

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb204t-i-pt

Email: info@E-XFL.COM

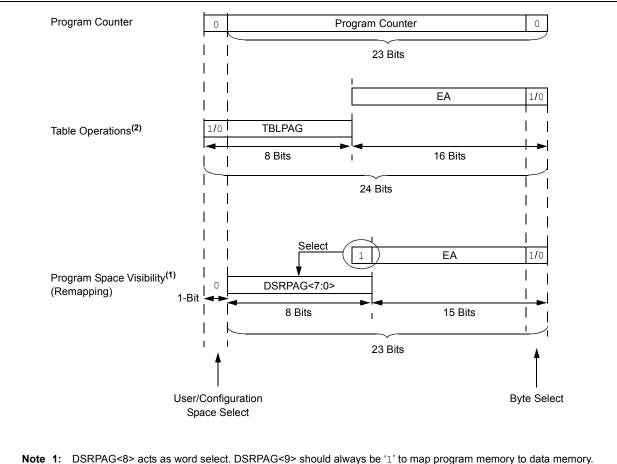

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	_	—	_	—	_	—	_	—	-	-	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	—	_	—	_	_	_	-	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1TXIF	SPI1IF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	-	—	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	—	DMA4IF	PMPIF	—		OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	CRYROLLIF	CRYFREEIF	SPI2TXIF	SPI2IF	0000
IFS3	008A	—	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	—	KEYSTRIF	CRYDNIF	INT4IF	INT3IF	—	—	MI2C2IF	SI2C2IF		0000
IFS4	008C	—	_	CTMUIF	—			_	HLVDIF		_	—	—	CRCIF	U2ERIF	U1ERIF		0000
IFS5	008E	—	—		—	SPI3TXIF	SPI3IF	U4TXIF	U4RXIF	U4ERIF	USB1IF	I2C2BCIF	I2C1BCIF	U3TXIF	U3RXIF	U3ERIF		0000
IFS6	0090	—	—		—		FSTIF	—	_		—	—	—	—	—	—		0000
IFS7	0092	—	—		—			—	_		—	JTAGIF	—	—	—	—		0000
IEC0	0094	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1TXIE	SPI1IE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE		_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	—	DMA4IE	PMPIE	—		OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	CRYROLLIE	CRYFREEIE	SPI2TXIE	SPI2IE	0000
IEC3	009A	—	RTCIE	DMA5IE	SPI3RXIE	SPI2RXIE	SPI1RXIE	—	KEYSTRIE	CRYDNIE	INT4IE	INT3IE	—	—	MI2C2IE	SI2C2IE		0000
IEC4	009C	—	—	CTMUIE	—			—	HLVDIE		—	—	—	CRCIE	U2ERIE	U1ERIE		0000
IEC5	009E	—	—		—	SPI3TXIE	SPI3IE	U4TXIE	U4RXIE	U4ERIE	USB1IE	I2C2BCIE	I2C1BCIE	U3TXIE	U3RXIE	U3ERIE		0000
IEC6	00A0	_	_	_	_	_	FSTIE	_	_	_	_	_	_	_	_	_	_	0000
IEC7	00A2	—		-	—	-	-	—			—	JTAGIE	—	_	—	—	-	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	_	DMA0IP2	DMA0IP1	DMA0IP0	4444
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_	_	_	_	DMA1IP2	DMA1IP1	DMA1IP0	_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0444
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	_	_	_	_	_	_	_	_	_	_	_	_		INT1IP<2:0>		0004
IPC6	00B0	_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	_	DMA2IP2	DMA2IP1	DMA2IP0	4444
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	_	CRYROLLIP2	CRYROLLIP1	CRYROLLIP0	_	CRYFREEIP2	CRYFREEIP1	CRYFREEIP0	_	SPI2TXIP2	SPI2TXIP1	SPI2TXIP0	_	SPI2IP2	SPI2IP1	SPI2IP0	4444
IPC9	00B6	_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	—	DMA3IP2	DMA3IP1	DMA3IP0	4444
IPC10	00B8	_	_	—	_	_	OC6IP2	OC6IP1	OC6IP0		OC5IP2	OC5IP1	OC5IP0	—	IC6IP2	IC6IP1	IC6IP0	0444
IPC11	00BA	_	_	—	_	_	DMA4IP2	DMA4IP1	DMA4IP0		PMPIP2	PMPIP1	PMPIP0	_			_	0440
IPC12	00BC	_	_	—	—	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	—	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	—	_	—	0440
IPC13	00BE	_	CRYDNIP2	CRYDNIP1	CRYDNIP0	—	INT4IP2	INT4IP1	INT4IP0	—	INT3IP2	INT3IP1	INT3IP0	—	—	_	—	4440
IPC14	00CO	_	SPI2RXIP2	SPI2RXIP1	SPI2RXIP0	_	SPI1RXIP2	SPI1RXIP1	SPI1RXIP0	—	—	—	—	—	KEYSTRIP2	KEYSTRIP1	KEYSTRIP0	4404
IPC15	00C2	_	_	_	_	_	RTCIP2	RTCIP1	RTCIP0	_	DMA5IP2	DMA5IP1	DMA5IP0	_	SPI3RXIP2	SPI3RXIP1	SPI3RXIP0	0444

