E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Features

- 10/12-Bit, 12-Channel Analog-to-Digital (A/D) Converter:
 - Conversion rate of 500 ksps (10-bit), 200 ksps (12-bit)
 - Conversion available during Sleep and Idle
- Three Rail-to-Rail, Enhanced Analog Comparators with Programmable Input/Output Configuration
- Three On-Chip Programmable Voltage References
- Charge Time Measurement Unit (CTMU):
 - Used for capacitive touch sensing, up to 12 channels
 - Time measurement down to 100 ps resolution
 - Operation in Sleep mode

Peripheral Features

- Up to Five External Interrupt Sources
- Peripheral Pin Select (PPS); Allows Independent I/O Mapping of many Peripherals
- Five 16-Bit Timers/Counters with Prescaler:
 Can be paired as 32-bit timers/counters
- Six-Channel DMA supports All Peripheral modules:
- Minimizes CPU overhead and increases data throughput
- Six Input Capture modules, each with a Dedicated 16-Bit Timer
- Six Output Compare/PWM modules, each with a Dedicated 16-Bit Timer
- Enhanced Parallel Master/Slave Port (EPMP/EPSP)
- Hardware Real-Time Clock/Calendar (RTCC):
 - Runs in Sleep, Deep Sleep and VBAT modes
- Three 3-Wire/4-Wire SPI modules:
 - Support four Frame modes
 - Variable FIFO buffer
 - I²S mode
- Variable width from 2-bit to 32-bit
- Two I²C[™] modules Support Multi-Master/
 - Slave mode and 7-Bit/10-Bit Addressing
- Four UART modules:
 - Support RS-485, RS-232 and LIN/J2602
 - On-chip hardware encoder/decoder for IrDA®
 - Smart Card ISO 7816 support on UART1 and UART2 only:
 - T = 0 protocol with automatic error handling
 - T = 1 protocol
 - Dedicated Guard Time Counter (GTC)
 - Dedicated Waiting Time Counter (WTC)
 - Auto-wake-up on Auto-Baud Detect (ABD)
 - 4-level deep FIFO buffer
- Programmable 32-Bit Cyclic Redundancy Check (CRC) Generator
- Digital Signal Modulator provides On-Chip FSK and PSK Modulation for a Digital Signal Stream
- High-Current Sink/Source (18 mA/18 mA) on All I/O Pins
- Configurable Open-Drain Outputs on Digital I/O Pins
- 5.5V Tolerant Inputs on Most Pins

High-Performance CPU

- Modified Harvard Architecture
- Up to 16 MIPS Operation @ 32 MHz
- 8 MHz Internal Oscillator:
 - 96 MHz PLL option
 - Multiple clock divide options
 - Run-time self-calibration capability for maintaining better than ±0.20% accuracy
 - Fast start-up
- 17-Bit x 17-Bit Single-Cycle Hardware Fractional/Integer Multiplier
- 32-Bit by 16-Bit Hardware Divider
- 16 x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture (ISA)
- Two Address Generation Units (AGUs) for Separate Read and Write Addressing of Data Memory

Special Microcontroller Features

- Supply Voltage Range of 2.0V to 3.6V
- Two On-Chip Voltage Regulators (1.8V and 1.2V) for Regular and Extreme Low-Power Operation
- 20,000 Erase/Write Cycle Endurance Flash Program Memory, Typical
- Flash Data Retention: 20 Years Minimum
- Self-Programmable under Software Control
- · Programmable Reference Clock Output
- In-Circuit Serial Programming™ (ICSP™) and In-Circuit Emulation (ICE) via 2 Pins
- JTAG Programming and Boundary Scan Support
- Fail-Safe Clock Monitor (FSCM) Operation:
- Detects clock failure and switches to on-chip, Low-Power RC Oscillator
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Separate Brown-out Reset (BOR) and Deep Sleep Brown-out Reset (DSBOR) Circuits
- Programmable High/Low-Voltage Detect (HLVD)
- Flexible Watchdog Timer (WDT) with its Own RC Oscillator for Reliable Operation
- Standard and Ultra Low-Power Watchdog Timers (ULPW) for Reliable Operation in Standard and Deep Sleep modes

