

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb202t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number/Grid Locator								
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description			
CN0	12	9	34	_		Interrupt-on-Change Inputs.			
CN1	11	8	33	_	_				
CN2	2	27	19						
CN3	3	28	20	_	_				
CN4	4	1	21	_	_				
CN5	5	2	22						
CN6	6	3	23						
CN7	7	4	24						
CN8	_		25						
CN9	_		26	—					
CN10	_		27	—					
CN11	26	23	15	_	—				
CN12	25	22	14	_	_				
CN13	24	21	11	_	_				
CN15	22	19	9	—					
CN16	21	18	8	_	_				
CN17	_		3	—					
CN18	_		2	_	—				
CN19	_		5	_	_				
CN20	_		4	_	_				
CN21	18	15	1	_	—				
CN22	17	14	44	_	_				
CN23	16	13	43	—					
CN24	15	12	42	—					
CN25	_		37	_	_				
CN26	_		38						
CN27	14	11	41	_					
CN28	_		36						
CN29	10	7	31	_	_				
CN30	9	6	30						
CN33	_		13						
CN34	_		32						
CN35	_		35	—					
CN36	_		12	_	_				
CTCMP	4	1	21	I	ANA	CTMU Comparator 2 Input (Pulse mode).			
Legend: ST =	Schmitt Trigger	input		TTL	= TTL co	mpatible input I = Input			
ANA = / I ² C = \$	ANA = Analog input $O = Output P = Power$ $I^2C = ST with I^2C^{TM} or SMBus levels$								

TABLE 1-3: PIC24FJ128GB204 FAMILY PINOUT DESCRIPTION (CONTINUED)

TABLE 4-33: PERIPHERAL MODULE DISABLE (PMD) REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0170	T5MD	T4MD	T3MD	T2MD	T1MD	—	—	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	ADC1MD	0000
PMD2	0172	—	_	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	—	—	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0174	_	_	_	_	DSMMD	CMPMD	RTCCMD	PMPMD	CRCMD	_	_	_	U3MD	_	I2C2MD	_	0000
PMD4	0176	_	_	_	_	_	_	_	_	_	UPWMMD	U4MD	_	REFOMD	CTMUMD	HLVDMD	USB1MD	0000
PMD6	017A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SPI3MD	0000
PMD7	017C	_	_	_	_	_	_	_	_	_	_	DMA1MD	DMA0MD	_	_	_	_	0000
PMD8	017E	—	—	—	—	—	—	—	—	_	—	_	—	_	_	—	CRYMD	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-1: DMACON: DMA ENGINE CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
DMAEN	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—	—	—	—	—	—	PRSSEL	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkn	iown		

bit 15 DMAEN: DMA Module Enable bit

1 = Enables module

0 = Disables module and terminates all active DMA operation(s)

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round robin scheme

0 = Fixed priority scheme

	Reset – GOTO Instruction	000000h
	Reset – GOTO Address	000002h
	Reserved	000004h
	Oscillator Fail Trap Vector	
	Address Error Trap Vector	
	Stack Error Trap Vector	
	Math Error Trap Vector	_
	Reserved	_
	Reserved	_
	Reserved	
	Interrupt Vector 0	000014h
	Interrupt Vector 1	
	—	
	—	
	—	
	Interrupt Vector 52	00007Ch
<u> </u>	Interrupt Vector 53	00007Eh > Interrupt Vector Table (IVT) ⁽¹⁾
ority	Interrupt Vector 54	000080h
Lic	—	
г. Н	—	
rde	—	
<u>o</u>	Interrupt Vector 116	0000FCh
rra	Interrupt Vector 117	0000FEh)
lati	Reserved	000100h
∠ B	Reserved	000102h
sin	Reserved	
eas	Oscillator Fail Trap Vector	
ecu	Address Error Trap Vector	
ă	Stack Error Trap Vector	
	Math Error Trap Vector	
	Reserved	
	Reserved	
	Reserved	
	Interrupt Vector 0	000114h
	Interrupt Vector 1	_
	_	
	—	
	Interrupt Vector 52	00017Ch
	Interrupt Vector 53	00017Eh > Alternate Interrupt Vector Table (AIVT)
	Interrupt Vector 54	000180h
	—	
	—	
↓	Interrupt Vector 116	
V	Interrupt Vector 117	0001FEh J
	Start of Code	000200h

TABLE 8-1: TRAP VECTOR DETAILS

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

9.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Oscillator"** (DS39700).

