E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	77
Number of Gates	30000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p030-1vq100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3 Devices	A3P015 ¹	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Cortex-M1 Devices ²					M1A3P250	M1A3P400	M1A3P600	M1A3P1000
Package Pins QFN CS VQFP TQFP PQFP FBGA	QN68	QN48, QN68, QN132 ⁷ VQ100	QN132 ⁷ CS121 VQ100 TQ144 FG144	QN132 ⁷ VQ100 TQ144 PQ208 FG144	QN132 ⁷ VQ100 PQ208 FG144/256 ⁵	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484

Notes:

A3P015 is not recommended for new designs.
Refer to the Cortex-M1 product brief for more information.
AES is not available for Cortex-M1 ProASIC3 devices.
Six chip (main) and three quadrant global networks are available for A3P060 and above.
The M1A3P250 device does not support this package.
For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs datasheet.
Package not available.

The CCC block has these key features:

- Wide input frequency range (f_{IN CCC}) = 1.5 MHz to 350 MHz
- Output frequency range ($f_{OUT CCC}$) = 0.75 MHz to 350 MHz
- Clock delay adjustment via programmable and fixed delays from -7.56 ns to +11.12 ns
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis (for PLL only)

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only).
- Output duty cycle = 50% ± 1.5% or better (for PLL only)
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only)
- Maximum acquisition time = 300 µs (for PLL only)
- Low power consumption of 5 mW
- Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns (for PLL only)
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × (350 MHz / f_{OUT_CCC}) (for PLL only)

Global Clocking

ProASIC3 devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high fanout nets.

I/Os with Advanced I/O Standards

The ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3 FPGAs support many different I/O standards—single-ended and differential.

The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1).

		I/O Standards Supported		
I/O Bank Type	Device and Bank Location	LVTTL/ LVCMOS	PCI/PCI-X	LVPECL, LVDS, B-LVDS, M-LVDS
Advanced	East and west Banks of A3P250 and larger devices	\checkmark	\checkmark	\checkmark
Standard Plus	North and south banks of A3P250 and larger devices All banks of A3P060 and A3P125	\checkmark	\checkmark	Not supported
Standard	All banks of A3P015 and A3P030	\checkmark	Not supported	Not supported

Table 1-1 • I/O Standards Supported

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications
- Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications

ProASIC3 banks for the A3P250 device and above support LVPECL, LVDS, B-LVDS and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a poweredup system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support

ProASIC3 devices support JEDEC-defined wide range I/O operation. ProASIC3 supports the JESD8-B specification, covering both 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the FlashPro User's Guide for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8).
 - 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High

Table 2-11 •	Summary of I/O Output Bu	ffer Power (per pin) – De	fault I/O So ftware Settings	1
	Applicable to Advanced I/O	Banks		

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended		• •		
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	468.67
3.3 V LVCMOS Wide Range ⁴	35	3.3	_	468.67
2.5 V LVCMOS	35	2.5	-	267.48
1.8 V LVCMOS	35	1.8	_	149.46
1.5 V LVCMOS (JESD8-11)	35	1.5	_	103.12
3.3 V PCI	10	3.3	-	201.02
3.3 V PCI-X	10	3.3	-	201.02
Differential		•	•	•
LVDS	_	2.5	7.74	88.92
LVPECL	-	3.3	19.54	166.52

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-12 • Summary of I/O Output Bu ffer Power (Per Pin) – De fault I/O Softw are Settings ¹ Applicable to Standard Plus I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	452.67
3.3 V LVCMOS Wide Range ⁴	35	3.3	_	452.67
2.5 V LVCMOS	35	2.5	_	258.32
1.8 V LVCMOS	35	1.8	-	133.59
1.5 V LVCMOS (JESD8-11)	35	1.5	_	92.84
3.3 V PCI	10	3.3	_	184.92
3.3 V PCI-X	10	3.3	_	184.92

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. $\ensuremath{\mathsf{P}_{\text{DC3}}}$ is the static power (where applicable) measured on VMV.