	-27:	CRC	REGIS [®]	TER	ΜΑΡ
ADEE 4	- 21.	0110			

© 20	TABLE 4-	27:	CRC RE	GISTE	R MAP					
13-201:	File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
5 M	CRCCON1	0158	CRCEN	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
icro	CRCCON2	015A	_	_	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0
ochij	CRCXORL	015C								X<15:1>
o Te	CRCXORH	015E								X<31:
echr	CRCDATL	0160							CRC	Data Input
olor	CRCDATH	0162							CRC	Data Input
ygv	CRCWDATL	0164							CF	RC Result R
Inc.	CRCWDATH	0166							CF	RC Result R

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-28: PERIPHERAL PIN SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	038C	_	_	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	_	—	OCTRIG1R5	OCTRIG1R4	OCTRIG1R3	OCTRIG1R2	OCTRIG1R1	OCTRIG1R0	3F3F
RPINR1	038E			INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	_		INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	3F3F
RPINR2	0390	-	-	OCTRIG2R5	OCTRIG2R4	OCTRIG2R3	OCTRIG2R2	OCTRIG2R1	OCTRIG2R0	_	-	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0	3F3F
RPINR7	039A			IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0			IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	3F3F
RPINR8	039C	-	-	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0			IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	3F3F
RPINR9	039E		-	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0		-	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	3F3F
RPINR11	03A2	_	_	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0		_	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	3F3F
RPINR17	03AE		—			U3RXI	R<5:0>			_	_	—	_	—	_	—	_	3F00
RPINR18	03B0	—	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	_	—	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	3F3F
RPINR19	03B2	_	—	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0	_	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	3F3F
RPINR20	03B4		—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	_	_	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	3F3F
RPINR21	03B6	—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	_	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	3F3F
RPINR22	03B8	_	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	_	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	3F3F
RPINR23	03BA		—	TMRCKR5	TMRCKR4	TMRCKR3	TMRCKR2	TMRCKR1	TMRCKR0	_	_	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	3F3F
RPINR27	03C2	_	—	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0		—	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0	3F3F
RPINR28	03C4	_	_	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0		_	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0	3F3F
RPINR29	03C6	_	_	_	_	_	_	_	_	_	_			SS3R	<5:0>			003F
RPINR30	03C8	_	_	_	_	_	_	_	_	_	_			MDMI	R<5:0>			003F
RPINR31	03CA	_	_	MDC2R5	MDC2R4	MDC2R3	MDC2R2	MDC2R1	MDC2R0	-	_	MDC1R5	MDC1R4	MDC1R3	MDC1R2	MDC1R1	MDC1R0	3F3F

X<31:16>

CRC Data Input Register Low

CRC Data Input Register High

CRC Result Register Low

CRC Result Register High

Bit 7

CRCFUL

_

Bit 6

CRCMPT

Bit 5

CRCISEL

_

Bit 4

CRCGO

PLEN4

Bit 3

LENDIAN

PLEN3

Bit 2

_

PLEN2

Bit 1

_

PLEN1

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All

Resets

0040

0000

0000

0000

XXXX

XXXX

XXXX

XXXX

Bit 0

_

PLEN0

_

IADLE J-I.	DINA ONAMILE INIGOLIN SOU		
CHSEL<5:0>	Trigger (Interrupt)	CHSEL<5:0>	Trigger (Interrupt)
000000	(Unimplemented)	100000	UART2 Transmit
000001	SPI3 General Event	100001	UART2 Receive
000010	I2C1 Slave Event	100010	External Interrupt 2
000011	UART4 Transmit	100011	Timer5
000100	UART4 Receive	100100	Timer4
000101	UART4 Error	100101	Output Compare 4
000110	UART3 Transmit	100110	Output Compare 3
000111	UART3 Receive	100111	DMA Channel 2
001000	UART3 Error	101000	I2C2 Slave Event
001001	CTMU Event	101001	External Interrupt 1
001010	HLVD	101010	Interrupt-on-Change
001011	CRC Done	101011	Comparators Event
001100	UART2 Error	101100	SPI3 Receive Event
001101	UART1 Error	101101	I2C1 Master Event
001110	RTCC	101110	DMA Channel 1
001111	DMA Channel 5	101111	A/D Converter
010000	External Interrupt 4	110000	UART1 Transmit
010001	External Interrupt 3	110001	UART1 Receive
010010	SPI2 Receive Event	110010	SPI1 Transmit Event
010011	I2C2 Master Event	110011	SPI1 General Event
010100	DMA Channel 4	110100	Timer3
010101	EPMP	110101	Timer2
010110	SPI1 Receive Event	110110	Output Compare 2
010111	Output Compare 6	110111	Input Capture 2
011000	Output Compare 5	111000	DMA Channel 0
011001	Input Capture 6	111001	Timer1
011010	Input Capture 5	111010	Output Compare 1
011011	Input Capture 4	111011	Input Capture 1
011100	Input Capture 3	111100	External Interrupt 0
011101	DMA Channel 3	111101	USB
011110	SPI2 Transmit Event	111110	SPI3 Transmit Event
011111	SPI2 General Event	111111	Crypto Done