Legend: — = unimplemented, read as '0'; r = reserved bit, maintain as '0'. Reset values are shown in hexadecimal.

2: The instructions, TBLRDH/TBLWTH/TBLRDL/TBLWTL, decide if the higher or lower word of program memory is accessed. TBLRDH/TBLWTH instructions access the higher word and TBLRDL/TBLWTL instructions access the lower word. Table read operations are permitted in the configuration memory space.

IFS2: INTERRUPT FLAG STATUS REGISTER 2

REGISTER 8-7:

U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
_	DMA4IF	PMPIF	—	—	OC6IF	OC5IF	IC6IF					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
IC5IF	IC4IF	IC3IF	DMA3IF	CRYROLLIF	CRYFREEIF	SPI2TXIF	SPI2IF					
bit 7							bit 0					
Legend:												
R = Readabl		W = Writable		•	nented bit, read							
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	nwc					
bit 15	Unimplemen	nted: Read as '	ר י									
bit 14	-	IA Channel 4 In		tatus hit								
л 1 4		request has occ										
		request has not										
bit 13	PMPIF: Para	PMPIF: Parallel Master Port Interrupt Flag Status bit										
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 											
	•	•										
oit 12-11	-	nted: Read as '										
pit 10	OC6IF: Output Compare Channel 6 Interrupt Flag Status bit 1 = Interrupt request has occurred											
		0 = Interrupt request has not occurred										
bit 9	OC5IF: Output Compare Channel 5 Interrupt Flag Status bit											
	1 = Interrupt	request has occ	curred									
		request has not										
bit 8	IC6IF: Input Capture Channel 6 Interrupt Flag Status bit											
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 											
bit 7	IC5IF: Input Capture Channel 5 Interrupt Flag Status bit											
	1 = Interrupt request has occurred											
		request has not										
bit 6	IC4IF: Input (Capture Channe	el 4 Interrupt F	-lag Status bit								
	1 = Interrupt request has occurred											
L:1 F		request has not										
bit 5	IC3IF: Input Capture Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred											
		request has not										
bit 4	•	IA Channel 3 In		tatus bit								
	1 = Interrupt	request has occ	curred									
		request has not										
oit 3		: Cryptographic		us bit								
		request has occ request has not										
	-	request lias 10										
hit 2	CRVEDEELE	Cryptographia	Ruffer Fron 9	tatus hit								
bit 2		: Cryptographic request has occ		tatus bit								

9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The Primary Oscillator and FRC sources have the option of using the internal USB PLL block, which generates both the USB module clock and a separate system clock from the 96 MHz PLL. Refer to **Section 9.6 "Oscillator Modes and USB Operation"** for additional information.

The internal FRC provides an 8 MHz clock source. It can optionally be reduced by the programmable clock divider to provide a range of system clock frequencies.

The selected clock source generates the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, FcY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the Primary Oscillator.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in program memory (for more information, refer to **Section 30.1 "Configuration Bits"**). The Primary Oscillator Configuration bits, POSCMD<1:0> (Configuration Word 2<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (Configuration Word 2<10:8>), select the oscillator source that is used at a Power-on Reset. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes, as shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (Configuration Word 2<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION												
Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes								
Fast RC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2								
(Reserved)	Internal	XX	110	1								
Low-Power RC Oscillator (LPRC)	Internal	11	101	1								
Secondary (Timer1) Oscillator (SOSC)	Secondary	11	100	1								
Primary Oscillator (XT) with PLL Module (XTPLL)	Primary	01	011									
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011									
Primary Oscillator (HS)	Primary	10	010									
Primary Oscillator (XT)	Primary	01	010									
Primary Oscillator (EC)	Primary	00	010									
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1								
Fast RC Oscillator (FRC)	Internal	11	000	1								

