

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	18432
Number of I/O	96
Number of Gates	60000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p060-1fgg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User Nonvolatile FlashROM

ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- · Internet protocol addressing (wireless or fixed)
- System calibration settings
- · Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- · Version management

The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3 development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

ProASIC3 devices (except the A3P015 and A3P030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in A3P015 and A3P030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL. The A3P015 and A3P030 devices do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

1-5 Revision 18

Table 2-2 • Recommended Operating Conditions 1

Symbol	Parame	eters ¹	Commercial	Industrial	Units
T _J	Junction temperature		0 to 85 ²	-40 to 100 ²	°C
VCC ³	1.5 V DC core supply volta	ge	1.425 to 1.575	1.425 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage	Programming Mode	3.15 to 3.45	3.15 to 3.45	V
		Operation ⁴	0 to 3.6	0 to 3.6	V
VCCPLL	Analog power supply (PLL))	1.425 to 1.575	1.425 to 1.575	V
VCCI and VMV ⁵	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		3.0 to 3. <u>6</u>	3.0 to 3. <u>6</u>	V
	3.3 V wide range DC suppl	y voltage ⁶	2.7 to 3.6	2.7 to 3.6	V
	LVDS/B-LVDS/M-LVDS diff	ferential I/O	2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

- 1. All parameters representing voltages are measured with respect to GND unless otherwise specified.
- 2. Software Default Junction Temperature Range in the Libero[®] System-on-Chip (SoC) software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help.
- 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-18 on page 2-19.
- 4. VPUMP can be left floating during operation (not programming mode).
- 5. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.
- 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

 P_{AC1} , P_{AC2} , P_{AC3} , and P_{AC4} are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

$$\mathsf{P}_{\mathsf{S-CELL}} = \mathsf{N}_{\mathsf{S-CELL}} * (\mathsf{P}_{\mathsf{AC5}} + \alpha_1 \, / \, 2 * \, \mathsf{P}_{\mathsf{AC6}}) * \mathsf{F}_{\mathsf{CLK}}$$

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.

F_{CLK} is the global clock signal frequency.

Combinatorial Cells Contribution—P_{C-CELL}

$$P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * P_{AC7} * F_{CLK}$$

 $N_{\text{C-CELL}}$ is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.

F_{CLK} is the global clock signal frequency.

Routing Net Contribution—P_{NET}

$$P_{NET} = (N_{S-CELL} + N_{C-CELL}) * \alpha_1 / 2 * P_{AC8} * F_{CLK}$$

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.

F_{CLK} is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS

 $P_{INPUTS} = N_{INPUTS} * \alpha_2 / 2 * P_{AC9} * F_{CLK}$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-14.

 F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * P_{AC10} * F_{CLK}$

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-14.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-17 on page 2-14.

F_{CLK} is the global clock signal frequency.

2-13 Revision 18

Table 2-24 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst Case VCC = 1.425 V,

Worst-Case VCCI (per standard)

Advanced I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{DOUT} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
3.3 V LVCMOS Wide Range ²	100 μΑ	12 mA	High	35	-	0.45	4.08	0.03	0.76	0.32	4.08	3.20	3.71	4.14	6.61	5.74	ns
2.5 V LVCMOS	12 mA	12 mA	High	35	_	0.45	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns
1.8 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns
1.5 V LVCMOS	12 mA	12 mA	High	35	_	0.45	3.05	0.03	1.07	0.32	3.10	2.67	2.95	3.14	4.77	4.34	ns
3.3 V PCI	Per PCI spec	-	High	10	25 ⁴	0.45	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ⁴	0.45	2.00	0.03	0.62	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
LVDS	24 mA	_	High	_	-	0.45	1.37	0.03	1.20	-	-	1	1	_	ı	-	ns
LVPECL	24 mA	_	High	_	_	0.45	1.34	0.03	1.05	_	_	-	-	_	-	-	ns

- 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
- 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
- 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-64 for connectivity. This resistor is not required during normal operation.

