

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb204-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	_	—	_	—	_	—	_	—	-	-	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	—	_	—	_	_	_	-	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1TXIF	SPI1IF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	—	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	—	DMA4IF	PMPIF	—		OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	CRYROLLIF	CRYFREEIF	SPI2TXIF	SPI2IF	0000
IFS3	008A	—	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	—	KEYSTRIF	CRYDNIF	INT4IF	INT3IF	—	—	MI2C2IF	SI2C2IF		0000
IFS4	008C	—	_	CTMUIF	—			_	HLVDIF		_	—	—	CRCIF	U2ERIF	U1ERIF		0000
IFS5	008E	—	—		—	SPI3TXIF	SPI3IF	U4TXIF	U4RXIF	U4ERIF	USB1IF	I2C2BCIF	I2C1BCIF	U3TXIF	U3RXIF	U3ERIF		0000
IFS6	0090	—	—		—		FSTIF	—	_		—	—	—	—	—	—		0000
IFS7	0092	—	—		—			—	_		—	JTAGIF	—	—	—	—		0000
IEC0	0094	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1TXIE	SPI1IE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE		_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	—	DMA4IE	PMPIE	—		OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	CRYROLLIE	CRYFREEIE	SPI2TXIE	SPI2IE	0000
IEC3	009A	—	RTCIE	DMA5IE	SPI3RXIE	SPI2RXIE	SPI1RXIE	—	KEYSTRIE	CRYDNIE	INT4IE	INT3IE	—	—	MI2C2IE	SI2C2IE		0000
IEC4	009C	—	—	CTMUIE	—			—	HLVDIE		—	—	—	CRCIE	U2ERIE	U1ERIE		0000
IEC5	009E	—	—		—	SPI3TXIE	SPI3IE	U4TXIE	U4RXIE	U4ERIE	USB1IE	I2C2BCIE	I2C1BCIE	U3TXIE	U3RXIE	U3ERIE		0000
IEC6	00A0	_	_	_	_	_	FSTIE	_	_	_	_	_	_	_	_	_	_	0000
IEC7	00A2	—		-	—	-	-	—			—	JTAGIE	—	_	—	—	-	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	_	DMA0IP2	DMA0IP1	DMA0IP0	4444
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_	_	_	_	DMA1IP2	DMA1IP1	DMA1IP0	_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0444
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	_	_	_	_	_	_	_	_	_	_	_	_		INT1IP<2:0>		0004
IPC6	00B0	_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	_	DMA2IP2	DMA2IP1	DMA2IP0	4444
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	_	CRYROLLIP2	CRYROLLIP1	CRYROLLIP0	_	CRYFREEIP2	CRYFREEIP1	CRYFREEIP0	_	SPI2TXIP2	SPI2TXIP1	SPI2TXIP0	_	SPI2IP2	SPI2IP1	SPI2IP0	4444
IPC9	00B6	_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	—	DMA3IP2	DMA3IP1	DMA3IP0	4444
IPC10	00B8	_	_	—	_	_	OC6IP2	OC6IP1	OC6IP0	-	OC5IP2	OC5IP1	OC5IP0	—	IC6IP2	IC6IP1	IC6IP0	0444
IPC11	00BA	_	_	—	_	_	DMA4IP2	DMA4IP1	DMA4IP0	-	PMPIP2	PMPIP1	PMPIP0	_			_	0440
IPC12	00BC	_	_	—	—	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	—	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	—	_	—	0440
IPC13	00BE	_	CRYDNIP2	CRYDNIP1	CRYDNIP0	—	INT4IP2	INT4IP1	INT4IP0	—	INT3IP2	INT3IP1	INT3IP0	—	—	_	—	4440
IPC14	00CO	_	SPI2RXIP2	SPI2RXIP1	SPI2RXIP0	_	SPI1RXIP2	SPI1RXIP1	SPI1RXIP0	—	—	—	—	—	KEYSTRIP2	KEYSTRIP1	KEYSTRIP0	4404
IPC15	00C2	_	_	_	_	_	RTCIP2	RTCIP1	RTCIP0	_	DMA5IP2	DMA5IP1	DMA5IP0	_	SPI3RXIP2	SPI3RXIP1	SPI3RXIP0	0444

Legend: — = unimplemented, read as '0'; r = reserved bit, maintain as '0'. Reset values are shown in hexadecimal.