TABLE 5-1: DMA CHANNEL TRIGGER SOURCES

6.6.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using Table Write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes (MSBs) of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOPx bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 6-5). An equivalent procedure in 'C' compiler language, using the MPLAB[®] C30 compiler and built-in hardware functions, is shown in Example 6-6.

EXAMPLE 6-5: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

; S	etup a p	pointer to data Program Memory	
	MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;
	MOV	W0, TBLPAG	;Initialize PM Page Boundary SFR
	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;Initialize a register with program memory address
	MOV	#LOW_WORD_N, W2	;
	MOV	#HIGH_BYTE_N, W3	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
; S	etup NVN	4CON for programming one word t	to data Program Memory
	MOV	#0x4003, W0	;
	MOV	W0, NVMCON	; Set NVMOP bits to 0011
	DISI	#5	; Disable interrupts while the KEY sequence is written
	MOV.B	#0x55, W0	; Write the key sequence
	MOV	W0, NVMKEY	
	MOV MOV.B	WO, NVMKEY #0xAA, WO	
	MOV MOV.B MOV	WO, NVMKEY #0xAA, WO WO, NVMKEY	
	MOV MOV.B MOV BSET	W0, NVMKEY #0xAA, W0 W0, NVMKEY NVMCON, #WR	; Start the write cycle
	MOV MOV.B MOV BSET NOP	W0, NVMKEY #0xAA, W0 W0, NVMKEY NVMCON, #WR	; Start the write cycle ; Required delays

EXAMPLE 6-6: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY ('C' LANGUAGE CODE)

```
// C example using MPLAB C30
unsigned int offset;
                                           // Address of word to program
unsigned long progAddr = 0xXXXXXX;
unsigned int progDataL = 0xXXXX;
                                           // Data to program lower word
                                           // Data to program upper byte
unsigned char progDataH = 0xXX;
//Set up NVMCON for word programming
NVMCON = 0 \times 4003;
                                            // Initialize NVMCON
//Set up pointer to the first memory location to be written
TBLPAG = progAddr>>16;
                                            // Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;
                                            // Initialize lower word of address
//Perform TBLWT instructions to write latches
__builtin_tblwtl(offset, progDataL); // Write to address low word
                                           // Write to upper byte
 _builtin_tblwth(offset, progDataH);
asm("DISI #5");
                                            // Block interrupts with priority <7</pre>
                                            // for next 5 instructions
                                            // C30 function to perform unlock
__builtin_write_NVM();
                                            // sequence and set WR
```

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS (INTCON1<15>) control bit if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device	e Rese	t, the	IPC	Cx regi	isters are					
	initialized, such that all user interrupt										
	sources are assigned to Priority Level 4.										

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE (ISR)

The method that is used to declare an Interrupt Service Routine (ISR) and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles; otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, 0Eh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

NOTES:

11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V), on any desired digital only pins, by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits (see Register 11-1 through Register 11-3), which decides if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

Table 11-2 summarizes the different voltage tolerances. For more information, refer to **Section 33.0 "Electrical Characteristics"** for more details.