The oscillator system for PIC24FJ128GB204 family devices has the following features:

- A total of four external and internal oscillator options as clock sources, providing 15 different Clock modes
- An on-chip, USB PLL block to provide a stable 48 MHz clock for the USB module, as well as a range of frequency options for the system clock

- An on-chip PLL (x4, x6, x8) block available for the Primary Oscillator (POSC) source or FRCDIV (see Section 9.8 "On-Chip PLL")
- Software-controllable switching between various clock sources
- Software-controllable postscaler for selective clocking of CPU for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- A separate and independently configurable system clock output for synchronizing external hardware

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24FJ128GB204 FAMILY CLOCK DIAGRAM

REGISTER 9-6:	REFOTRIML: REFERENCE OSCILLATOR TRIM REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ROTRI	M<15:8>			
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
ROTRIM7	—	—	—				
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-7	ROTRIM<15 Provides frac 11111111 11111110 • • • 1000000000 • • • •	:7>: Reference (ctional additive to = 511/512 (0.998 = 510/512 (0.999 = 256/512 (0.500 = 2/512 (0.00399 = 1/512 (0.00399 = 0/512 (0.00 div	Dscillator Trim the RODIVx 3046875) divis 609375) divis 00) divisor ad 0625) divisor 53125) divisor	n bits value for the 1/ sor added to RO or added to RO ded to RODIVx added to RODI r added to ROD RODIV value	/2 period of the DDIVx value DIVx value value Vx value DIVx value	REFO clock.	
bit 6-0	Unimplemer	nted: Read as '0	,				

9.8 On-Chip PLL

An on-chip PLL (x4, x6, x8) can be selected by the Configuration bits, PLLDIV<3:0>. The Primary Oscillator and FRC sources (FRCDIV) have the option of using this PLL.

Using the internal FRC source, the PLL module can generate the following frequencies, as shown in Table 9-4.

FRC	RCDIV<2:0> (FRCDIV)	x4 PLL	x6 PLL	x8 PLL
8 MHz	000 (divide-by-1)	32 MHz	—	—
8 MHz	001 (divide-by-2)	16 MHz	24 MHz	32 MHz
8 MHz	010 (divide-by-4)	8 MHz	12 MHz	16 MHz

TABLE 9-4: VALID FRC CONFIGURATION FOR ON-CHIP PLL⁽¹⁾

Note 1: The minimum frequency input to the on-chip PLL is 2 MHz.

11.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-4 through Register 11-22).

Each register contains two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

TABI F 11-3	SELECTABLE INPUT SOURCES ((MAPS INPUT TO FUNCTION) ⁽¹⁾

Input Name	Function Name	Register	Function Mapping Bits
DSM Modulation Input	MDMIN	RPINR30	MDMIR<5:0>
DSM Carrier 1 Input	MDCIN1	RPINR31	MDC1R<5:0>
DSM Carrier 2 Input	MDCIN2	RPINR31	MDC2R<5:0>
External Interrupt 1	INT1	RPINR0	INT1R<5:0>
External Interrupt 2	INT2	RPINR1	INT2R<5:0>
External Interrupt 3	INT3	RPINR1	INT3R<5:0>
External Interrupt 4	INT4	RPINR2	INT4R<5:0>
Input Capture 1	IC1	RPINR7	IC1R<5:0>
Input Capture 2	IC2	RPINR7	IC2R<5:0>
Input Capture 3	IC3	RPINR8	IC3R<5:0>
Input Capture 4	IC4	RPINR8	IC4R<5:0>
Input Capture 5	IC5	RPINR9	IC5R<5:0>
Input Capture 6	IC6	RPINR9	IC6R<5:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<5:0>
Output Compare Fault B	OCFB	RPINR11	OCFBR<5:0>
Output Compare Trigger 1	OCTRIG1	RPINR0	OCTRIG1R<5:0>
Output Compare Trigger 2	OCTRIG2	RPINR2	OCTRIG2R<5:0>
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R<5:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<5:0>
SPI1 Slave Select Input	SS1IN	RPINR21	SS1R<5:0>
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<5:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<5:0>
SPI2 Slave Select Input	SS2IN	RPINR23	SS2R<5:0>
SPI3 Clock Input	SCK3IN	RPINR28	SCK3R<5:0>
SPI3 Data Input	SDI3	RPINR28	SDI3R<5:0>
SPI3 Slave Select Input	SS3IN	RPINR29	SS3R<5:0>
Generic Timer External Clock	TMRCK	RPINR23	TMRCKR<5:0>
UART1 Clear-to-Send	U1CTS	RPINR18	U1CTSR<5:0>
UART1 Receive	U1RX	RPINR18	U1RXR<5:0>
UART2 Clear-to-Send	U2CTS	RPINR19	U2CTSR<5:0>
UART2 Receive	U2RX	RPINR19	U2RXR<5:0>
UART3 Clear-to-Send	U3CTS	RPINR21	U3CTSR<5:0>
UART3 Receive	U3RX	RPINR17	U3RXR<5:0>
UART4 Clear-to-Send	U4CTS	RPINR27	U4CTSR<5:0>
UART4 Receive	U4RX	RPINR27	U4RXR<5:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger (ST) input buffers.