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
—	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0					
bit 15 bit 8											
U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
—	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0					
bit 7 bit 0											
	_	— IC4R5	— IC4R5 IC4R4 U-0 R/W-1 R/W-1	— IC4R5 IC4R4 IC4R3 U-0 R/W-1 R/W-1 R/W-1	— IC4R5 IC4R4 IC4R3 IC4R2 U-0 R/W-1 R/W-1 R/W-1 R/W-1	— IC4R5 IC4R4 IC4R3 IC4R2 IC4R1 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1					

REGISTER 11-8: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	IC4R<5:0>: Assign Input Capture 4 (IC4) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	IC3R<5:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits

REGISTER 11-9: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC6R<5:0>: Assign Input Capture 6 (IC6) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC5R<5:0>: Assign Input Capture 5 (IC5) to Corresponding RPn or RPIn Pin bits

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0					
TON		TSIDL		_	_	TECS1 ⁽²⁾	TECS0 ⁽²⁾					
bit 15							bit 8					
11-0	R/W_0	R/W_0	R/M/-0	R/M/_0	11-0	R/W/-0	11-0					
0-0		1			0-0		0-0					
bit 7	IGATE	ICKF31	TCKFSU	132.7		103.7	bit (
Legend:												
-	able bit	W = Writable	bit	U = Unimplen	nented hit rea	ud as '0'						
TON-TSIDLTECS1 ⁽²⁾ TECS0 ⁽²⁾ bit 15IU-0R/W-0R/W-0R/W-0U-0R/W-0U-0-TGATETCKPS1TCKPS0T32 ⁽³⁾ -TCS ⁽²⁾ -bit 7IIIIIILagend: R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' - n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknownbit 15TON: Timerx On bit When TXCON43> = 1; 1 = Starts 32-bit Timerxy 0 = Stops 32-bit Timerxy 0 = Stops 32-bit Timerxy 0 = Stops 16-bit Timerx 0 = Stops 16-bit Timerx 10 = LPR Oscillator 0 = TECS-10>: Timerx Extended Clock Source Select bits (selected when TCS = 1) ⁽²⁾ Mhen TCS = 1: These bits are ignored; Timerx is clocked from the internal system clock (Fosc/2).bit 7Unimplemented: Read as '0' Hener CS = 1: These bits is ignored. When TCS = 1: This bit is ignored. When TCS = 1: This bit is ignored. When TCS = 1: This bit is ignored. When TCS	own											
					areu		IOWIT					
bit 15	TON: Timerx	On bit										
	1 = Starts 32-bit Timerx/y											
	0 = Stops 32-bit Timerx/y											
bit 14	-		O '									
	-											
		•										
bit 12-10	Unimplemen	nted: Read as '	0'									
bit 9-8	TECS<1:0>: Timerx Extended Clock Source Select bits (selected when TCS = 1) ⁽²⁾											
			<) external inpu	ıt								
bit 7					- ,	()						
bit 6	-			Enable bit								
	When TCS =	1:										
	When TCS =	0:										
bit 5-4	TCKPS<1:0>											
	11 = 1:256											
	00 - 1.1											
Note 1:			hile the timer is	s running (TON	l = 1) causes 1	the timer presca	le counter to					
2:	If TCS = 1 and T to an available R											
3:	In T4CON, the T4	45 bit is implem	ented instead o	of T32 to select	32-bit mode.	In 32-bit mode, t	the T3CON o					

REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER⁽¹⁾

3: In T4CON, the T45 bit is implemented instead of T32 to select 32-bit mode. In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.

15.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 15-1 for PWM mode timing details. Table 15-1 and Table 15-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

$$Maximum PWM Resolution (bits) = \frac{\log_{10} \left(\frac{FCY}{FPWM \bullet (Timer Prescale Value)} \right)}{\log_{10}} bits$$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

TCY = 2 * TOSC = 62.5 ns PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 ms PWM Period = (PR2 + 1) • TCY • (Timer2 Prescale Value) 19.2 μ s = (PR2 + 1) • 62.5 ns • 1 PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate.