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANSx = 1.
Analog Output	1	1	It is recommended to keep ANSx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

TABLE 11-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

Port or Pin	Tolerated Input	Description		
PORTA<10:7,4> ⁽¹⁾		T 1		
PORTB<11:10,8:4>	5.5V	Iolerates input levels above VDD; useful for most standard logic		
PORTC<9:3> ⁽¹⁾				
PORTA<3:0>				
PORTB<15:13,9,3:0>	VDD	Only VDD input levels are tolerated.		
PORTC<2:0>(1)				

Note 1: Not all of these pins are implemented in 28-pin devices. Refer to **Section 1.0 "Device Overview**" for a complete description of port pin implementation.

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ128GB204 family devices support a larger number of remappable input only pins than remappable input/output pins. In this device family, there are up to 25 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered, RP0 through RP25.

See Table 1-3 for a summary of pinout options in each package offering.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals. PPS is not available for these peripherals:

- I²C[™] (input and output)
- USB (all module inputs and outputs)
- Change Notification Inputs
- RTCC Alarm Output(s)
- EPMP Signals (input and output)
- · Analog (inputs and outputs)
- INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

11.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., OC, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs (e.g., USB on USB-enabled devices) will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pin-selectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

11.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 11-23 through Register 11-35). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-4).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

TARI E 11_4·	SELECTABLE OUTPUT SOURCES	(MAPS FUNCTION TO OUTPUT)
IADLE II-4.	SELECTABLE OUTFUT SOURCES	

Output Function Number ⁽¹⁾	Function	Output Name		
0	NULL ⁽²⁾	Null		
1	C1OUT	Comparator 1 Output		
2	C2OUT	Comparator 2 Output		
3	U1TX	UART1 Transmit		
4	U1RTS ⁽³⁾	UART1 Request-to-Send		
5	U2TX	UART2 Transmit		
6	U2RTS ⁽³⁾	UART2 Request-to-Send		
7	SDO1	SPI1 Data Output		
8	SCK1OUT	SPI1 Clock Output		
9	SS1OUT	SPI1 Slave Select Output		
10	SDO2	SPI2 Data Output		
11	SCK2OUT	SPI2 Clock Output		
12	SS2OUT	SPI2 Slave Select Output		
13	OC1	Output Compare 1		
14	OC2	Output Compare 2		
15	OC3	Output Compare 3		
16	OC4	Output Compare 4		
17	OC5	Output Compare 5		
18	OC6	Output Compare 6		
19	U3TX	UART3 Transmit		
20	U3RTS	UART3 Request-to-Send		
21	U4TX	UART4 Transmit		
22	U4RTS ⁽³⁾	UART4 Request-to-Send		
23	SDO3	SPI3 Data Output		
24	SCK3OUT	SPI3 Clock Output		
25	SS3OUT	SPI3 Slave Select Output		
26	C3OUT	Comparator 3 Output		
27	MDOUT	DSM Modulator Output		

Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.

2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.

3: IrDA[®] BCLK functionality uses this output.

REGISTER 11-35: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0		
bit 15	-						bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0		
bit 7	-		•		•	•	bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-14	Unimplemen	ted: Read as ')'						
bit 13-8	RP25R<5:0>	RP25 Output	Pin Mapping b	its					
	Peripheral Ou	Itput Number n	is assigned to	pin, RP25 (see	Table 11-4 for	peripheral func	tion numbers).		
bit 7-6	Unimplemen	ted: Read as '	כ'						
bit 5-0	RP24R<5:0>	RP24R<5:0>: RP24 Output Pin Mapping bits							

5-0 **RP24R<5:0>:** RP24 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP24 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = OCTRIG1 external input
 - 11101 = OCTRIG2 external input
 - 11100 = CTMU⁽²⁾
 - 11011 = A/D⁽²⁾
 - $11010 = \text{Comparator } 3^{(2)}$
 - $11001 = \text{Comparator } 2^{(2)}$
 - 11000 = Comparator 1⁽²⁾ 10111 = Reserved
 - 10110 = Reserved
 - $10110 = \text{Input Capture 6}^{(2)}$
 - $10100 = \text{Input Capture 5}^{(2)}$
 - 10011 =Input Capture 4⁽²⁾
 - $10010 = \text{Input Capture 3}^{(2)}$
 - $10001 = \text{Input Capture 2}^{(2)}$
 - 10000 = Input Capture 1⁽²⁾
 - 01111 = Timer5
 - 01110 = Timer4
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = Reserved
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Output Compare 6⁽¹⁾
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare 3⁽¹⁾
 - 00010 = Output Compare 2⁽¹⁾
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- **Note 1:** Never use an OCx module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