REGISTER 11-23: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP1R<5:0>: RP1 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP1 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP0R<5:0>: RP0 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP0 (see Table 11-4 for peripheral function numbers).

REGISTER 11-24: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP2R<5:0>:** RP2 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP2 (see Table 11-4 for peripheral function numbers). For 32-bit cascaded operation, these steps are also necessary:

- Set the OC32 bits for both registers (OCyCON2<8>) and (OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSELx (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

15.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing '0x1F' to the SYNCSEL<4:0> bits (OCxCON2<4:0>) and '0' to the OCTRIG bit (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON1<12:10>).
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode in the OCM<2:0> bits (OCxCON1<2:0>).
- Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 15-1.
- 9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = OCTRIG1 external input
 - 11101 = OCTRIG2 external input
 - 11100 = CTMU⁽²⁾
 - 11011 = A/D⁽²⁾
 - $11010 = \text{Comparator } 3^{(2)}$
 - $11001 = \text{Comparator } 2^{(2)}$
 - 11000 = Comparator 1⁽²⁾ 10111 = Reserved
 - 10110 = Reserved
 - $10110 = \text{Input Capture 6}^{(2)}$
 - $10100 = \text{Input Capture 5}^{(2)}$
 - 10011 =Input Capture 4⁽²⁾
 - $10010 = \text{Input Capture 3}^{(2)}$
 - $10001 = \text{Input Capture 2}^{(2)}$
 - 10000 = Input Capture 1⁽²⁾
 - 01111 = Timer5
 - 01110 = Timer4
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = Reserved
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Output Compare 6⁽¹⁾
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare 3⁽¹⁾
 - 00010 = Output Compare 2⁽¹⁾
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- **Note 1:** Never use an OCx module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

REGISTER 17-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	 S: I2Cx Start bit Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	 1 = Read: Indicates the data transfer is output from the slave 0 = Write: Indicates the data transfer is input to the slave
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit is in progress, I2CxTRN is full (8 bits of data) 0 = Transmit is complete, I2CxTRN is empty

REGISTER 17-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	—	—	_	MSK	<9:8>
bit 15				-		-	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MSP	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		at POR '1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-10 Unimplemented: Read as '0'

bit 9-0 MSK<9:0>: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position
 0 = Disables masking for bit x; bit match is required in this position