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

- bit 1 SPI2TXIF: SPI2 Transmit Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SPI2IF: SPI2 General Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
_	—	CTMUIF		—	_	—	HLVDIF
bit 15	·						bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
—	—	—		CRCIF	U2ERIF	U1ERIF	—
bit 7							bit
Legend:							
R = Readab		W = Writable b	it	•	nented bit, read		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	-	ted: Read as '0					
bit 13		MU Interrupt Fla	•				
		request has occu request has not					
bit 12-9	Unimplemen	ted: Read as '0	1				
bit 8	HLVDIF: High	n/Low-Voltage D	etect Interrupt	t Flag Status bi	t		
		request has occu request has not					
bit 7-4	Unimplemen	ted: Read as '0	,				
bit 3	CRCIF: CRC	Generator Inter	rupt Flag State	us bit			
		request has occu					
	0 = Interrupt	request has not	occurred				
bit 2		RT2 Error Interru		s bit			
		request has occu					
	$\cap = interrint$	request has not	occurrea				
L:4 4	•	•					
bit 1	U1ERIF: UAF	RT1 Error Interru		s bit			
bit 1	U1ERIF: UAF	•	urred	s bit			

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
	RTCIE	DMA5IE	SPI3RXIE	SPI2RXIE	SPI1RXIE		KEYSTRIE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
CRYDNIE	INT4IE ⁽¹⁾	INT3IE ⁽¹⁾	—	_	MI2C2IE	SI2C2IE	—
bit 7							bit 0
Legend:	1.11					(0)	
R = Readable		W = Writable	bit	•	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown
bit 15	Unimplemen	ted: Read as ')'				
bit 14	-			errupt Enable b	it		
bit i i		request is enab			it i		
	•	equest is not e					
bit 13	DMA5IE: DM	A Channel 5 In	terrupt Enable	bit			
		equest is enab					
	•	request is not e					
bit 12		PI3 Receive Int	-	bit			
		equest is enab equest is not e					
bit 11	•	PI2 Receive Int		h it			
DILTI		request is enab	•	DIL			
	•	request is enab					
bit 10	-	PI1 Receive Int		bit			
		equest is enab	•				
		equest is not e					
bit 9	Unimplemen	ted: Read as ')'				
bit 8	KEYSTRIE: (Cryptographic K	ey Store Progr	am Done Inter	rupt Enable bit		
		request is enab					
	•	request is not e					
bit 7				Interrupt Enable	e bit		
		equest is enab equest is not e					
bit 6	-	nal Interrupt 4					
DILO		request is enab					
	•	request is not e					
bit 5	-	nal Interrupt 3					
		equest is enab					
	0 = Interrupt r	request is not e	nabled				
bit 4-3	Unimplemen	ted: Read as ')'				
bit 2	MI2C2IE: Ma	ster I2C2 Even	t Interrupt Ena	ble bit			
		equest is enab					
	0 = Interrupt r	request is not e	nabled				

REGISTER 8-16: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

9.6.1 CONSIDERATIONS FOR USB OPERATION

When using the USB On-The-Go module in PIC24FJ128GB204 family devices, users must always observe these rules in configuring the system clock:

- The Oscillator modes listed in Table 9-3 are the only oscillator configurations that permit USB operation. There is no provision to provide a separate external clock source to the USB module.
- For USB operation, the selected clock source (EC, HS or XT) must meet the USB clock tolerance requirements.
- When the FRCPLL Oscillator mode is used for USB applications, the FRC self-tune system should be used as well. While the FRC is accurate, the only two ways to ensure the level of accuracy required by the *"USB 2.0 Specification"*, throughout the application's operating range, are either the self-tune system or manually changing the TUNx bits.
- The user must always ensure that the FRC source is configured to provide a frequency of 4 MHz or 8 MHz (RCDIV<2:0> = 001 or 000) and that the USB PLL prescaler is configured appropriately.
- All other Oscillator modes are available; however, USB operation is not possible when these modes are selected. They may still be useful in cases where other power levels of operation are desirable and the USB module is not needed (for example, the application is Sleeping and waiting for a bus attachment).

9.7 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain Oscillator modes, the device clock in the PIC24FJ128GB204 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCONL, REFOCONH and REFOTRIML registers (Register 9-4, Register 9-5 and Register 9-6). Setting the ROEN bit (REFOCONL<15>) enables the module. Setting the ROOUT bit (REFOCONL<12>) makes the clock signal available on the REFO pin.

The RODIVx bits (REFOCONH<14:0>) enable the selection of 32768 different clock divider options.

