E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	18432
Number of I/O	96
Number of Gates	60000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p060-1fg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 – ProASIC3 DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 •	Absolute	Maximum	Ratings
-------------	----------	---------	---------

Symbol	Parameter	Limits	Units					
VCC	DC core supply voltage	-0.3 to 1.65	V					
VJTAG	JTAG DC voltage	-0.3 to 3.75	V					
VPUMP	Programming voltage	-0.3 to 3.75						
VCCPLL	Analog power supply (PLL)	-0.3 to 1.65						
VCCI	DC I/O output buffer supply voltage	–0.3 to 3.75						
VMV	DC I/O input buffer supply voltage	-0.3 to 3.75						
VI	I/O input voltage	–0.3 V to 3.6 V	V					
		(when I/O hot insertion mode is enabled)						
		-0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)						
T _{STG} ²	Storage temperature	–65 to +150	°C					
T _J ²	Junction temperature	+125	°C					

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Table 2-2 • Recommended Operating Conditions¹

Symbol	Parame	eters ¹	Commercial	Industrial	Units
TJ	Junction temperature		0 to 85 ²	-40 to 100 ²	°C
VCC ³	1.5 V DC core supply volta	ge	1.425 to 1.575	1.425 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage	Programming Mode	3.15 to 3.45	3.15 to 3.45	V
		Operation ⁴	0 to 3.6	0 to 3.6	V
VCCPLL	Analog power supply (PLL))	1.425 to 1.575	1.425 to 1.575	V
VCCI and VMV ⁵	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		3.0 to 3. <u>6</u>	3.0 to 3. <u>6</u>	V
	3.3 V wide range DC suppl	ly voltage ⁶	2.7 to 3.6	2.7 to 3.6	V
	LVDS/B-LVDS/M-LVDS diff	ferential I/O	2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

- 2. Software Default Junction Temperature Range in the Libero[®] System-on-Chip (SoC) software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help.
- 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-18 on page 2-19.
- 4. VPUMP can be left floating during operation (not programming mode).
- 5. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.
- 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

Figure 2-5 • Output Buffer Model and Delays (Example)

Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst Case VCC = 1.425 V, Worst-Case VCCI (per standard)

Standard Plus I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor	t _{bour} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pΥ} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{zH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{zHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	3.60	ns
3.3 V LVCMOS Wide Range ²	100 µA	12 mA	High	35	-	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns
2.5 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.39	0.03	0.97	0.32	2.44	2.35	2.11	2.32	4.11	4.02	ns
1.8 V LVCMOS	8 mA	8 mA	High	35	-	0.45	3.03	0.03	0.90	0.32	2.87	3.03	2.19	2.32	4.54	4.70	ns
1.5 V LVCMOS	4 mA	4 mA	High	35	-	0.45	3.61	0.03	1.06	0.32	3.35	3.61	2.26	2.34	5.02	5.28	ns
3.3 V PCI	Per PCI spec	-	High	10	25 ⁴	0.45	1.72	0.03	0.64	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ⁴	0.45	1.72	0.03	0.62	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-64 for connectivity. This resistor is not required during normal operation.

	Drive Strength	IOSL (mA) ¹	IOSH (mA) ¹	
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25	
	4 mA	27	25	
	6 mA	54	51	
	8 mA	54	51	
	12 mA	109	103	
	16 mA	127	132	
	24 mA	181	268	
3.3 V LVCMOS Wide Range ²	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS	
2.5 V LVCMOS	2 mA	18	16	
	4 mA	18	16	
	6 mA	37	32	
	8 mA	37	32	
	12 mA	74	65	
	16 mA	87	83	
	24 mA	124	169	
1.8 V LVCMOS	2 mA	11	9	
	4 mA	22	17	
	6 mA	44	35	
	8 mA	51	45	
	12 mA	74	91	
	16 mA	74	91	
1.5 V LVCMOS	2 mA	16	13	
	4 mA	33	25	
	6 mA	39	32	
	8 mA	55	66	
	12 mA	55	66	
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	109	103	

) Microsemi.

Power Matters."

Notes:

1. $T_J = 100^{\circ}C$

Applicable to 3.3 V LVCMOS Wide Range. I_{OSL}/I_{OSH} dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-34 • I/O Short Currents IOSH/IOSL Applicable to Standard I/O Banks

	Drive Strength	IOSL (mA) ¹	IOSH (mA) ¹
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
3.3 V LVCMOS Wide Range ²	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
1.5 V LVCMOS	2 mA	16	13

Notes:

- 1. $T_{.1} = 100^{\circ}C$
- Applicable to 3.3 V LVCMOS Wide Range. I_{OSL}/I_{OSH} dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-35 • Duration of Short Circuit Event Before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	0.5 years