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_		RXRPTIF ⁽²⁾	TXRPTIF ⁽²⁾	—	_	WTCIF	GTCIF
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	PARIE	RXRPTIE	TXRPTIE(*)			WICIE	GICIE
DIL 7							DIL U
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13	RXRPTIF: Re	eceive Repeat I	nterrupt Flag b	it ⁽²⁾			
	1 = Parity err	or has persisted	after the same	e character ha	s been receive	d five times (for	ur retransmits)
hit 12		eareu ansmit Bonoat I	ntorrunt Elag h	.;+(2)			
DIL 12	1 = 1 ine error	r has been dete	cted after the la	ast retransmit r	per TXRPT<1:()> (see Registe	er 18-5)
	0 = Flag is cle	eared				(0001109.010	
bit 11-10	Unimplemen	ted: Read as ')'				
bit 9	WTCIF: Wait	ing Time Counte	er Interrupt Fla	g bit			
	1 = Waiting T	ïme Counter ha ïme Counter ha	s reached 0	0			
bit 8	GTCIF: Guar	d Time Counter	Interrupt Flag	bit			
bit o	1 = Guard Tir	ne Counter has	reached 0	5.C			
	0 = Guard Tir	ne Counter has	not reached 0				
bit 7	Unimplemen	ited: Read as '0)'				
bit 6	PARIE: Parity	y Interrupt Enab	le bit ⁽²⁾				
	1 = An interr	upt is invoked w 18-2 for the inte	(hen a characte errupt flag)	er is received v	with a parity err	or (see PERR (UxSIA<3>) in
	0 = Interrupt	is disabled	sindprindg)				
bit 5	RXRPTIE: Re	eceive Repeat I	nterrupt Enable	e bit ⁽²⁾			
	1 = An interr	rupt is invoked	when a parity	error has per	rsisted after th	ie same chara	cter has been
	0 = Interrupt	is disabled	retransmits)				
bit 4	TXRPTIE: Tra	ansmit Repeat I	nterrupt Enabl	e bit ⁽²⁾			
	1 = An interr	upt is invoked w	hen a line erro	or is detected a	fter the last ret	ransmit per TX	RPT<1:0> has
	been cor	npleted (see Re	egister 18-5)				
hit 3-2	Unimplemen	is disabled)'				
bit 1	WTCIE: Wait	ing Time Count	, er Interrupt En;	able bit			
2.12	1 = Waiting T	ime Counter int	errupt is enabl	ed			
	0 = Waiting T	ïme Counter int	errupt is disabl	led			
bit 0	GTCIE: Guar	d Time Counter	Interrupt Enat	ole bit			
	1 = Guard Tir 0 = Guard Tir	ne Counter inte ne Counter inte	rrupt is enable rrupt is disable	d d			
Note 1:	These bits are an	nly available for		ART2. RCL (UVSCCO	N<1>)		
4 .		$p_{\rm HOUDIC} = 10$	o onny, occi i i				

REGISTER 18-6: UxSCINT: UARTx SMART CARD INTERRUPT REGISTER⁽¹⁾

REGISTER 19-13: U1CNFG2: USB CONFIGURATION REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—		_		—		—
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
—	—	—	PUVBUS	EXTI2CEN	UVBUSDIS ⁽¹⁾	—	UTRDIS ⁽¹⁾
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-5	Unimplemented: Read as '0'
bit 4	PUVBUS: VBUS Pull-up Enable bit
	1 = Pull-up on VBUS pin is enabled
	0 = Pull-up on VBUS pin is disabled
bit 3	EXTI2CEN: I ² C [™] Interface for External Module Control Enable bit
	1 = External module(s) is controlled via the I^2C interface
	0 = External module(s) is controlled via the dedicated pins
bit 2	UVBUSDIS: USB On-Chip 5V Boost Regulator Builder Disable bit ⁽¹⁾
	 1 = On-chip boost regulator builder is disabled; digital output control interface is enabled 0 = On-chip boost regulator builder is active
bit 1	Unimplemented: Read as '0'
bit 0	UTRDIS: USB On-Chip Transceiver Disable bit ⁽¹⁾
	1 = On-chip transceiver is disabled; digital transceiver interface is enabled
	0 = On-chip transceiver is active

Note 1: Never change these bits while the USBPWR bit is set (U1PWRC<0> = 1).

REGISTER 22-2: RTCPWC: RTCC POWER CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PWCEN	PWCPOL	PWCPRE	PWSPRE	RTCLK1 ⁽²⁾	RTCLK0 ⁽²⁾	RTCOUT1	RTCOUT0				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	—	—		—	—	—				
bit 7							bit 0				
Legend:											
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 15	PWCEN: Pow	ver Control Ena	able bit								
	1 = Power co	ntrol is enabled	l								
h:+ 4 4		ntrol is disabled) Josite / bit								
DIC 14		ower Control Po									
		\perp = Power control output is active-nign 0 = Power control output is active-low									
bit 13	PWCPRE: Po	ower Control/St	ability Prescale	er bit							
	1 = PWC stat	pility window clo	ock is divide-by	/-2 of source R ⁻	TCC clock						
	0 = PWC stat	pility window clo	ock is divide-by	/-1 of source R	TCC clock						
bit 12	PWSPRE: Po	ower Control Sa	ample Prescale	er bit							
	1 = PWC sam	nple window clo	ock is divide-by	-2 of source R	FCC clock						
h:+ 11 10			CK IS DIVIDE-Dy	$(-1 \text{ of source } \mathbb{R})$							
				DILS							
	10 = External	10 = External power line (60 HZ)									
	01 = Internal	01 = Internal LPRC Oscillator									
	00 = External	Secondary Os	cillator (SOSC	;)							
bit 9-8	RTCOUT<1:0	>: RTCC Outp	ut Source Sele	ect bits							
	11 = Power c	ontrol									
	10 = RTCC cl	lock									
	01 = RTCC s	econos ciock Iarm pulse									
bit 7-0	Unimplemen	ted: Read as '	o '								
Note 1	The RTCPWC red	nister is only af	fected by a PC)R							
		g									

2: When a new value is written to these register bits, the lower half of the MINSEC register should also be written to properly reset the clock prescalers in the RTCC.