9.7.1 CLOCK SOURCE REQUEST

The ROSELx bits determine different base clock sources for the module.

If the selected clock source has a global device enable (via device Configuration fuse settings), the user must enable the clock source before selecting it as a base clock source.

The ROACTIVE bit (REFOCONL<8>) synchronizes the REFO module during the turn-on and turn-off of the module.

Note:	Once the ROEN bit is set, it should not be
	cleared until the ROACTIVE bit is read as '1'.

9.7.2 CLOCK SWITCHING

The base clock to the module can be switched. First, turn off the module by clearing the ROEN bit (REFOCONL<15> = 0) and wait for the ROACTIVE (REFOCONL<8>) bit to be cleared by the hardware. This avoids a glitch in the REFO output.

The ROTRIMx and RODIVx bits can be changed on-the-fly. Follow the below mentioned steps before changing the ROTRIMx and RODIVx bits.

- REFO is not actively performing the divider switch (ROSWEN = 0).
- Update the ROTRIMx and RODIVx bits with the latest values.
- · Set the ROSWEN bit.
- Wait for the ROSWEN bit to be cleared by hardware.

The ROTRIMx bits allow a fractional divisor to be added to the integer divisor, specified in the RODIVx register bits.

EQUATION 9-1: FRACTIONAL DIVISOR FOR ROTRIMX BITS

For RODIV<14:0> = 0, No Divide: RODIV<14:0> > 0, Period = 2 * (RODIVx + ROTRIMx)

9.7.3 OPERATION IN SLEEP MODE

The ROSLP and ROSELx bits (REFOCONL<11,3:0>) control the availability of the reference output during Sleep mode.

The ROSLP bit determines if the reference source is available on the REFO pin when the device is in Sleep mode.

To use the reference clock output in Sleep mode, the ROSLP bit must be set and the reference base clock should not be the system clock or peripheral clock (ROSELx bits should not be '0b0000' or '0b0001').

The device clock must also be configured for either:

- One of the Primary modes (EC, HS or XT); the POSCEN bit should be set
- The Secondary Oscillator bit (SOSCEN) should be set
- The LPRC Oscillator

If one of the above conditions is not met, then the oscillators on OSC1, OSC2 and SOSCI will be powered down when the device enters Sleep mode.

10.4 Deep Sleep Mode

Deep Sleep mode provides the lowest levels of power consumption available from the instruction-based modes.

Deep Sleep modes have these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Deep Sleep mode if the WDT, or RTCC with LPRC as the clock source, is enabled.
- The dedicated Deep Sleep WDT and BOR systems, if enabled, are used.
- The RTCC and its clock source continue to run, if enabled. All other peripherals are disabled.

Entry into Deep Sleep mode is completely under software control. Exit from the Deep Sleep modes can be triggered from any of the following events:

- POR event
- MCLR event
- RTCC alarm (If the RTCC is present)
- External Interrupt 0
- Deep Sleep Watchdog Timer (DSWDT) time-out

10.4.1 ENTERING DEEP SLEEP MODE

Deep Sleep mode is entered by setting the DSEN bit in the DSCON register and then executing a Sleep command (PWRSAV #SLEEP_MODE), within one instruction cycle, to minimize the chance that Deep Sleep will be spuriously entered.

If the PWRSAV command is not given within one instruction cycle, the DSEN bit will be cleared by the hardware and must be set again by the software before entering Deep Sleep mode. The DSEN bit is also automatically cleared when exiting Deep Sleep mode.

Note: To re-enter Deep Sleep after a Deep Sleep wake-up, allow a delay of at least 3 TcY after clearing the RELEASE bit.

The sequence to enter Deep Sleep mode is:

- If the application requires the Deep Sleep WDT, enable it and configure its clock source. For more information on Deep Sleep WDT, see Section 10.4.5 "Deep Sleep WDT".
- If the application requires Deep Sleep BOR, enable it by programming the DSBOREN Configuration bit (CW4<6>).
- 3. If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module. For more information on RTCC, see Section 22.0 "Real-Time Clock and Calendar (RTCC)".
- If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional).
- 5. Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>).
- Note: A repeat sequence is required to set the DSEN bit. The repeat sequence (repeating the instruction twice) is required to write into any of the Deep Sleep registers (DSCON, DSWAKE, DSGPR0, DSGPR1). This is required to prevent the user from entering Deep Sleep by mistake. Any write to these registers has to be done twice to actually complete the write (see Example 10-2).
- 6. Enter Deep Sleep mode by issuing 3 NOP commands and then a PWRSAV #0 instruction.

Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.

EXAMPLE 10-2: THE REPEAT SEQUENCE

Example 1: mov #8000, w2 mov w2, DSCON	; enable DS
mov w2, DSCON	; second write required to actually write to DSCON
Example 2: bset DSCON, #15 nop nop nop	
bset DSCON, #15	; enable DS (two writes required)

11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V), on any desired digital only pins, by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits (see Register 11-1 through Register 11-3), which decides if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

Table 11-2 summarizes the different voltage tolerances. For more information, refer to **Section 33.0 "Electrical Characteristics"** for more details.

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANSx = 1.
Analog Output	1	1	It is recommended to keep ANSx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

TABLE 11-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

Port or Pin	Tolerated Input	Description		
PORTA<10:7,4> ⁽¹⁾				
PORTB<11:10,8:4>	5.5V	Tolerates input levels above VDD; useful for most standard logic.		
PORTC<9:3> ⁽¹⁾		for most standard logic.		
PORTA<3:0>				
PORTB<15:13,9,3:0>	VDD	Only VDD input levels are tolerated.		
PORTC<2:0> ⁽¹⁾				

Note 1: Not all of these pins are implemented in 28-pin devices. Refer to **Section 1.0 "Device Overview**" for a complete description of port pin implementation.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1 ⁽³⁾	DCB0 ⁽³⁾	OC32
bit 15			•	•	•	•	bit 8
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit (
Legend:		HS = Hardwa	re Settable bit				
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 15	FLTMD: Faul	t Mode Select I	oit				
			ed until the Fau	It source is ren	noved and the	corresponding	OCFLT0 bit i
		n software de is maintaine	d until the Faul	lt source is rem	oved and a ne	w PWM period	etarte
bit 14	FLTOUT: Fau						510/15
		put is driven hig	oh on a Fault				
		put is driven lov					
bit 13	FLTTRIEN: F	ault Output Sta	te Select bit				
			t on a Fault cor				
			ected by a Fau	llt			
bit 12		ut Compare x I	nvert bit				
	1 = OCx outp	ut is inverted ut is not inverte	d				
bit 11	•	ted: Read as '					
bit 10-9	•		e Least Signific	ant hite(3)			
DIL 10-9			e by $\frac{3}{4}$ of the ir		`		
			e by $\frac{1}{2}$ of the ir				
			e by ¼ of the in				
			s at the start of		-		
bit 8			odules Enable b	oit (32-bit opera	ation)		
		module operati module operati					
bit 7		-	Trigger/Sync S	Select hit			
			ource designate		CSELx bits		
			the source desi			s	
bit 6	TRIGSTAT: ⊺	imer Trigger St	atus bit				
			riggered and is	•			
			en triggered an	-			
bit 5			Output Pin Dir	ection Select b	vit		
	1 = OCx pin is 0 = Output Co		eral x is connec	ted to an OCx	pin		
	Never use an OC	x module as its			-	mode or anothe	er equivalent
	SYNCSELx settir Use these inputs	-	ces only and n	aver se evine or			
2:		as ingger sour	Ces only and the	ever as sync st			

3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

19.7.1 USB OTG MODULE CONTROL REGISTERS

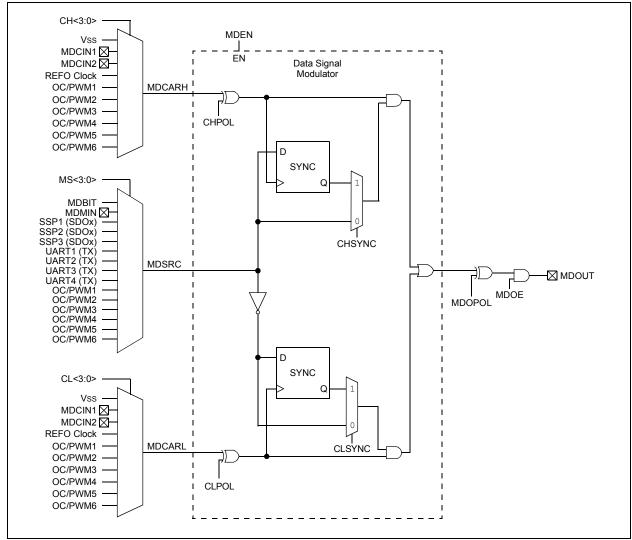
REGISTER 19-3: U10TGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		-	—
bit 15							bit 8

