h to 7FFFh	002000h to 007FFFh	
001h	001h		008000h to 00FFFEh	
002h	002h		010000h to 017FFEh	
003h	003h		018000h to 0187FEh	EPMP Memory Space
•	•	8000h to FFFFh	•	
•	•		•	
•	•		•	
• 1FFh	۰ 1FFh		FF8000h to FFFFFEh	
000h	000h]	Invalid Address	Address Error Trap ⁽³⁾

TABLE 4-35: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: If the source/destination address is below 8000h, the DSRPAG and DSWPAG registers are not considered.

2: This Data Space can also be accessed by Direct Addressing.

3: When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

4.2.6 SOFTWARE STACK

Apart from its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-7. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing
	will concatenate the SRL Register to the
	MSB of the PC prior to the push.

The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated using W15 as a Source or Destination Pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-7: CALL STACK FRAME

R/S-0, HC ⁽¹⁾ R/W-0 ⁽¹⁾ R-0, HSC ⁽¹⁾ U-0 U-0 U-0 U-0 U-0 U-0 WR WREN WRERR — …
WR WREN WRERR — Image: Missing and
bit 15 bit 8 U-0 R/W-0 ⁽¹⁾ U-0 U-0 R/W-0 ⁽¹⁾
U-0 R/W-0 ⁽¹⁾ U-0 U-0 R/W-0 ⁽¹⁾
U-0 R/W-0 ⁽¹⁾ U-0 U-0 R/W-0 ⁽¹⁾
— ERASE — NVMOP3 ⁽²⁾ NVMOP2 ⁽²⁾ NVMOP1 ⁽²⁾ NVMOP0 ⁽²⁾ bit 7
bit 7 bit f
Dict
Legend: HC = Hardware Clearable bit HSC = Hardware Settable/Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared S = Settable bit
bit 15 WR: Write Control bit ⁽¹⁾
1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is
cleared by hardware once the operation is complete
bit 44
bit 14 WREN: White Enable bit?
0 = Inhibits Flash program/erase operations
bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾
1 = An improper program or erase sequence attempt, or termination has occurred (bit is se
automatically on any set attempt of the WR bit)
0 = The program or erase operation completed normally
bit 12-7 Unimplemented: Read as '0'
bit 6 ERASE: Erase/Program Enable bit ⁽¹⁾
1 = Performs the erase operation specified by the NVMOP<3:0> bits on the next WR command
0 = Performs the program operation specified by the NVMOP<3:0> bits on the next WR command
bit 5-4 Unimplemented: Read as '0'
bit 3-0 NVMOP<3:0>: NVM Operation Select bits ^(1,2)
1111 = Memory bulk erase operation (ERASE = 1) or no operation (ERASE = $0)^{(1)}$
0011 = Memory page erase operation (ERASE = 1) or no operation (ERASE = 0)
0001 = Memory row program operation (ERASE = 0) or no operation (ERASE = 1)
Note 1: These bits can only be reset on a Power-on Reset.

3: Available in ICSP[™] mode only; refer to the device programming specification.

REGISTER 8-1: SR: ALU STATUS REGISTER (IN CPU)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
_	_	—	—	_	—		DC ⁽¹⁾		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	0V ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	V = Writable bit U = Unimplemented bit, read as '0'						