REGISTER 19-13: U1CNFG2: USB CONFIGURATION REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—		_		—		—
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
—	—	—	PUVBUS	EXTI2CEN	UVBUSDIS ⁽¹⁾	—	UTRDIS ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5	Unimplemented: Read as '0'
bit 4	PUVBUS: VBUS Pull-up Enable bit
	1 = Pull-up on VBUS pin is enabled
	0 = Pull-up on VBUS pin is disabled
bit 3	EXTI2CEN: I ² C [™] Interface for External Module Control Enable bit
	1 = External module(s) is controlled via the I^2C interface
	0 = External module(s) is controlled via the dedicated pins
bit 2	UVBUSDIS: USB On-Chip 5V Boost Regulator Builder Disable bit ⁽¹⁾
	 1 = On-chip boost regulator builder is disabled; digital output control interface is enabled 0 = On-chip boost regulator builder is active
bit 1	Unimplemented: Read as '0'
bit 0	UTRDIS: USB On-Chip Transceiver Disable bit ⁽¹⁾
	1 = On-chip transceiver is disabled; digital transceiver interface is enabled
	0 = On-chip transceiver is active

Note 1: Never change these bits while the USBPWR bit is set (U1PWRC<0> = 1).

REGISTER 25-7: ANCFG: A/D BAND GAP REFERENCE CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15 bit 8							
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	_	VBG2EN	VBGEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own

bit 15-2 Unimplemented: Read as '0'

bit 1 VBG2EN: A/D Input VBG/2 Enable bit

1 = Band Gap Voltage, divided by two reference (VBG/2), is enabled

0 = Band Gap Voltage, divided by two reference (VBG/2), is disabled

bit 0 VBGEN: A/D Input VBG Enable bit

1 = Band Gap Voltage (VBG) reference is enabled

0 = Band Gap Voltage (VBG) reference is disabled

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	-	—	—	—	—	-	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 15-10	bit 15-10 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current 011110 • • 000001 = Minimum positive change from nominal current 000000 = Nominal current output specified by IRNG<1:0> 111111 = Minimum negative change from nominal current • • 100010						
bit 9-8	IRNG<1:0>: Current Source Range Select bits 11 = 100 × Base Current 10 = 10 × Base Current 01 = Base current level (0.55 μA nominal) 00 = 1000 × Base Current						
bit 7-0	Unimplemen	ted: Read as ')'				

REGISTER 28-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

30.0 SPECIAL FEATURES

- Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRMs.
 "Watchdog Timer (WDT)"
 - (DS39697)
 - "High-Level Device Integration" (DS39719)
 - "Programming and Diagnostics" (DS39716)

PIC24FJ128GB204 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation (ICE)

30.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location, F80000h. A detailed explanation of the various bit functions is provided in Register 30-1 through Register 30-6.

Note that address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using Table Reads and Table Writes.

30.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ128GB204 FAMILY DEVICES

In PIC24FJ128GB204 family devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the four words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 30-1. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note: Configuration data is reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be: '0000 0000'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '0's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

TABLE 30-1: FLASH CONFIGURATION WORD LOCATIONS FOR THE PIC24FJ128GB204 FAMILY

Dovico	Configuration Word Addresses							
Device	1	2	3	4				
PIC24FJ64GB2XX	ABFEh	ABFCh	ABFAh	ABF8h				
PIC24FJ128GB2XX	157FEh	157FCh	157FAh	157F8h				