R-0, HSC	U-0	R-0, HSC	U-0	R-0, HSC	R-0, HSC	U-0	R-0, HSC
ID	—	LSTATE	—	SESVD	SESEND	—	VBUSVD
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 15-8	Unimplemented: Read as '0'
bit 7	ID: ID Pin State Indicator bit
	 1 = No plug is attached or a Type B cable has been plugged into the USB receptacle 0 = A Type A plug has been plugged into the USB receptacle
bit 6	Unimplemented: Read as '0'
bit 5	LSTATE: Line State Stable Indicator bit
	 1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms 0 = The USB line state has not been stable for the previous 1 ms
bit 4	Unimplemented: Read as '0'
bit 3	SESVD: Session Valid Indicator bit
	 1 = The VBUS voltage is above VA_SESS_VLD (as defined in the "USB 2.0 Specification") on the A or B-device
	0 = The VBUS voltage is below VA_SESS_VLD on the A or B-device
bit 2	SESEND: B Session End Indicator bit
	 1 = The VBUS voltage is below VB_SESS_END (as defined in the "USB 2.0 Specification") on the B-device 0 = The VBUS voltage is above VB_SESS_END on the B-device
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVD: A VBUS Valid Indicator bit
	 1 = The VBUS voltage is above VA_VBUS_VLD (as defined in the "USB 2.0 Specification") on the A-device 0 = The VBUS voltage is below VA_VBUS_VLD on the A-device


20.0 DATA SIGNAL MODULATOR (DSM)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Data Signal Modulator (DSM)" (DS39744). The information in this data sheet supersedes the information in the FRM.

The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the "modulator signal") with a carrier signal to produce a modulated output. Both the carrier and the modulator signals are supplied to the DSM module, either internally from the output of a peripheral, or externally through an input pin. The modulated output signal is generated by performing a logical AND operation of both the carrier and modulator signals, and then it is provided to the MDOUT pin. Using this method, the DSM can generate the following types of key modulation schemes:

- Frequency Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Figure 20-1 shows a simplified block diagram of the Data Signal Modulator peripheral.

FIGURE 20-1: SIMPLIFIED BLOCK DIAGRAM OF THE DATA SIGNAL MODULATOR

23.1 Data Register Spaces

There are four register spaces used for cryptographic data and key storage:

- CRYTXTA
- CRYTXTB
- CRYTXTC
- CRYKEY

Although mapped into the SFR space, all of these Data Spaces are actually implemented as 128-bit or 256-bit wide arrays, rather than groups of 16-bit wide Data registers. Reads and writes to and from these arrays are automatically handled as if they were any other register in the SFR space.

CRYTXTA through CRYTXTC are 128-bit wide spaces; they are used for writing data to and reading from the Cryptographic Engine. Additionally, they are also used for storing intermediate results of the encryption/decryption operation. None of these registers may be written to when the module is performing an operation (CRYGO = 1).

CRYTXTA and CRYTXTB normally serve as inputs to the encryption/decryption process.

CRYTXTA usually contains the initial plaintext or ciphertext to be encrypted or decrypted. Depending on the mode of operation, CRYTXTB may contain the ciphertext output or intermediate cipher data. It may also function as a programmable length counter in certain operations.

CRYTXTC is primarily used to store the final output of an encryption/decryption operation. It is also used as the input register for data to be programmed to the secure OTP array.

CRYKEY is a 256-bit wide space, used to store cryptographic keys for the selected operation. It is writable from both the SFR space and the secure OTP array. Although mapped into the SFR space, it is a write-only memory area; any data placed here, regardless of its source, cannot be read back by any run-time operations. This feature helps to ensure the security of any key data.

23.2 Modes of Operation

The Cryptographic Engine supports the following modes of operation, determined by the OPMOD<3:0> bits:

- Block Encryption
- Block Decryption
- AES Decryption Key Expansion
- Random Number Generation
- Session Key Generation
- Session Key Encryption
- Session Key Loading

The OPMODx bits may be changed while CRYON is set. They should only be changed when a cryptographic operation is not being done (CRYGO = 0).

Once the encryption operation, and the appropriate and valid key configuration is selected, the operation is performed by setting the CRYGO bit. This bit is automatically cleared by hardware when the operation is complete. The CRYGO bit can also be manually cleared by software; this causes any operation in progress to terminate immediately. Clearing this bit in software also sets the CRYABRT bit (CRYSTAT<5>).