PWM Resolution = $log_{10}(FCY/FPWM)/log_{10}2)$ bits

```
= (\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2) \text{ bits}
```

= 8.3 bits

```
Note 1: Based on TCY = 2 * Tosc; Doze mode and PLL are disabled.
```

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz				
Timer Prescaler Ratio	8	1	1	1	1	1	1				
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh				
Resolution (bits)	16	16	15	12	10	7	5				

TABLE 15-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

REGISTER 17-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	 S: I2Cx Start bit Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	 1 = Read: Indicates the data transfer is output from the slave 0 = Write: Indicates the data transfer is input to the slave
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit is in progress, I2CxTRN is full (8 bits of data) 0 = Transmit is complete, I2CxTRN is empty

REGISTER 17-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—		—	—	MSK<9:8>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MSł	<<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 MSK<9:0>: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position
 0 = Disables masking for bit x; bit match is required in this position

19.5.2 COMPLETE A CONTROL TRANSACTION TO A CONNECTED DEVICE

- 1. Follow the procedure described in Section 19.5.1 "Enable Host Mode and Discover a Connected Device" to discover a device.
- Set up the Endpoint Control register for bidirectional control transfers by writing 0Dh to U1EP0 (this sets the EPCONDIS, EPTXEN and EPHSHK bits).
- 3. Place a copy of the device framework setup command in a memory buffer. See Chapter 9 of the *"USB 2.0 Specification"* for information on the device framework command set.
- 4. Initialize the Buffer Descriptor (BD) for the current (Even or Odd) TX EP0 to transfer the eight bytes of command data for a device framework command (i.e., GET DEVICE DESCRIPTOR):
 - a) Set the BD Data Buffer Address (BD0ADR) to the starting address of the 8-byte memory buffer containing the command.
 - b) Write 8008h to BD0STAT (this sets the UOWN bit and sets a byte count of 8).
- Set the USB device address of the target device in the USB Address register (U1ADDR<6:0>). After a USB bus Reset, the device USB address will be zero. After enumeration, it will be set to another value, between 1 and 127.
- 6. Write D0h to U1TOK; this is a SETUP token to Endpoint 0, the target device's default control pipe. This initiates a SETUP token on the bus, followed by a data packet. The device handshake is returned in the PID field of BD0STAT after the packets are complete. When the USB module updates BD0STAT, a Transfer Done Interrupt Flag is asserted (the TRNIF flag is set). This completes the setup phase of the setup transaction, as referenced in Chapter 9 of the "USB 2.0 Specification".
- 7. To initiate the data phase of the setup transaction (i.e., get the data for the GET DEVICE DESCRIPTOR command), set up a buffer in memory to store the received data.

- 8. Initialize the current (Even or Odd) RX or TX (RX for IN, TX for OUT) EP0 BD to transfer the data.
 - a) Write C040h to BD0STAT. This sets the UOWN, configures Data Toggle Packet (DTS) to DATA1 and sets the byte count to the length of the data buffer (64 or 40h in this case).
 - b) Set BD0ADR to the starting address of the data buffer.
- 9. Write the USB Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 90h to U1TOK for an IN token for a GET DEVICE DESCRIPTOR command). This initiates an IN token on the bus, followed by a data packet from the device to the host. When the data packet completes, the BD0STAT is written and a Transfer Done Interrupt Flag is asserted (the TRNIF flag is set). For control transfers with a single packet data phase, this completes the data phase of the setup transaction, as referenced in Chapter 9 of the "USB 2.0 Specification". If more data needs to be transferred, return to Step 8.
- 10. To initiate the status phase of the setup transaction, set up a buffer in memory to receive or send the zero length status phase data packet.
- 11. Initialize the current (Even or Odd) TX EP0 BD to transfer the status data:
 - a) Set the BDT buffer address field to the starting address of the data buffer.
 - b) Write 8000h to BD0STAT (set UOWN bit, configure DTS to DATA0 and set byte count to 0).
- 12. Write the USB Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 01h to U1TOK for an OUT token for a GET DEVICE DESCRIPTOR command). This initiates an OUT token on the bus, followed by a zero length data packet from the host to the device. When the data packet completes, the BD is updated with the handshake from the device and a Transfer Done interrupt Flag is asserted (the TRNIF flag is set). This completes the status phase of the setup transaction as described in Chapter 9 of the *"USB 2.0 Specification"*.

Note: Only one control transaction can be performed per frame.