REGISTER 30-4: CW4: FLASH CONFIGURATION WORD 4 (CONTINUED)

bit 6	DSBOREN: Deep Sleep Brown-out Reset Enable bit
	1 = BOR is enabled in Deep Sleep mode
	0 = BOR is disabled in Deep Sleep mode (remains active in other Sleep modes)
bit 5	DSWDTOSC: Deep Sleep Watchdog Timer Clock Select bit
	1 = Clock source is LPRC
	0 = Clock source is SOSC
bit 4-0	DSWDTPS<4:0>: Deep Sleep Watchdog Timer Postscaler Select bits
	11111 = 1:68,719,476,736 (25.7 days)
	11110 = 1:34,359,738,368(12.8 days)
	11101 = 1:17,179,869,184 (6.4 days)
	11100 = 1:8,589,934592 (77.0 hours)
	11011 = 1:4,294,967,296 (38.5 hours)
	11010 = 1:2,147,483,648 (19.2 hours)
	11001 = 1:1,073,741,824 (9.6 hours)
	11000 = 1:536,870,912 (4.8 hours)
	10111 = 1:268,435,456 (2.4 hours)
	10110 = 1:134,217,728 (72.2 minutes)
	10101 = 1:67,108,864 (36.1 minutes)
	10100 = 1:33,554,432 (18.0 minutes)
	10011 = 1:16,777,216 (9.0 minutes)
	10010 = 1:8,388,608 (4.5 minutes)
	10001 = 1:4,194,304 (135.3s)
	10000 = 1:2,097,152 (67.7s)
	01111 = 1:1,048,576 (33.825s)
	01110 = 1:524,288 (16.912s)
	01101 = 1.262,114 (8.456s)
	01100 = 1:131,072 (4.2288)
	01011 = 1.05,530 (2.1148)
	01010 = 1.32,708 (1.0578)
	01001 = 1.10,304 (320.5 IIIS)
	01000 = 1.0, 192 (204.5 IIIS)
	00111 - 1.4,090 (132.1115)
	00110 - 1.2,040 (00.1115)
	00101 - 1.1,024 (33113)
	00100 - 1.512 (10.5115)
	0.0011 = 1.208 (4.1 ms)
	00001 = 1.64 (2.1 ms)
	00000 = 1:32 (1 ms)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT Wn		Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	#lit10.Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C. DC. N. OV. Z
	SUBB	Wb.Ws.Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C DC N OV Z
	CIIDD	Wb #1;+5 Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	
CUDD	CUDD	«b, #1103, Wd	f = W PEC f	1	1	
SUBK	CUDD	L KAREC	WREG - WREG f	1	1	
	CUDD	L, WREG	Wd - Wc Wb	1	1	
	CUDD	WD, WS, WQ	Wd - lit5 Wb	1	1	
QUIDDD	OUDDD	₩IJ, #⊥⊥LJ, WU	$f = W/PEC + f = \sqrt{C}$	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	Ĭ	f = WREG - f - (C)	1	1	C, DC, N, OV, Z
	SUBBR	Í,WREG	WREG = WREG - t - (C)	1	1	C, DC, N, OV, Z
	SUBBR	Wb,Ws,Wd	Wd = Ws - Wb - (C)	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	Wd = lit5 - Wb - (C)	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None

33.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ128GB204 family AC characteristics and timing parameters.

TABLE 33-18: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)					
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
	Operating voltage VDD range as described in Section 33.1 "DC Characteristics".					

FIGURE 33-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 33-19: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSCO/CLKO Pin	_	_	15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	—	400	pF	In I ² C™ mode

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2

INDEX

Α

A/D	
Control Registers	354
Extended DMA Operations	353
Operation	351
Transfer Functions	
10-Bit	370
12-Bit	369
AC Characteristics	
A/D Conversion Timing Requirements	446
A/D Specifications	445
and Timing Parameters	427
Capacitive Loading on Output Pins	427
CLKO and I/O Timing Requirements	430
External Clock Timing Requirements	428
I ² C Bus Data (Master Mode) Requirements	442
I ² C Bus Data (Slave Mode) Requirements	444
I ² C Bus Start/Stop Bit Timing Requirements	
(Master Mode)	441
I ² C Bus Start/Stop Bits (Slave Mode)	
Requirements	443
Input Capture x Requirements	434
Internal RC Accuracy	429
Load Conditions and Requirements for	
Specifications	427
Output Compare x Requirements	434
PLL Clock Timing Specifications	429
RC Oscillator Start-up Time	430
Reset and Brown-out Reset Requirements	431
Simple OCx/PWM Mode Requirements	435
SPIx Master Mode (CKE = 0) Requirements	436
SPIx Master Mode (CKE = 1) Requirements	437
SPIx Slave Mode (CKE = 0) Requirements	438
SPIx Slave Mode (CKE = 1) Requirements	440
Timer1 External Clock Requirements	432
Timer2 and Timer4 External Clock	
Requirements	433
Timer3 and Timer5 External Clock	
Requirements	433
Alternate Interrupt Vector Table (AIVT)	91
Assembler	
MPASM Assembler	404