For most operations, CRYGO can only be set when an OTP operation is not being performed and there are no other error conditions. CRYREAD, CRYWR, CRYABRT, ROLLOVR, MODFAIL and KEYFAIL must all be '0'.

Setting CRYWR and CRYGO simultaneously will not initiate an OTP programming operation or any other operation. Setting CRYGO when the module is disabled (CRYON = 0) also has no effect.

23.3 Enabling the Engine

The Cryptographic Engine is enabled by setting the CRYON bit. Clearing this bit disables both the DES and AES engines, as well as causing the following register bits to be held in Reset:

- CRYGO (CRYCONL<8>)
- TXTABSY (CRYSTAT<6>)
- CRYWR (CRYOTP<0>)

All other register bits and registers may be read and written while CRYON = 0.

23.4 Operation During Sleep and Idle Modes

23.4.1 OPERATION DURING SLEEP MODES

Whenever the device enters any Sleep or Deep Sleep mode, all operation engine state machines are reset. This feature helps to preserve the integrity, or any data being encrypted or decrypted, by discarding any intermediate text that might be used to break the key.

Any OTP programming operations under way when a Sleep mode is entered are also halted. Depending on what is being programmed, this may result in permanent loss of a memory location or potentially, the use of the entire secure OTP array. Users are advised to perform OTP programming only when entry into power-saving modes is disabled.

23.4.2 OPERATION DURING IDLE MODE

When the CRYSIDL bit (CRYCONL<13>) is '0', the engine will continue any ongoing operations without interruption when the device enters Idle mode.

When CRYSIDL is '1', the module behaves as in Sleep modes.

Note: OTP programming errors, regardless of the source, are not recoverable errors. Users should ensure that all foreseeable interruptions to the programming operation, including device interrupts and entry into power-saving modes, are disabled.

REGISTER 25-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

- bit 1 SAMP: ADC1 Sample Enable bit 1 = A/D Sample-and-Hold amplifiers are sampling 0 = A/D Sample-and-Hold amplifiers are holding
- bit 0 DONE: ADC1 Conversion Status bit 1 = A/D conversion cycle has completed 0 = A/D conversion cycle has not started or is in progress
- Note 1: This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
ASEN	LPEN	CTMREQ	BGREQ			ASINT1	ASINT0
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	0-0	0-0	0-0	WM1	WM0	CM1	CM0
 bit 7		_		VVIVII	VIVIO	CIVIT	bit 0
Legend:							
R = Readabl	e bit	W = Writable	oit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	lown
bit 15	ASEN: Auto-S	Scan Enable bi	:				
	1 = Auto-scan 0 = Auto-scan						
oit 14	LPEN: Low-P	ower Enable bi	t				
		er is enabled aft r is enabled aft					
bit 13	CTMREQ: CT	MU Request b	it				
		enabled when t not enabled by		oled and active			
bit 12	BGREQ: Ban	d Gap Request	bit				
		is enabled whe		nabled and acti	ve		
bit 11-10	Unimplement	ted: Read as ')'				
bit 9-8	ASINT<1:0>:	Auto-Scan (Th	reshold Detect	i) Interrupt Mod	e bits		
	10 = Interrupt	after valid com after Threshol	pare has occu			npare has occu	rred
bit 7-4	Unimplement	ted: Read as ')'				
bit 3-2	WM<1:0>: Wr	rite Mode bits					
	11 = Reserve						
				s are not saved and ASINTx bit		s are generated	d when a valid
						etermined by th	e reaister bits
	when a r	match occurs, a	as defined by t	he CMx bits)			
				saved to a loca	tion determine	ed by the buffer	register bits)
bit 1-0		mpare Mode bi					
		Window mode by the correspo			conversion res	sult is outside of	of the window
	10 = Inside W		alid match occ	,	ersion result is	inside the wind	low defined by
		Than mode (va		rs if the result is	greater than t	he value in the	corresponding
		an mode (valid	match occurs i	f the result is lea	ss than the val	ue in the corres	ponding buffer