REGISTER 22-1: RCFGCAL: RTCC CALIBRATION/CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

23.5.8 PROGRAMMING CFGPAGE (PAGE 0) CONFIGURATION BITS

- 1. If not already set, set the CRYON bit. Set KEYPG<3:0> to '0000'.
- 2. Read the PGMFAIL status bit. If this bit is '1', an illegal configuration has been selected and the programming operation will not be performed.
- Write the data to be programmed into the Configuration Page into CRYTXTC<31:0>. Any bits that are set ('1') will be permanently programmed, while any bits that are cleared ('0') will not be programmed and may be programmed at a later time.
- 4. Set the CRYWR bit. Poll the bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- 5. Once all programming has completed, set the CRYREAD bit to reload the values from the on-chip storage. A read operation must be performed to complete programming.
- Note: Do not clear the CRYON bit while the CRYREAD bit is set; this will result in an incomplete read operation and unavailable key data. To recover, set CRYON and CRYREAD, and allow the read operation to fully complete.
- 6. Poll the CRYREAD bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- For production programming, the TSTPGM bit can be set to indicate a successful programming operation. When TSTPGM is set, the PGMTST bit (CRYOTP<7>) will also be set, allowing users to see the OTP array status with performing a read operation on the array.
- **Note:** If the device enters Sleep mode during OTP programming, the contents of the OTP array may become corrupted. This is not a recoverable error. Users must ensure that entry into power-saving modes is disabled before OTP programming is performed.

23.5.9 PROGRAMMING KEYS

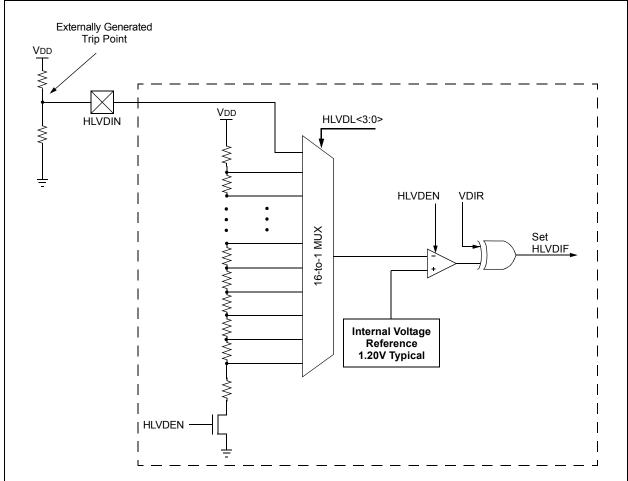
- 1. If not already set, set the CRYON bit.
- 2. Configure KEYPG<3:0> to the page you want to program.
- 3. Read the PGMFAIL status bit. If this bit is '1', an illegal configuration has been selected and the programming operation will not be performed.
- 4. Write the data to be programmed into the Configuration Page into CRYTXTC<63:0>. Any bits that are set ('1') will be permanently programmed, while any bits that are cleared ('0') will not be programmed and may be programmed at a later time.
- 5. Set the CRYWR bit. Poll the bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- 6. Repeat Steps 2 through 5 for each OTP array page to be programmed.
- 7. Once all programming has completed, set the CRYREAD bit to reload the values from the on-chip storage. A read operation must be performed to complete programming.
- Note: Do not clear the CRYON bit while the CRYREAD bit is set; this will result in an incomplete read operation and unavailable key data. To recover, set CRYON and CRYREAD, and allow the read operation to fully complete.
- 8. Poll the CRYREAD bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- For production programming, the TSTPGM bit can be set to indicate a successful programming operation. When TSTPGM is set, the PGMTST bit (CRYOTP<7>) will also be set, allowing users to see the OTP array status with performing a read operation on the array.
- **Note:** If the device enters Sleep Mode during OTP programming, the contents of the OTP array may become corrupted. This is not a recoverable error. Users must ensure that entry into power-saving modes is disabled before OTP programming is performed.

23.5.10 VERIFYING PROGRAMMED KEYS

To maintain key security, the secure OTP array has no provision to read back its data to any user-accessible memory space in any operating mode. Therefore, there is no way to directly verify programmed data. The only method for verifying that they have been programmed correctly is to perform an encryption operation with a known plaintext/ciphertext pair for each programmed key.

	200. 01.		5 CONNERN	CONTROLIN			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		<u> </u>	_		_	<u> </u>	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
	000000 = No 111111 = Mir • • 100010	minal current o nimum negative	utput specified change from	nominal current d by IRNG<1:0> nominal current	t		
bit 9-8 bit 7-0	IRNG<1:0>: 0 11 = 100 × Ba 10 = 10 × Base 01 = Base cu 00 = 1000 × B	Current Source ase Current se Current rrent level (0.58	Range Select 5 μA nominal)				

REGISTER 28-3: CTMUICON: CTMU CURRENT CONTROL REGISTER


29.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725).