В

Block Diagrams	
10-Bit A/D Converter Analog Input Model	368
12-Bit A/D Converter	352
16-Bit Asynchronous Timer3 and Timer5	207
16-Bit Synchronous Timer2 and Timer4	207
16-Bit Timer1 Module	201
Accessing Program Space Using	
Table Instructions	67
Addressing for Table Registers	79
BDT Mapping for Endpoint Buffering Modes	270
Buffer Address Generation in PIA Mode	355
CALL Stack Frame	64
Comparator Voltage Reference Module	377
CPU Programmer's Model	31
CRC Module	345
CRC Shift Engine Detail	345
Cryptographic Engine	329

CTMU Connections and Internal Configuration	
for Capacitance Measurement	380
CTMU Connections and Internal Configuration	
for Pulse Delay Generation	381
CTMU Connections and Internal Configuration	
for Time Measurement	381
Data Access from Program Space	001
Address Generation	66
Data Signal Modulator	200
Direct Memory Access (DMA)	299 71
Direct Memory Access (DMA)	
EDS Address Generation for Write	02
EDS Address Generation for Write	63
Extended Data Space (EDS)	
High/Low-Voltage Detect (HLVD) Module	387
I-C Module	246
Individual Comparator Configurations,	
CREF = 0	372
Individual Comparator Configurations,	
CREF = 1, CVREFP = 0	373
Individual Comparator Configurations,	
CREF = 1, CVREFP = 1	373
Input Capture x	211
MCLR Pin Connections	24
On-Chip Regulator Connections	399
Oscillator Circuit Placement	27
Output Compare x (16-Bit Mode)	218
Output Compare x (Double-Buffered,	
16-Bit PWM Mode)	220
PIC24F CPU Core	30
PIC24FJ128GB204 Family (General)	14
PSV Operation Access (Lower Word)	69
PSV Operation Access (Upper Word)	69
Recommended Minimum Connections	23
Reset System	85
RTCC Module	315
Shared I/O Port Structure	173
Smart Card Subsystem Connection	257
SPIx Master, Frame Master Connection	
SPIx Master, Frame Slave Connection	243
SPIx Master/Slave Connection	
(Enhanced Buffer Modes)	242
SPIx Master/Slave Connection	
(Standard Mode)	241
SPly Module (Enhanced Mode)	220
SPly Module (Standard Mode)	220
SPly Slave, Frame Master Connection	243
SPIX Slave, Frame Slave Connection	243
Serie Slave, Frame Slave Connection	243 147
System Clock	147
Timer2/3 and Timer4/5 (32-Bit)	200
	371
UARIX (Simplified)	254
USB Host Interface Example	268
USB OTG Bus Power Only	267
USB UT (- Dual Power Evample	267
	_
USB OTG External Pull-up for Full-Speed	007
USB OTG External Pull-up for Full-Speed Device Mode	267
USB OTG External Pull-up for Full-Speed Device Mode USB OTG Interface Example	267
USB OTG External Pull-up for Full-Speed Device Mode USB OTG Interface Example USB OTG Interrupt Funnel	267 268 274
USB OTG External Pull-up for Full-Speed Device Mode USB OTG Interface Example USB OTG Interrupt Funnel USB OTG Module	267 268 274 266
USB OTG External Pull-up for Full-Speed Device Mode USB OTG Interface Example USB OTG Interrupt Funnel USB OTG Module USB OTG Self-Power Only	267 268 274 266 267
USB OTG External Pull-up for Full-Speed Device Mode USB OTG Interface Example USB OTG Interrupt Funnel USB OTG Module USB OTG Self-Power Only USB PLL	267 268 274 266 267 155