REGISTER 25-8: AD1CHITL: ADC1 SCAN COMPARE HIT REGISTER (LOW WORD)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
_	_	_		CHH<	12:9> ⁽¹⁾		_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CHH	<7:0>			
bit 7							bit C
1							
Legend: R = Readabl	le bit	W = Writable bit		U = Unimplen	nented bit. rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
							-
bit 15-13	Unimplemen	ted: Read as '0'					
bit 12-9	CHH<12:9>:	ADC1 Compare I	Hit bits ⁽¹⁾				
	If CM<1:0> =	11:					
		It Buffer n has be			atch has occu	rred	
		It Buffer n has no		n with data			
		Values of CM<1:0 has occurred on A		hannol n			
		has occurred on P					
bit 8	Unimplemen	ted: Read as '0'					
bit 7-0	CHH<8:0>: A	ADC1 Compare Hi	it bits				
	If CM<1:0> =	11:					
		ult Buffer n has be			atch has occu	rred	
		It Buffer n has no		n with data			
		Values of CM<1:0 has occurred on A		hannal n			
		has occurred on A					
Note 4. T	ha 0111140.40	In the second construction of a		•			

Note 1: The CHH<12:10> bits are unimplemented in 28-pin devices, read as '0'.

31.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

31.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

32.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 32-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 32-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register, 'Wb', without any address modifier
- The second source operand, which is typically a register, 'Ws', with or without an address modifier
- The destination of the result, which is typically a register, 'Wd', with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register, 'Wb', without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register, 'Wd', with or without an address modifier

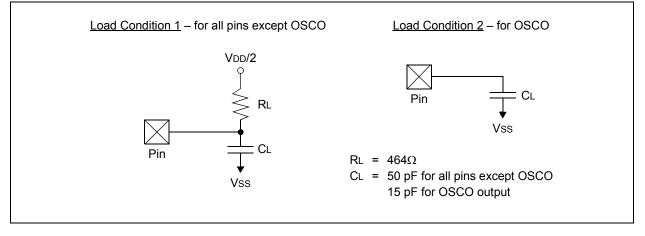
The control instructions may use some of the following operands:

- · A program memory address
- The mode of the Table Read and Table Write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.


33.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ128GB204 family AC characteristics and timing parameters.

TABLE 33-18: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)					
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
	Operating voltage VDD range as described in Section 33.1 "DC Characteristics".					

FIGURE 33-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

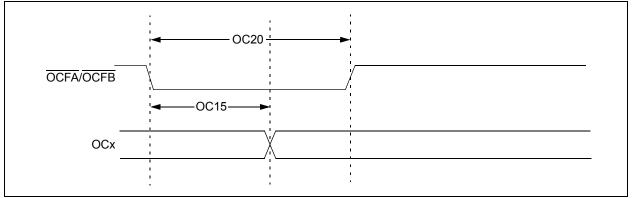
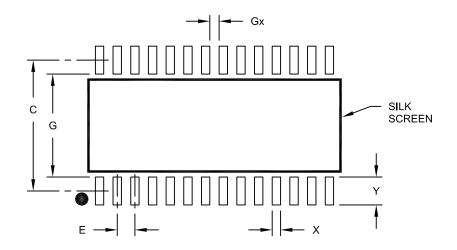


TABLE 33-19: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSCO/CLKO Pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	—	400	pF	In I ² C™ mode

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.


TABLE 33-31: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHAI	RACTERIS	TICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change	_		50	ns	
OC20	TFLT	Fault Input Pulse Width	50	_		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETER	S
Dimens	ion Limits	MIN	NOM	MAX
Contact Pitch	Е		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

Equationa	
Equations	

16-Bit, 32-Bit CRC Polynomials	346
A/D Conversion Clock Period	
Baud Rate Reload Calculation	
Calculating the PWM Period	220
Calculation for Maximum PWM Resolution	
Estimating USB Transceiver	
Current Consumption	
Fractional Divisor for ROTRIMx Bits	156
Relationship Between Device and	
SPIx Clock Speed	
UARTx Baud Rate with BRGH = 0	
UARTx Baud Rate with BRGH = 1	
Errata	7
Extended Data Space (EDS)	

F

Flash Configuration Word Locations	389
Flash Configuration Words	
Flash Program Memory	
and Table Instructions	
Control Registers	80
Enhanced ICSP Operation	80
JTAG Operation	80
Programming Algorithm	82
Programming Operations	80
RTSP Operation	80
Single-Word Programming	