The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The HLVD Control register (see Register 29-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

FIGURE 29-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

REGISTER 30-4: CW4: FLASH CONFIGURATION WORD 4 (CONTINUED)

bit 6	DSBOREN: Deep Sleep Brown-out Reset Enable bit
	1 = BOR is enabled in Deep Sleep mode
	0 = BOR is disabled in Deep Sleep mode (remains active in other Sleep modes)
bit 5	DSWDTOSC: Deep Sleep Watchdog Timer Clock Select bit
	1 = Clock source is LPRC
	0 = Clock source is SOSC
bit 4-0	DSWDTPS<4:0>: Deep Sleep Watchdog Timer Postscaler Select bits
	11111 = 1:68,719,476,736 (25.7 days)
	11110 = 1:34,359,738,368(12.8 days)
	11101 = 1:17,179,869,184 (6.4 days)
	11100 = 1:8,589,934592 (77.0 hours)
	11011 = 1:4,294,967,296 (38.5 hours)
	11010 = 1:2,147,483,648 (19.2 hours)
	11001 = 1:1,073,741,824 (9.6 hours)
	11000 = 1:536,870,912 (4.8 hours)
	10111 = 1:268,435,456 (2.4 hours)
	10110 = 1:134,217,728 (72.2 minutes)
	10101 = 1:67,108,864 (36.1 minutes)
	10100 = 1:33,554,432 (18.0 minutes)
	10011 = 1:16,777,216 (9.0 minutes)
	10010 = 1:8,388,608 (4.5 minutes)
	10001 = 1:4,194,304 (135.3s)
	10000 = 1:2,097,152 (67.7s)
	01111 = 1:1,048,576 (33.825s)
	01110 = 1:524,288 (16.912s)
	01101 = 1:262,114 (8.456s)
	01100 = 1:131,072 (4.228s)
	01011 = 1.65,536 (2.114s)
	01010 = 1:32,768 (1.057s)
	01001 = 1:16,384 (528.5 ms)
	01000 = 1:8,192 (264.3 ms)
	00111 = 1:4,096 (132.1 ms) 00110 = 1:2,048 (66.1 ms)
	00110 = 1.2,048 (00.1 ms) 00101 = 1.1,024 (33 ms)
	00100 = 1.512 (16.5 ms)
	00100 = 1.512 (10.5 ms) 00011 = 1.256 (8.3 ms)
	00011 = 1.230 (0.5 ms) 00010 = 1.128 (4.1 ms)
	00001 = 1.20 (4.1 ms) 00001 = 1.64 (2.1 ms)
	00000 = 1:32 (1 ms)

31.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

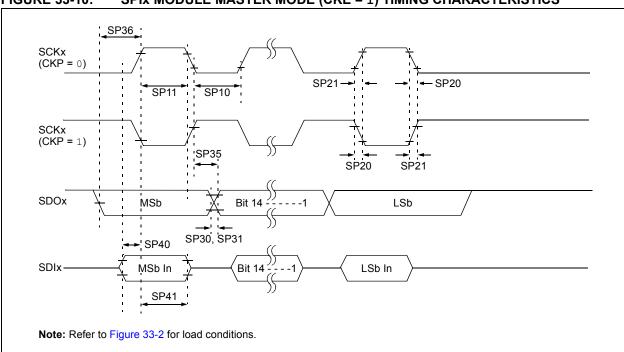
- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

31.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:


- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

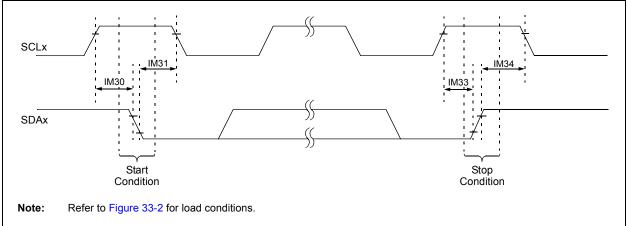
File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