2-23 Revision 18

Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst Case VCC = 1.425 V,

Worst-Case VCCI (per standard)

Standard Plus I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor	t _{DOUT} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	35	_	0.45	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	3.60	ns
3.3 V LVCMOS Wide Range ²	100 μΑ	12 mA	High	35	_	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns
2.5 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.39	0.03	0.97	0.32	2.44	2.35	2.11	2.32	4.11	4.02	ns
1.8 V LVCMOS	8 mA	8 mA	High	35	-	0.45	3.03	0.03	0.90	0.32	2.87	3.03	2.19	2.32	4.54	4.70	ns
1.5 V LVCMOS	4 mA	4 mA	High	35	_	0.45	3.61	0.03	1.06	0.32	3.35	3.61	2.26	2.34	5.02	5.28	ns
3.3 V PCI	Per PCI spec	-	High	10	25 ⁴	0.45	1.72	0.03	0.64	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns
3.3 V PCI-X	Per PCI-X spec	Ι	High	10	25 ⁴	0.45	1.72	0.03	0.62	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns

- The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
- 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
- 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-64 for connectivity. This resistor is not required during normal operation.

Table 2-33 • I/O Short Currents IOSH/IOSL
Applicable to Standard Plus I/O Banks

	Drive Strength	IOSL (mA) ¹	IOSH (mA) ¹
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
	12 mA	109	103
	16 mA	109	103
3.3 V LVCMOS Wide Range ²	100 μΑ	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
	12 mA	74	65
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
	6 mA	44	35
	8 mA	44	35
1.5 V LVCMOS	2 mA	16	13
	4 mA	33	25
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	109	103

^{1.} $T_J = 100^{\circ}C$

^{2.} Applicable to 3.3 V LVCMOS Wide Range. IOSL/IOSH dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

Table 2-37 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	V	TL T	v	TH .	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-38 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	V	ΊL	V	ΙΗ	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	109	103	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Timing Characteristics

Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks

	1 -	ī	ı		T	I	T	T	T		I		I 1
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
4 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
6 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
8 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	Std.	0.66	3.53	0.04	1.02	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	– 1	0.56	3.00	0.04	0.86	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	Std.	0.66	3.33	0.04	1.02	0.43	3.39	2.56	3.26	3.68	5.63	4.80	ns
	-1	0.56	2.83	0.04	0.86	0.36	2.89	2.18	2.77	3.13	4.79	4.08	ns
	-2	0.49	2.49	0.03	0.76	0.32	2.53	1.91	2.44	2.75	4.20	3.58	ns
24 mA	Std.	0.66	3.08	0.04	1.02	0.43	3.13	2.12	3.32	4.06	5.37	4.35	ns
	-1	0.56	2.62	0.04	0.86	0.36	2.66	1.80	2.83	3.45	4.57	3.70	ns
	-2	0.49	2.30	0.03	0.76	0.32	2.34	1.58	2.48	3.03	4.01	3.25	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Characteristics

Table 2-60 • 2.5 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Applicable to Advanced I/O Banks

Drive	Speed												
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.60	8.66	0.04	1.31	0.43	7.83	8.66	2.68	2.30	10.07	10.90	ns
	– 1	0.51	7.37	0.04	1.11	0.36	6.66	7.37	2.28	1.96	8.56	9.27	ns
	-2	0.45	6.47	0.03	0.98	0.32	5.85	6.47	2.00	1.72	7.52	8.14	ns
6 mA	Std.	0.60	5.17	0.04	1.31	0.43	5.04	5.17	3.05	3.00	7.27	7.40	ns
	-1	0.51	4.39	0.04	1.11	0.36	4.28	4.39	2.59	2.55	6.19	6.30	ns
	-2	0.45	3.86	0.03	0.98	0.32	3.76	3.86	2.28	2.24	5.43	5.53	ns
8 mA	Std.	0.60	5.17	0.04	1.31	0.43	5.04	5.17	3.05	3.00	7.27	7.40	ns
	-1	0.51	4.39	0.04	1.11	0.36	4.28	4.39	2.59	2.55	6.19	6.30	ns
	-2	0.45	3.86	0.03	0.98	0.32	3.76	3.86	2.28	2.24	5.43	5.53	ns
12 mA	Std.	0.60	3.56	0.04	1.31	0.43	3.63	3.43	3.30	3.44	5.86	5.67	ns
	– 1	0.51	3.03	0.04	1.11	0.36	3.08	2.92	2.81	2.92	4.99	4.82	ns
	-2	0.45	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns
16 mA	Std.	0.60	3.35	0.04	1.31	0.43	3.41	3.06	3.36	3.55	5.65	5.30	ns
	–1	0.51	2.85	0.04	1.11	0.36	2.90	2.60	2.86	3.02	4.81	4.51	ns
	-2	0.45	2.50	0.03	0.98	0.32	2.55	2.29	2.51	2.65	4.22	3.96	ns
24 mA	Std.	0.60	3.09	0.04	1.31	0.43	3.15	2.44	3.44	4.00	5.38	4.68	ns
	-1	0.51	2.63	0.04	1.11	0.36	2.68	2.08	2.92	3.40	4.58	3.98	ns
	-2	0.45	2.31	0.03	0.98	0.32	2.35	1.82	2.57	2.98	4.02	3.49	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-49 Revision 18