Table 2-36 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (min)	Input Rise/Fall Time (max)	Reliability		
LVTTL/LVCMOS	No requirement	10 ns *	20 years (110°C)		
LVDS/B-LVDS/ M-LVDS/LVPECL	No requirement	10 ns *	10 years (100°C)		

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

3.3 V LVCMOS Wide Range

Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software Default	VII		VIH		VOI	УОН	101	юн	IOSL	IOSH	JII 2	IIH3
Drive Strength	Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μA	Max mA ⁴	Max mA ⁴	μ Α 5	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	132	127	10	10
100 µA	24 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	268	181	10	10

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

Table 2-48 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software	V	L	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL²	IIH ³
Drive Strength	Default Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μΑ	Max mA ⁴	Max mA ⁴	µA⁵	μA⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10
100 μA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

Table 2-58 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

2.5 V LVCMOS	VIL		VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max., V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	32	37	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-8 • AC Loading

Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	2.5	1.2	35

Note: *Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-13. The input and output buffer delays are available in the LVDS section in Table 2-92.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OESUE}	Enable Setup Time for the Output Enable Register	K, H
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-96 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-15 on page 2-69 for more information.

Timing Characteristics

Combinatorial Cell	Equation	Parameter	-2	-1	Std.	Units
INV	Y = !A	t _{PD}	0.40	0.46	0.54	ns
AND2	$Y = A \cdot B$	t _{PD}	0.47	0.54	0.63	ns
NAND2	Y = !(A · B)	t _{PD}	0.47	0.54	0.63	ns
OR2	Y = A + B	t _{PD}	0.49	0.55	0.65	ns
NOR2	Y = !(A + B)	t _{PD}	0.49	0.55	0.65	ns
XOR2	Y = A ⊕ B	t _{PD}	0.74	0.84	0.99	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	0.70	0.79	0.93	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	0.87	1.00	1.17	ns
MUX2	Y = A !S + B S	t _{PD}	0.51	0.58	0.68	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	0.56	0.64	0.75	ns

Table 2-105 • Combinatorial Cell Propagation Delays

Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

VersaTile Specifications as a Sequential Module

The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide*.

Figure 2-26 • Sample of Sequential Cells

Global Resource Characteristics

A3P250 Clock Tree Topology

Clock delays are device-specific. Figure 2-28 is an example of a global tree used for clock routing. The global tree presented in Figure 2-28 is driven by a CCC located on the west side of the A3P250 device. It is used to drive all D-flip-flops in the device.

Figure 2-28 • Example of Global Tree Use in an A3P250 Device for Clock Routing

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-90. Table 2-108 to Table 2-114 on page 2-89 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Figure 2-34 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.

	PQ208		PQ208		PQ208
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
1	GND	37	IO199PDB3	73	IO162RSB2
2	GAA2/IO225PDB3	38	IO199NDB3	74	IO160RSB2
3	IO225NDB3	39	IO197PSB3	75	IO158RSB2
4	GAB2/IO224PDB3	40	VCCIB3	76	IO156RSB2
5	IO224NDB3	41	GND	77	IO154RSB2
6	GAC2/IO223PDB3	42	IO191PDB3	78	IO152RSB2
7	IO223NDB3	43	IO191NDB3	79	IO150RSB2
8	IO222PDB3	44	GEC1/IO190PDB3	80	IO148RSB2
9	IO222NDB3	45	GEC0/IO190NDB3	81	GND
10	IO220PDB3	46	GEB1/IO189PDB3	82	IO143RSB2
11	IO220NDB3	47	GEB0/IO189NDB3	83	IO141RSB2
12	IO218PDB3	48	GEA1/IO188PDB3	84	IO139RSB2
13	IO218NDB3	49	GEA0/IO188NDB3	85	IO137RSB2
14	IO216PDB3	50	VMV3	86	IO135RSB2
15	IO216NDB3	51	GNDQ	87	IO133RSB2
16	VCC	52	GND	88	VCC
17	GND	53	VMV2	89	VCCIB2
18	VCCIB3	54	GEA2/IO187RSB2	90	IO128RSB2
19	IO212PDB3	55	GEB2/IO186RSB2	91	IO126RSB2
20	IO212NDB3	56	GEC2/IO185RSB2	92	IO124RSB2
21	GFC1/IO209PDB3	57	IO184RSB2	93	IO122RSB2
22	GFC0/IO209NDB3	58	IO183RSB2	94	IO120RSB2
23	GFB1/IO208PDB3	59	IO182RSB2	95	IO118RSB2
24	GFB0/IO208NDB3	60	IO181RSB2	96	GDC2/IO116RSB2
25	VCOMPLF	61	IO180RSB2	97	GND
26	GFA0/IO207NPB3	62	VCCIB2	98	GDB2/IO115RSB2
27	VCCPLF	63	IO178RSB2	99	GDA2/IO114RSB2
28	GFA1/IO207PPB3	64	IO176RSB2	100	GNDQ
29	GND	65	GND	101	TCK
30	GFA2/IO206PDB3	66	IO174RSB2	102	TDI
31	IO206NDB3	67	IO172RSB2	103	TMS
32	GFB2/IO205PDB3	68	IO170RSB2	104	VMV2
33	IO205NDB3	69	IO168RSB2	105	GND
34	GFC2/IO204PDB3	70	IO166RSB2	106	VPUMP
35	IO204NDB3	71	VCC	107	GNDQ
36	VCC	72	VCCIB2	108	TDO