FIGURE 33-10: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 33-33: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions	
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tcy/2	—		ns		
SP11	TscH	SCKx Output High Time ⁽³⁾	Tcy/2	—	_	ns		
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	_	_	_	ns	See Parameter DO32	
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	—	—	_	ns	See Parameter DO31	
SP30	TdoF	SDOx Data Output Fall Time ⁽⁴⁾	_	_	_	ns	See Parameter DO32	
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	—	-		ns	See Parameter DO31	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns		

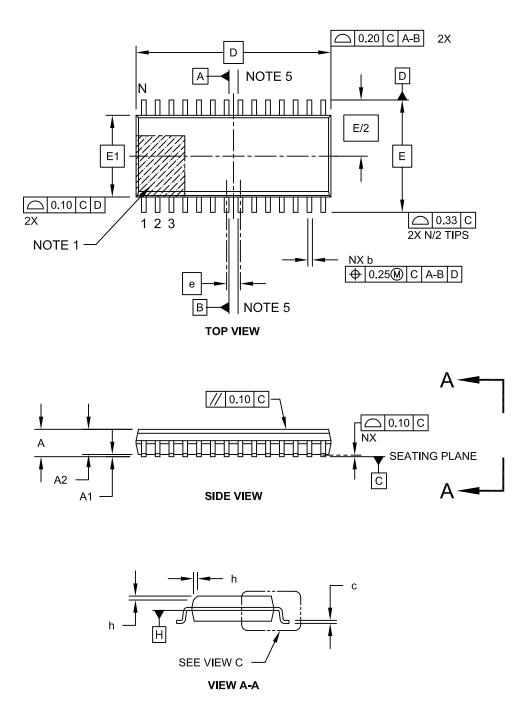

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 33-36: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (MASTER MODE)


AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions	
IM30	Tsu:sta	Start Condition	100 kHz mode	Tcy (BRG + 1)	_	μs	Only relevant for	
		Setup Time	400 kHz mode	TCY (BRG + 1)	_	μs	Repeated Start	
			1 MHz mode ⁽²⁾	TCY (BRG + 1)		μs	condition	
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy (BRG + 1)	_	μs	After this period, the first clock pulse is generated	
			400 kHz mode	Tcy (BRG + 1)	_	μs		
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	μs		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy (BRG + 1)	—	μS		
		Setup Time	400 kHz mode	Tcy (BRG + 1)	_	μs		
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	_	μs		
IM34	THD:STO	Stop Condition Hold Time	100 kHz mode	Tcy (BRG + 1)	_	ns		
			400 kHz mode	Tcy (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)		ns]	

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 17.2 "Setting Baud Rate When Operating as a Bus Master" for details.

2: Maximum Pin Capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

APPENDIX A: REVISION HISTORY

Revision A (May 2013)

Original data sheet for the PIC24FJ128GB204 family of devices.

Revision B (May 2014)

This revision incorporates the following updates:

- Sections:
 - Inserted new bulleted list in "Cryptographic Engine"
 - Updated a unit in "Analog Features"
 - Updated note in Section 16.0 "Serial Peripheral Interface (SPI)", Section 17.0 "Inter-Integrated Circuit™ (I²C™)", Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)", Section 23.0 "Cryptographic Engine" and Section 27.0 "Comparator Voltage Reference"
 - Updated Section 17.3 "Slave Address Masking"
 - Updated Section 23.0 "Cryptographic Engine"
 - Inserted new Section 23.5.6 "Generating a Random Number"
 - Updated Section 30.3.1 "Windowed Operation"
 - Updated packaging information in Section 34.0 "Packaging Information"
- · Registers:
 - Updated Register 8-45, Register 16-1, Register 16-4, Register 17-1, Register 18-1, Register 20-1, Register 23-1 and Register 23-5
 - Updated the title of Register 18-2 and Register 18-4
 - Updated bit 10 register description in Register 23-5
- Tables:
 - Updated Table 1-3, Table 4-5, Table 4-9, Table 4-10, Table 4-11, Table 4-12, Table 4-13, Table 4-14, Table 4-29, Table 33-1, Table 33-3, Table 33-4, Table 33-5, Table 33-6, Table 33-7, Table 33-8, Table 33-10, Table 33-12, Table 33-13, Table 33-14, Table 33-15, Table 33-16, Table 33-21
 - Added Table 33-26 through Table 33-39
- · Figures:
 - Added Figure 9-1, Figure 33-5, Figure 33-6, Figure 33-7, Figure 33-8, Figure 33-9, Figure 33-10, Figure 33-11 and Figure 33-12.
- Examples:
 - Example 22-1