G

Analog/Digital Pins Configuration During ICSP Operations 28 Connection Requirements 23 External Oscillator Pins 27 ICSP Programming Pins 26 Master Clear (MCLR) Pin 24 Power Supply Pins 24 Unused I/Os 28 Voltage Regulator Pins 25	Getting Started with 16-Bit MCUs	
Connection Requirements23External Oscillator Pins27ICSP Programming Pins26Master Clear (MCLR) Pin24Power Supply Pins24Unused I/Os28	Analog/Digital Pins Configuration During	
External Oscillator Pins27ICSP Programming Pins26Master Clear (MCLR) Pin24Power Supply Pins24Unused I/Os28	ICSP Operations	
ICSP Programming Pins	Connection Requirements	
Master Clear (MCLR) Pin	External Oscillator Pins	
Power Supply Pins	ICSP Programming Pins	
Unused I/Os	Master Clear (MCLR) Pin	24
	Power Supply Pins	24
Voltage Regulator Pins25	Unused I/Os	
	Voltage Regulator Pins	

Н

I
I/O Ports
Analog Port Pins Configuration (ANSx)
Analog/Digital Function of an I/O Pin 174
Input Change Notification (ICN) 177
Open-Drain Configuration174
Parallel (PIO)173
Peripheral Pin Select178
Pull-ups and Pull-Downs177
Write/Read Timing 174
l ² C
Communicating as Master in Single
Master Environment245
Reserved Addresses
Setting Baud Rate as Bus Master
Slave Address Masking247
In-Circuit Debuggers
MPLAB ICD 3 405
PICkit 3 405
In-Circuit Emulator System
MPLAB REAL ICE405

Input Capture	
32-Bit Cascaded Mode	212
Operations	
Synchronous and Trigger Modes	
Input Capture with Dedicated Timers Input Voltage Levels for Port or Pin Tolerated	
Description Input	174
Instruction Set	
Overview	409
Summary	407
Symbols Used in Opcode Descriptions	
Interfacing Program and Data Spaces	65
Inter-Integrated Circuit. See I ² C.	170
Internet Address	
Interrupt Vector Table (IVT) Interrupts	
Control and Status Registers	95
Implemented Vectors	
Reset Sequence	
Setup and Service Procedures	
Trap Vectors	92
Vector Table	92
Peripheral Pin Select (PPS)	
Selectable Input Sources	179
J	
JTAG Interface	402
K	
Key Features	389
L	
Low-Voltage/Retention Regulator	163.399
	. 163, 399
м	
M Memory Organization	35
M Memory Organization Microchip Internet Web Site	35 473
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian	35 473
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development	35 473 404
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software	35 473 404 403
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian	35 473 404 403
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian	35 473 404 403
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian N	
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian N Near Data Space	
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O	
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator	
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR	35 473 404 403 404 38 38 399 399
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian M Near Data Space O On-Chip Voltage Regulator POR Standby Mode	35 473 404 403 404 38 38 399 399
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG.	35 473 404 403 404 38 38 399 399
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator	35 473 404 403 404 38 38 399 399 399
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG.	35 473 404 403 404 38 399 399 399 399
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection	35 473 404 403 404 38 399 399 399 399 399 153 153 148
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers	35 473 404 403 404 38 399 399 399 399 153 153 148 149
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers FRC Self-Tuning	35 473 404 403 404 38 399 399 399 399 399 153 153 148 149 154
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers FRC Self-Tuning Initial Configuration on POR	35 473 404 403 404 38 399 399 399 399 399 399 153 153 148 149 154
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers FRC Self-Tuning Initial Configuration on POR Initial CPU Clocking Scheme	35 473 404 403 404 38 399 399 399 399 399 399 399 399 153 153 148 148 149 154 148
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers FRC Self-Tuning Initial Configuration on POR Initial CPU Clocking Scheme On-Chip PLL	35 473 404 403 404 38 399 399 399 399 399 399 399 399 153 153 148 148 148 148 159
MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator	35 473 404 403 404 38 399 399 399 399 399 399 399 399 153 153 148 148 148 148 159 156
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers FRC Self-Tuning Initial Configuration on POR Initial CPU Clocking Scheme On-Chip PLL Reference Clock Output USB Operation	35 473 404 403 404 38 399 399 399 399 399 399 399 399 153 153 148 148 149 154 155
M Memory Organization Microchip Internet Web Site MPLAB Assembler, Linker, Librarian MPLAB X Integrated Development Environment Software MPLINK Object Linker/MPLIB Object Librarian MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O On-Chip Voltage Regulator POR Standby Mode On-The-Go. See OTG. Oscillator Clock Switching Sequence Configuration Bit Values for Clock Selection Control Registers FRC Self-Tuning Initial Configuration on POR Initial CPU Clocking Scheme On-Chip PLL Reference Clock Output	35 473 404 403 404 38 399 399 399 399 399 399 399 399 153 153 148 148 149 154 155