FG144			
Pin Number A3P060 Function			
K1	GEB0/IO74RSB1		
K2	GEA1/IO73RSB1		
K3	GEA0/IO72RSB1		
K4	GEA2/IO71RSB1		
K5	IO65RSB1		
K6	IO64RSB1		
K7	GND		
K8	IO57RSB1		
K9	GDC2/IO56RSB1		
K10	GND		
K11	GDA0/IO50RSB0		
K12	GDB0/IO48RSB0		
L1	GND		
L2	VMV1		
L3	GEB2/IO70RSB1		
L4	IO67RSB1		
L5	VCCIB1		
L6	IO62RSB1		
L7	IO59RSB1		
L8	IO58RSB1		
L9	TMS		
L10	VJTAG		
L11	VMV1		
L12	TRST		
M1	GNDQ		
M2	GEC2/IO69RSB1		
M3	IO68RSB1		
M4	IO66RSB1		
M5	IO63RSB1		
M6	IO61RSB1		
M7	IO60RSB1		
M8	NC		
M9	TDI		
M10	VCCIB1		
M11	VPUMP		
M12	GNDQ		

FG256			
Pin Number	A3P600 Function		
P9	IO107RSB2		
P10	IO104RSB2		
P11	IO97RSB2		
P12	VMV1		
P13	ТСК		
P14	VPUMP		
P15	TRST		
P16	GDA0/IO88NDB1		
R1	GEA1/IO144PDB3		
R2	GEA0/IO144NDB3		
R3	IO139RSB2		
R4	GEC2/IO141RSB2		
R5	IO132RSB2		
R6	IO127RSB2		
R7	IO121RSB2		
R8	IO114RSB2		
R9	IO109RSB2		
R10	IO105RSB2		
R11	IO98RSB2		
R12	IO96RSB2		
R13	GDB2/IO90RSB2		
R14	TDI		
R15	GNDQ		
R16	TDO		
T1	GND		
T2	IO137RSB2		
Т3	GEB2/IO142RSB2		
T4	IO134RSB2		
T5	IO125RSB2		
Т6	IO123RSB2		
T7	IO118RSB2		
Т8	IO115RSB2		
Т9	IO111RSB2		
T10	IO106RSB2		
T11	IO102RSB2		
T12	GDC2/IO91RSB2		

FG256			
Pin Number	A3P600 Function		
T13	IO93RSB2		
T14	GDA2/IO89RSB2		
T15	TMS		
T16	GND		

🌜 Microsemi.

Package Pin Assignments

	FG484		FG484		FG484
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
A1	GND	B15	NC	D7	GAB0/IO02RSB0
A2	GND	B16	NC	D8	IO16RSB0
A3	VCCIB0	B17	NC	D9	IO17RSB0
A4	NC	B18	NC	D10	IO22RSB0
A5	NC	B19	NC	D11	IO28RSB0
A6	IO15RSB0	B20	NC	D12	IO34RSB0
A7	IO18RSB0	B21	VCCIB1	D13	IO37RSB0
A8	NC	B22	GND	D14	IO41RSB0
A9	NC	C1	VCCIB3	D15	IO43RSB0
A10	IO23RSB0	C2	NC	D16	GBB1/IO57RSB0
A11	IO29RSB0	C3	NC	D17	GBA0/IO58RSB0
A12	IO35RSB0	C4	NC	D18	GBA1/IO59RSB0
A13	IO36RSB0	C5	GND	D19	GND
A14	NC	C6	NC	D20	NC
A15	NC	C7	NC	D21	NC
A16	IO50RSB0	C8	VCC	D22	NC
A17	IO51RSB0	C9	VCC	E1	NC
A18	NC	C10	NC	E2	NC
A19	NC	C11	NC	E3	GND
A20	VCCIB0	C12	NC	E4	GAB2/IO154UDB3
A21	GND	C13	NC	E5	GAA2/IO155UDB3
A22	GND	C14	VCC	E6	IO12RSB0
B1	GND	C15	VCC	E7	GAB1/IO03RSB0
B2	VCCIB3	C16	NC	E8	IO13RSB0
B3	NC	C17	NC	E9	IO14RSB0
B4	NC	C18	GND	E10	IO21RSB0
B5	NC	C19	NC	E11	IO27RSB0
B6	NC	C20	NC	E12	IO32RSB0
B7	NC	C21	NC	E13	IO38RSB0
B8	NC	C22	VCCIB1	E14	IO42RSB0
B9	NC	D1	NC	E15	GBC1/IO55RSB0
B10	NC	D2	NC	E16	GBB0/IO56RSB0
B11	NC	D3	NC	E17	IO44RSB0
B12	NC	D4	GND	E18	GBA2/IO60PDB1
B13	NC	D5	GAA0/IO00RSB0	E19	IO60NDB1
B14	NC	D6	GAA1/IO01RSB0	E20	GND