Revision C (March 2015)

This revision incorporates the following updates:

- · Registers:
 - Register 26-1
- Tables:
 - Table 33-4, Table 33-5, Table 33-6 and Table 33-21
- Package marking examples and package diagrams in Section 34.0 "Packaging Information" were updated

Output Compare	
32-Bit Cascaded Mode	217
Compare Mode Operations	218
Synchronous and Trigger Modes	217
Output Compare with Dedicated Timers	217

P	
Packaging	447
Details	
Marking	447
Peripheral Pin Select (PPS)	178
Available Peripherals and Pins	178
Configuration Control	
Considerations for Use	182
Control Registers	183
Input Mapping	179
Mapping Exceptions	181
Output Mapping	180
Peripheral Priority	178
Selectable Output Sources	180
Pinout Description	15
Power-Saving Features	161
Clock Frequency, Clock Switching	171
Doze Mode	171
Instruction-Based Modes	162
Deep Sleep	164
Idle	163
Sleep	
Overview of Modes	161
VBAT Mode	166
Product Identification System	475
Program Memory	
Access Using Table Instructions	67
Address Space	
Addressing Program Space	65
Flash Configuration Words	
Hard Memory Vectors	
Memory Maps	
Organization	
Reading from Program Memory Using EDS	68
Program Verification	401
Pulse-Width Modulation (PWM) Mode	219
Pulse-Width Modulation. See PWM.	
PWM	
Duty Cycle and Period	220
-	

R

Real-Time Clock and Calendar. See RTCC.
Register Maps
A/D Converter51
Analog Configuration52
Comparators56
CPU Core
CRC
Cryptographic Engine59
CTMU
Data Signal Modulator (DSM)56
Deep Sleep59
DMA53
Enhanced Parallel Master/Slave Port55
I ² C46
ICN
Input Capture44
Interrupt Controller
NVM

Output Compare	
Pad Configuration (PADCFG1)	
Peripheral Module Disable (PMD)	
Peripheral Pin Select (PPS)	
PORTA	
PORTB	
PORTC	
Real-Time Clock and Calendar (RTCC)	
SPI1	
SPI2	
SPI3	
System Control (Clock and Reset)	
Timers	
UART USB OTG	
	54
Registers AD1CHITL (ADC1 Scan Compare Hit,	
Low Word)	265
AD1CHS (ADC1 Sample Select)	
AD1CON1 (ADC1 Control 1)	
AD1CON2 (ADC1 Control 2)	
AD1CON3 (ADC1 Control 3)	
AD1CON4 (ADC1 Control 4)	
AD1CON5 (ADC1 Control 5)	
AD1CSSH (ADC1 Input Scan Select,	502
High Word)	366
AD1CSSL (ADC1 Input Scan Select,	000
Low Word)	366
AD1CTMENL (ADC1 CTMU Enable,	000
Low Word)	367
ALCFGRPT (Alarm Configuration)	
ALMINSEC (Alarm Minutes and	
Seconds Value)	324
ALMTHDY (Alarm Month and Day Value)	
ALWDHR (Alarm Weekday and Hours Value)	
ANCFG (A/D Band Gap Reference	
Configuration)	364
ANSA (PORTA Analog Function Selection)	
ANSB (PORTB Analog Function Selection)	
ANSC (PORTC Analog Function Selection)	
BDnSTAT (Buffer Descriptor n Status Prototype,	
CPU Mode)	273
BDnSTAT (Buffer Descriptor n Status Prototype,	
USB Mode)	272
CFGPAGE (Secure Array Configuration Bits)	340
CLKDIV (Clock Divider)	151
CMSTAT (Comparator Status)	375
CMxCON (Comparator x Control,	
Comparators 1-3)	
CORCON (CPU Core Control)	
CRCCON1 (CRC Control 1)	
CRCCON2 (CRC Control 2)	
CRCXORH (CRC XOR Polynomial, High Byte)	
CRCXORL (CRC XOR Polynomial, Low Byte)	
CRYCONH (Cryptographic Control High)	
CRYCONL (Cryptographic Control Low)	335
CRYOTP (Cryptographic OTP Page	
Program Control)	
CRYSTAT (Cryptographic Status)	338
CTMUCON1 (CTMU Control 1)	
CTMUCON2 (CTMU Control 2)	
CTMUICON (CTMU Current Control)	385
CVRCON (Comparator Voltage	
Reference Control)	378