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

- bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
- **Note 1:** See Register 3-1 for the description of the remaining bits (bits 8, 4, 3, 2, 1 and 0) that are not dedicated to interrupt control functions.
 - **2:** The IPLx bits are concatenated with the IPL3 (CORCON<3>) bit to form the CPU Interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
 - 3: The IPLx bits are read-only when NSTDIS (INTCON1<15>) = 1.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U4ERIP2	U4ERIP1	U4ERIP0	_	USB1IP2	USB1IP1	USB1IP0
bit 15	-	-					bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0		I2C1BCIP2	I2C1BCIP1	I2C1BCIP0
bit 7							bit 0
							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
6:4 4 F		tad. Deed on W	, ,				
) Interrunt Drien	ity bita			
DIL 14-12	111 = Interrur	ot is Priority 7 (highest priority	interrupt)			
	•		ingricor priority	interrupt)			
	•						
	• 001 = Interrur	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 11	Unimplemen	ted: Read as ')'				
bit 10-8	USB1IP<2:0>	: USB1 (USB	OTG) Interrupt	Priority bits			
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 7	Unimplement	ted: Read as ')'				
DIT 6-4	111 - Interru	U>: 12C2 Bus C	ollision interru	pt Priority bits			
	•		nighest priority	interrupt)			
	•						
		at in Driarity 1					
	000 = Interrup	ot source is dis	abled				
bit 3	Unimplemen	ted: Read as ')'				
bit 2-0	I2C1BCIP<2:	0>: I2C1 Bus C	Collision Interru	pt Priority bits			
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ROEN		ROSIDL	ROOUT	ROSLP	—	ROSWEN	ROACTIVE
bit 15						1	bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	_	ROSEL3	ROSEL2	ROSEL1	ROSEL0
bit 7	·					•	bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	ROEN: Reference 1 = Reference 0 = Reference	ence Oscillator e oscillator is er e oscillator is di	Output Enable nabled sabled	e bit			
bit 14	Unimplemen	ted: Read as ')'				
bit 13	ROSIDL: Ref	erence Oscillat	or Output Stop	in Idle Mode bi	t		
	1 = Reference 0 = Reference	e oscillator is di e oscillator conf	sabled in Idle i inues to run in	node Idle mode			
bit 12	ROOUT: Refe	erence Clock O	utput Enable b	it			
	1 = REFO clo 0 = REFO clo	ock output is driv ock output is dis	ven on the RE abled	FO pin			
bit 11	ROSLP: Refe	erence Oscillato	or Output in Sle	ep Mode bit			
	1 = Reference 0 = Reference	e oscillator outp e oscillator outp	out continues to out is disabled	o run in Sleep n in Sleep mode	node		
bit 10	Unimplemen	ted: Read as ')'				
bit 9	ROSWEN: Re	eference Oscilla	ator Clock Sou	rce Switch Ena	ble bit		
	1 = Reference 0 = Reference	e clock source s e clock source s	switching is cu switching has o	rrently in progre	ess		
bit 8	ROACTIVE:	Reference Cloc	k Request Sta	tus bit			
	1 = Reference 0 = Reference	e clock request e clock request	is active (user is not active (u	should not upd user can update	ate the REFO	CONL register) NL register))
bit 7-4	Unimplemen	ted: Read as '0)'	-			
	(Reserved for	additional ROS	SELx bits.)				
bit 3-0	ROSEL<3:0>	: Reference Clo	ock Source Se	lect bits			
	Select one of	the various clo	ck sources to b	be used as the i	reference clock	c :	
	1001-1111 =	Reserved	ock Innut)				
	0111 = Rese	rved	input)				
	0110 = 8x PL	L or USB-PLL					
	0101 = Seco	ndary Oscillator	(SOSC)				
	0100 = Low-F	Power RC Oscil	lator (LPRC)				
	0010 = Prima	vo Oscillator (F	T. HS. FC)				
	0001 = Peripl 0000 = Syste	heral Clock (PE m Clock (Fosc	BCLK) – Interna)	al instruction cy	cle clock, FCY		

REGISTER 9-4: REFOCONL: REFERENCE OSCILLATOR CONTROL LOW REGISTER

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	_	MDC2R5	MDC2R4	MDC2R3	MDC2R2	MDC2R1	MDC2R0			
bit 15							bit 8			
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	—	MDC1R5	MDC1R4	MDC1R3	MDC1R2	MDC21R1	MDC1R0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable I	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				

REGISTER 11-22: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31

bit 15-14 Unimplemented: Read as '0'

bit 13-8 MDC2R<5:0>: Assign TX Carrier 2 Input (MDCIN2) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 MDC1R<5:0>: Assign TX Carrier 1 Input (MDCIN1) to Corresponding RPn or RPIn Pin bits

13.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Timers"** (DS39704). The information in this data sheet supersedes the information in the FRM.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

- Two Independent 16-Bit Timers with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger (only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D Event Trigger. This trigger is implemented only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1; T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer5 are the most significant word of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 or Timer5 interrupt flags. To configure Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 or T45 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word (msw) of the value, while PR2 (or PR4) contains the least significant word (lsw).
- 5. If interrupts are required, set the Timer3/5 Interrupt Enable bit, T3IE or T5IE. Use the Timer3/5 Interrupt Priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR<3:2> (or TMR<5:4>). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See **Section 11.4 "Peripheral Pin Select (PPS)**" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE. Use the Timerx Interrupt Priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON (TxCON<15> = 1) bit.

14.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Input Capture with Dedicated Timer" (DS39722). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ128GB204 family contain six independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 30 user-selectable sync/trigger sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to 6 clock sources available for each module, driving a separate, internal 16-bit counter

The module is controlled through two registers: ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2). A general block diagram of the module is shown in Figure 14-1.