Revision	Changes	Page
Revision 13 (January 2013)	The "ProASIC3 Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43104).	1-IV
	Added a note to Table 2-2 • Recommended Operating Conditions 1 (SAR 43644): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	2-2
	The note in Table 2-115 • ProASIC3 CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42569).	2-90
	Libero Integrated Design Environment (IDE) was changed to Libero System-on- Chip (SoC) throughout the document (SAR 40284).	NA
Revision 12 (September 2012)	The Security section was modified to clarify that Microsemi does not support read-back of programmed data.	1-1
	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information" to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions 1 (SAR 38321).	2-1 2-2
	Table 2-35 • Duration of Short Circuit Event Before Failure was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37933).	2-31
	In Table 2-93 • Minimum and Maximum DC Input and Output Levels, VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 28549).	2-68
	Figure 2-37 • FIFO Read and Figure 2-38 • FIFO Write are new (SAR 28371).	2-99
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38321). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Information

Revision	Changes	Page
Revision 5 (Aug 2008) DC and Switching Characteristics v1.3	TJ, Maximum Junction Temperature, was changed to 100° from 110° in the "Thermal Characteristics" section and EQ 1. The calculated result of Maximum Power Allowed has thus changed to 1.463 W from 1.951 W.	2-6
	Values for the A3P015 device were added to Table 2-7 • Quiescent Supply Current Characteristics.	2-7
	Values for the A3P015 device were added to Table 2-14 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices. P_{AC14} was removed. Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices is new.	2-11, 2-12
	The "PLL Contribution—PPLL" section was updated to change the P_{PLL} formula from $P_{AC13} + P_{AC14} * F_{CLKOUT}$ to $P_{DC4} + P_{AC13} * F_{CLKOUT}$.	2-14
	Both fall and rise values were included for $t_{\mbox{DDRISUD}}$ and $t_{\mbox{DDRIHD}}$ in Table 2-102 \bullet Input DDR Propagation Delays.	2-78
	Table 2-107 • A3P015 Global Resource is new.	2-86
	The typical value for Delay Increments in Programmable Delay Blocks was changed from 160 to 200 in Table 2-115 • ProASIC3 CCC/PLL Specification.	2-90
Revision 4 (Jun 2008) DC and Switching Characteristics v1.2	Table note references were added to Table 2-2 • Recommended Operating Conditions 1, and the order of the table notes was changed.	2-2
	The title for Table 2-4 • Overshoot and Undershoot Limits 1 was modified to remove "as measured on quiet I/Os." Table note 1 was revised to remove "estimated SSO density over cycles." Table note 2 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching I/Os."	2-3
	The "Power per I/O Pin" section was updated to include 3 additional tables pertaining to input buffer power and output buffer power.	2-7
	Table 2-29 • I/O Output Buffer Maximum Resistances 1 was revised to include values for 3.3 V PCI/PCI-X.	2-27
	Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels was updated.	2-66
Revision 3 (Jun 2008) Packaging v1.3	Pin numbers were added to the "QN68 – Bottom View" package diagram. Note 2 was added below the diagram.	4-3
	The "QN132 – Bottom View" package diagram was updated to include D1 to D4. In addition, note 1 was changed from top view to bottom view, and note 2 is new.	4-6
Revision 2 (Feb 2008) Product Brief v1.0	This document was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview.	N/A
	This document was updated to include A3P015 device information. QN68 is a new package that was added because it is offered in the A3P015. The following sections were updated: "Features and Benefits" "ProASIC3 Ordering Information" "Temperature Grade Offerings" "ProASIC3 Flash Family FPGAs" "A3P015 and A3P030" note	N/A
	Introduction and Overview (NA)	

Revision	Changes	Page
Advance v0.2,	Table 2-43 was updated.	2-64
(continued)	Table 2-18 was updated.	2-45
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "User I/O Naming Convention" section was updated.	2-48
	Table 3-7 was updated.	3-6
	The "Methodology" section was updated.	3-10
	Table 3-40 and Table 3-39 were updated.	3-33,3-32
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68