FIGURE 26-4: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 1

REGISTER 30-3: CW3: FLASH CONFIGURATION WORD 3

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WPEND	WPCFG	WPDIS	BOREN	PLLSS ⁽⁴⁾	WDTWIN1	WDTWIN0	SOSCSEL
bit 15							bit 8

r-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
—	WPFP6 ⁽³⁾	WPFP5	WPFP4	WPFP3	WPFP2	WPFP1	WPFP0
bit 7							bit 0

Legend:	r = Reserved bit	PO = Program Once bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 23-16	Unimplemented: Read as '1'
bit 15	WPEND: Segment Write Protection End Page Select bit
	 1 = Protected program memory segment upper boundary is at the last page of program memory; the lower boundary is the code page specified by WPFP<6:0>
	 0 = Protected program memory segment lower boundary is at the bottom of the program memory (000000h); upper boundary is the code page specified by WPFP<6:0>
bit 14	WPCFG: Configuration Word Code Page Write Protection Select bit
	1 = Last page (at the top of program memory) and Flash Configuration Words are not write-protected ⁽¹⁾ 0 = Last page and Flash Configuration Words are write-protected provided WPDIS = 0
bit 13	WPDIS: Segment Write Protection Disable bit
	 1 = Segmented program memory write protection is disabled 0 = Segmented program memory write protection is enabled; protected segment is defined by the WPEND, WPCFG and WPFPx Configuration bits
bit 12	BOREN: Brown-out Reset Enable bit
	1 = BOR is enabled (all modes except Deep Sleep)0 = BOR is disabled
bit 11	PLLSS: PLL Secondary Selection Configuration bit ⁽⁴⁾
	1 = PLL is fed by the Primary Oscillator
	0 = PLL is fed by the on-chip Fast RC (FRC) Oscillator
bit 10-9	WDTWIN<1:0>: Watchdog Timer Window Width Select bits
	11 = 25% 10 = 37.5%
	01 = 50%
	00 = 75%
bit 8	SOSCSEL: SOSC Selection bit
	1 = SOSC circuit is selected
	0 = Digital (SCLKI) mode ⁽²⁾
Note 1:	Regardless of WPCFG status, if WPEND = 1 or if the WPFP<6:0> bits correspond to the Configuration Word page is protected.
2:	Ensure that the SCLKI pin is made a digital input while using this configuration (see Table 11-1).
3:	For the 64K devices (PIC24FJ64GB2XX), maintain WPFP6 as '0'.

4: This Configuration bit only takes effect when PLL is not being used.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
NOP	NOP	•	No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH S	-	Push Shadow Registers	1	1	None
					1	1

TABLE 32-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 33-31: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
OC15	Tfd	Fault Input to PWM I/O Change	_	_	50	ns		
OC20	TFLT	Fault Input Pulse Width	50	_		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 33-36: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (MASTER MODE)

АС СНА	RACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy (BRG + 1)	—	μs	Only relevant for		
		Setup Time	400 kHz mode	Tcy (BRG + 1)	_	μs	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)		μs	condition		
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy (BRG + 1)	_	μs	After this period, the		
			400 kHz mode	Tcy (BRG + 1)		μS	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	_	μs	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy (BRG + 1)	_	μs			
		Setup Time	400 kHz mode	Tcy (BRG + 1)	—	μS			
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	μS			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy (BRG + 1)	—	ns			
		Hold Time	400 kHz mode	Tcy (BRG + 1)	—	ns			
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	_	ns			

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 17.2 "Setting Baud Rate When Operating as a Bus Master" for details.

2: Maximum Pin Capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N	28					
Pitch	е	1.27 BSC					
Overall Height	Α	-	-	2.65			
Molded Package Thickness	A2	2.05	-	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E		10.30 BSC				
Molded Package Width	E1	7.50 BSC					
Overall Length	D	17.90 BSC					
Chamfer (Optional)	h	0.25	-	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1	1.40 REF					
Lead Angle	Θ	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.18	-	0.33			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2