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES

When the input capture module operates in a Free-Running mode, the internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow. Its period is synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSELx bits (ICxCON2<4:0>) to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

FIGURE 14-1: INPUT CAPTURE x BLOCK DIAGRAM

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 4 **OCFLT0:** Output Compare x PWM Fault 0 (OCFA pin) Condition Status bit^(2,4)
 - 1 = PWM Fault 0 has occurred
 - 0 = No PWM Fault 0 has occurred
- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on $OCx^{(2)}$
 - 110 = Edge-Aligned PWM mode on $OCx^{(2)}$
 - 101 = Double Compare Continuous Pulse mode: Initializes the OCx pin low; toggles the OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes the OCx pin low; toggles the OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low; compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
 - **3:** The Comparator 1 output controls the OC1-OC2 channels; Comparator 2 output controls the OC3-OC4 channels; Comparator 3 output controls the OC5-OC6 channels.
 - 4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SPIEN		SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SSEN ⁽²⁾	CKP	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF	
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable b	bit	U = Unimplen	nented bit, read	as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN	
bit 15	SPIEN: SPIx 1 = Enables 0 = Turns off modificat	On bit module and resets mo ions	odule, disable	es clocks, disab	oles interrupt evo	ent generation	n, allows SFR	
bit 14	Unimplemen	ted: Read as '0	,					
bit 13	SPISIDL: SPIx Stop in Idle Mode bit 1 = Halts in CPU Idle mode 0 = Continues to operate in CPU Idle mode							
bit 12	DISSDO: Disable SDOx Output Port bit							
	 1 = SDOx pin is not used by the module; pin is controlled by the port function 0 = SDOx pin is controlled by the module 							
bit 11-10	MODE<32,16	>: Serial Word	Length bits ^{(1,}	4)				
	AUDEN = 0:							
	MODE3	2 MODE	16 CC	JMMUNICATIO 32-Bit	N			
	0	1		16-Bit				
	0	0		8-Bit				
	<u>AUDEN = 1:</u>							
	MODE3	2 MODE	16 CO	DMMUNICATIO		it Channol/64	Rit Eramo	
	1	0		32-Bit Data, 32	2-Bit FIFO, 32-Bi 2-Bit FIFO, 32-Bi	t Channel/64-	-Bit Frame	
	0	1		16-Bit Data, 16	6-Bit FIFO, 32-Bi	t Channel/64-	Bit Frame	
	0	0		16-Bit Data, 16	6-Bit FIFO, 16-Bi	t Channel/32-	Bit Frame	
bit 9	SMP: SPIx D	ata Input Sampl	e Phase bit					
	Master Mode:	is compled at t	bo and of da	ta output timo				
	1 = 10000000000000000000000000000000000	is sampled at t	the middle of	data output time	e			
	Slave Mode:		at the maintail	of data autout	time, recordless	of the CMD b	it a atting	
hit Q					ume, regardless		it setting.	
DIT 8 UNE: SPIX Clock Edge Select DITY 1 = Transmit happens on transition from active clock state to Idle clock state 0 = Transmit happens on transition from Idle clock state to active clock state								
Note 1: V 2: V	When AUDEN = 1 When FRMEN =	1, this module fi 1, SSEN is not	unctions as if used.	CKE = 0, regar	dless of its actua	al value.		
3: 1		y de written whe		DIT = 0.		A./		
4:	i nis channel is no	ot meaningful fo	r DSP/PCM i	node as LRC fo	DIIOWS FRMSYPV	'V.		

REGISTER 16-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

REGISTER 16-4: SPIxSTATL: SPIx STATUS REGISTER LOW (CONTINUED)

- bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = SPIxTXB is full 0 = SPIxTXB not full Standard Buffer Mode: Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Enhanced Buffer Mode: Indicates TXELM<5:0> = 6' b111111. bit 0 SPIRBF: SPIx Receive Buffer Full Status bit 1 = SPIxRXB is full 0 = SPIxRXB is not full Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB. Enhanced Buffer Mode: Indicates RXELM<5:0> = 6' b111111.
- **Note 1:** SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

REGISTER 21-7: PMCSxMD: EPMP CHIP SELECT x MODE REGISTER (CONTINUED)