3. $\ensuremath{\,P_{AC10}}$ is the total dynamic power measured on VCC and VMV.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

User I/O Characteristics

Timing Model

	FG484		FG484	FG484	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
K19	IO75NDB1	M11	GND	P3	IO153NDB3
K20	NC	M12	GND	P4	IO159NDB3
K21	IO76NDB1	M13	GND	P5	IO156NPB3
K22	IO76PDB1	M14	VCC	P6	IO151PPB3
L1	NC	M15	GCB2/IO73PPB1	P7	IO158PPB3
L2	IO155PDB3	M16	GCA1/IO71PPB1	P8	VCCIB3
L3	NC	M17	GCC2/IO74PPB1	P9	GND
L4	GFB0/IO163NPB3	M18	IO80PPB1	P10	VCC
L5	GFA0/IO162NDB3	M19	GCA2/IO72PDB1	P11	VCC
L6	GFB1/IO163PPB3	M20	IO79PPB1	P12	VCC
L7	VCOMPLF	M21	IO78PPB1	P13	VCC
L8	GFC0/IO164NPB3	M22	NC	P14	GND
L9	VCC	N1	IO154NDB3	P15	VCCIB1
L10	GND	N2	IO154PDB3	P16	GDB0/IO87NPB1
L11	GND	N3	NC	P17	IO85NDB1
L12	GND	N4	GFC2/IO159PDB3	P18	IO85PDB1
L13	GND	N5	IO161NPB3	P19	IO84PDB1
L14	VCC	N6	IO156PPB3	P20	NC
L15	GCC0/IO69NPB1	N7	IO129RSB2	P21	IO81PDB1
L16	GCB1/IO70PPB1	N8	VCCIB3	P22	NC
L17	GCA0/IO71NPB1	N9	VCC	R1	NC
L18	IO67NPB1	N10	GND	R2	NC
L19	GCB0/IO70NPB1	N11	GND	R3	VCC
L20	IO77PDB1	N12	GND	R4	IO150PDB3
L21	IO77NDB1	N13	GND	R5	IO151NPB3
L22	IO78NPB1	N14	VCC	R6	IO147NPB3
M1	NC	N15	VCCIB1	R7	GEC0/IO146NPB3
M2	IO155NDB3	N16	IO73NPB1	R8	VMV3
M3	IO158NPB3	N17	IO80NPB1	R9	VCCIB2
M4	GFA2/IO161PPB3	N18	IO74NPB1	R10	VCCIB2
M5	GFA1/IO162PDB3	N19	IO72NDB1	R11	IO117RSB2
M6	VCCPLF	N20	NC	R12	IO110RSB2
M7	IO160NDB3	N21	IO79NPB1	R13	VCCIB2
M8	GFB2/IO160PDB3	N22	NC	R14	VCCIB2
M9	VCC	P1	NC	R15	VMV2
M10	GND	P2	IO153PDB3	R16	IO94RSB2

5-9

Revision	Changes	Page
Advance v0.6 (continued)	The "Programming" section was updated to include information concerning serialization.	2-53
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54
	"DC and Switching Characteristics" chapter was updated with new information.	3-1
	The A3P060 "100-Pin VQFP" pin table was updated.	4-13
	The A3P125 "100-Pin VQFP" pin table was updated.	4-13
	The A3P060 "144-Pin TQFP" pin table was updated.	4-16
	The A3P125 "144-Pin TQFP" pin table was updated.	4-18
	The A3P125 "208-Pin PQFP" pin table was updated.	4-21
	The A3P400 "208-Pin PQFP" pin table was updated.	4-25
	The A3P060 "144-Pin FBGA" pin table was updated.	4-32
	The A3P125 "144-Pin FBGA" pin table is new.	4-34
	The A3P400 "144-Pin FBGA" is new.	4-38
	The A3P400 "256-Pin FBGA" was updated.	4-48
	The A3P1000 "256-Pin FBGA" was updated.	4-54
	The A3P400 "484-Pin FBGA" was updated.	4-58
	The A3P1000 "484-Pin FBGA" was updated.	4-68
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68
Advance v0.5 (November 2005)	The "I/Os Per Package" table was updated for the following devices and packages: Device Package	ii
	A3P250/M7ACP250 VQ100 A3P250/M7ACP250 FG144 A3P1000 FG256	
Advance v0.4	M7 device information is new.	N/A
	The I/O counts in the "I/Os Per Package" table were updated.	ii
Advance v0.3	The "I/Os Per Package" table was updated.	ii
	M7 device information is new.	N/A
	Table 2-4 • ProASIC3 Globals/Spines/Rows by Device was updated to include the number or rows in each top or bottom spine.	2-16
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24

Revision	Changes	Page
Advance v0.2,	Table 2-43 was updated.	2-64
(continued)	Table 2-18 was updated.	2-45
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "User I/O Naming Convention" section was updated.	2-48
	Table 3-7 was updated.	3-6
	The "Methodology" section was updated.	3-10
	Table 3-40 and Table 3-39 were updated.	3-33,3-32
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68