- bit 1-0 **DWAITE<1:0>:** Chip Select x Data Hold After Read/Write Strobe Wait State bits
 - For Write Operations:11 = Wait of 3¼ TcY10 = Wait of 2¼ TcY01 = Wait of 1¼ TcY00 = Wait of ¼ TcYFor Read Operations:11 = Wait of 3 TcY10 = Wait of 2 TcY01 = Wait of 1 TcY00 = Wait of 0 TcY

REGISTER 21-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)

R-0, HSC	R/W-0, HS	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IBF	IBOV	—	—	IB3F ⁽¹⁾	IB2F ⁽¹⁾	IB1F ⁽¹⁾	IB0F ⁽¹⁾
bit 15							bit 8

R-1, HSC	R/W-0, HS	U-0	U-0	R-1, HSC	R-1, HSC	R-1, HSC	R-1, HSC
OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E
bit 7							bit 0

Legend: HS = Hardware Settable bit		HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	IBF: Input Buffer Full Status bit
	 1 = All writable Input Buffer registers are full 0 = Some or all of the writable Input Buffer registers are empty
bit 14	IBOV: Input Buffer Overflow Status bit
	 1 = A write attempt to a full Input Buffer register occurred (must be cleared in software) 0 = No overflow occurred
bit 13-12	Unimplemented: Read as '0'
bit 11-8	IB3F:IB0F: Input Buffer x Status Full bits ⁽¹⁾
	 1 = Input buffer contains unread data (reading the buffer will clear this bit) 0 = Input buffer does not contain unread data
bit 7	OBE: Output Buffer Empty Status bit
	 1 = All readable Output Buffer registers are empty 0 = Some or all of the readable Output Buffer registers are full
bit 6	OBUF: Output Buffer Underflow Status bit
	 1 = A read occurred from an empty Output Buffer register (must be cleared in software) 0 = No underflow occurred
bit 5-4	Unimplemented: Read as '0'
bit 3-0	OB3E:OB0E: Output Buffer x Status Empty bits
	 1 = Output Buffer register is empty (writing data to the buffer will clear this bit) 0 = Output Buffer register contains untransmitted data
Note 1:	Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0 and 1, or Byte 2 and 3) get cleared, even on byte reading.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0		
bit 7							bit 0		
Logond	l anondu								
D - Doodo	Egend. D = Deadable bit $M = M$ itable bit $H = H$ implemented bit read as '0'								
		'1' = Bit is set	Л	$0^{\circ} = \text{Bit is clear}$	ared	as u v - Bit is unkn	0.000		
	alFOR				areu		OWIT		
bit 15	ALRMEN: Ala	arm Enable bit							
	1 = Alarm is e	nabled (cleared a	automatically af	ter an alarm eve	nt whenever AR	PT<7:0> = 00h a	and CHIME = 0)		
	0 = Alarm is o	disabled	,						
bit 14	CHIME: Chim	e Enable bit							
	1 = Chime is e	enabled; ARPT	<7:0> bits are a	llowed to roll ov	ver from 00h to	FFh			
	0 = Chime is o	disabled; ARPT	<7:0> bits stop	once they reac	h 00h				
bit 13-10	AMASK<3:0>	Alarm Mask C	configuration bi	ts					
	0000 = Every half second								
	0010 = Every	10 seconds							
	0011 = Every	minute							
	0100 = Every	10 minutes							
	0110 = Once	a dav							
	0111 = Once	a week							
	1000 = Once	a month		d fan Eskansan	ooth an an an an				
	1001 = Once 101x = Reserved	a year (except)	wnen configure	d for February	29", once ever	y 4 years)			
	11xx = Reser	rved – do not us	e						
bit 9-8	ALRMPTR<1	:0>: Alarm Valu	e Register Win	dow Pointer bits	6				
	Points to the c	corresponding A	arm Value regis	sters when read	ing the ALRMV	ALH and ALRM	VALL registers.		
	The ALRMPT	R<1:0> value de	crements on ev	ery read or write	e of ALRMVALH	I until it reaches	ʻ00 ' .		
	ALRMVAL<15	<u>5:8>:</u>							
	00 = ALRMW	D							
	10 = ALRMMI	NTH							
	11 = PWCSTA	AB							
	ALRMVAL<7:	<u>0>:</u>							
	01 = ALRMH	- <u>-</u>							
	10 = ALRMDA	ΑY							
	11 = PWCSAI	MP							
bit 7-0	ARPT<7:0>: /	Alarm Repeat C	ounter Value b	its					
	11111111 = /	Alarm will repea	t 255 more time	es					
	•								
	•								
	00000000 = /	Alarm will not re	peat	nt: it in provent	od from rolling	over from 004	to EEb uplace		
	CHIME = 1 .	accrements on	any alanii eve	in, it is prevent	eu nom roning		IN FEIL UNIESS		

25.4 Registers

The 12-bit A/D Converter is controlled through a total of 11 registers:

- AD1CON1 through AD1CON5 (Register 25-1 through Register 25-5)
- AD1CHS (Register 25-6)

- AD1CHITL (Register 25-8)
- AD1CSSH and AD1CSSL (Register 25-9 and Register 25-10)
- AD1CTMENL (Register 25-11)
- AD1DMBUF (not shown) The 16-bit conversion buffer for Extended Buffer mode

TABLE 25-1.	INDIRECT ADDRES	S GENERATION IN PIA MODE
IADLE 23-1.	INDIRECT ADDRES	3 GENERATION IN FIA MODE

DMABL<2:0> Buffer Size per Channel (words)		Generated Offset Address (lower 11 bits)	Available Input Channels	Allowable DMADSTn Addresses
000	1	000 00cc ccc0	32	xxxx xxxx xx00 0000
001	2	000 0ccc ccn0	32	xxxx xxxx x000 0000
010	4	000 cccc cnn0	32	xxxx xxxx 0000 0000
011	8	00c cccc nnn0	32	xxxx xxx0 0000 0000
100	16	Occ cccn nnnO	32	xxxx xx00 0000 0000
101	32	ccc ccnn nnn0	32	xxxx x000 0000 0000
110	64	ccc cnnn nnn0	16	xxxx x000 0000 0000
111	128	ccc nnnn nnn0	8	xxxx x000 0000 0000

Legend: ccc = Channel number (three to five bits), n = Base buffer address (zero to seven bits), x = User-definable range of DMADSTn for base address, 0 = Masked bits of DMADSTn for IA.

REGISTER 25-11: AD1CTMENL: ADC1 CTMU ENABLE REGISTER (LOW WORD)⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
_	—		CTMEN<12:9> ⁽²⁾ —					
bit 15		·					bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CTMEN<7:0>								
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set	et '0' = Bit is cleared		red	x = Bit is unknown		
bit 15-13	Unimplemer	ted: Read as '	0'					
bit 12-9	CTMEN<12:	3>: CTMU Enal	ble During Co	onversion bits ⁽²⁾				
	1 = CTMU is	enabled and co	onnected to th	ne selected chani	nel during con	version		
	0 = CTMU is	not connected	to this channe	el				
bit 8	Unimplemer	ted: Read as '	0'					
bit 7-0	CTMEN<7:0	CTMU Enable	e During Con	version bits				
	1 = CTMU is	enabled and co	onnected to th	ne selected chani	nel during con	version		
	0 = CTMU is	not connected	to this channe	el				

- **Note 1:** The actual number of channels available depends on which channels are implemented on a specific device. For more information, refer to Table 1-1 and Table 1-2 in **Section 1.0 "Device Overview**". Unimplemented channels are read as '0'.
 - 2: The CTMEN<12:10> bits are unimplemented in 28-pin devices, read as '0'.

28.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Time Measurement Unit, refer to the "dsPIC33/PIC24 Family Reference Manual", "Charge Time Measurement Unit (CTMU) with Threshold Detect" (DS39743). The information in this data sheet supersedes the information in the FRM.

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

- Thirteen external edge input trigger sources
- Polarity control for each edge source
- Control of edge sequence
- Control of response to edge levels or edge transitions
- · Time measurement resolution of one nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.

The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 enables the module and controls the mode of operation of the CTMU, as well as controlling edge sequencing. CTMUCON2 controls edge source selection and edge source polarity selection. The CTMUICON register selects the current range of the current source and trims the current.

28.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse, with a width equal to the time between edge events, on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and up to 13 external pins (CTED1 through CTED13). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

EQUATION 28-1:

$$I = C \bullet \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an external Capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 28-1 illustrates the external connections used for capacitance measurements and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the *"dsPIC33/PIC24 Family Reference Manual"*, **"Charge Time Measurement Unit (CTMU) with Threshold Detect"** (DS39743).

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		1.27 BSC				
Overall Height	A	-	-	2.65			
Molded Package Thickness	A2	2.05	-	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E	10.30 BSC					
Molded Package Width	E1	7.50 BSC					
Overall Length	D 17.90 B						
Chamfer (Optional)	h	0.25	-	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1	1.40 REF					
Lead Angle	Θ	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.18	-	0.33			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2