Output Enable Register

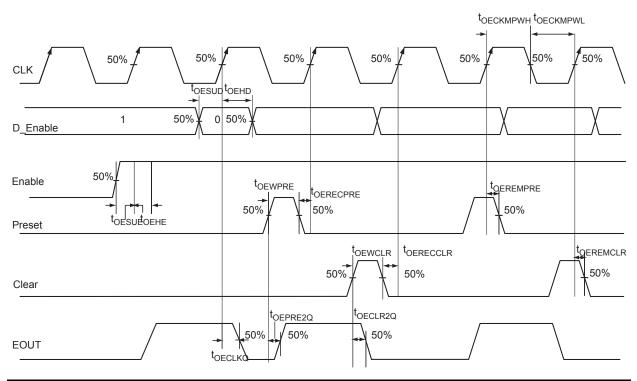


Figure 2-19 • Output Enable Register Timing Diagram

2-75 Revision 18

Table 2-113 • A3P600 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		_	-2	_	-1	St	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-114 • A3P1000 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		_	-2	-	·1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.94	1.16	1.07	1.32	1.26	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	0.93	1.19	1.06	1.35	1.24	1.59	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.35	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-89 Revision 18

Table 2-122 • A3P250 FIFO $2k\times2$ Worst Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.39	5.00	5.88	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

Table 2-123 • A3P250 FIFO 4k×1 Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.86	5.53	6.50	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns

QN132			
Pin Number A3P030 Function			
A1	IO01RSB1		
A2	IO81RSB1		
A3	NC		
A4	IO80RSB1		
A5	GEC0/IO77RSB1		
A6	NC		
A7	GEB0/IO75RSB1		
A8	IO73RSB1		
A9	NC		
A10	VCC		
A11	IO71RSB1		
A12	IO68RSB1		
A13	IO63RSB1		
A14	IO60RSB1		
A15	NC		
A16	IO59RSB1		
A17	IO57RSB1		
A18	VCC		
A19	IO54RSB1		
A20	IO52RSB1		
A21	IO49RSB1		
A22	IO48RSB1		
A23	IO47RSB1		
A24	TDI		
A25	TRST		
A26	IO44RSB0		
A27	NC		
A28	IO43RSB0		
A29	IO42RSB0		
A30	IO40RSB0		
A31	IO39RSB0		
A32	GDC0/IO36RSB0		
A33	NC		
A34	VCC		
A35	IO34RSB0		
A36	IO31RSB0		

QN132			
Pin Number	A3P030 Function		
A37	IO26RSB0		
A38	IO23RSB0		
A39	NC		
A40	IO22RSB0		
A41	IO20RSB0		
A42	IO18RSB0		
A43	VCC		
A44	IO15RSB0		
A45	IO12RSB0		
A46	IO10RSB0		
A47	IO09RSB0		
A48	IO06RSB0		
B1	IO02RSB1		
B2	IO82RSB1		
В3	GND		
B4	IO79RSB1		
B5	NC		
В6	GND		
В7	IO74RSB1		
B8	NC		
В9	GND		
B10	IO70RSB1		
B11	IO67RSB1		
B12	IO64RSB1		
B13	IO61RSB1		
B14	GND		
B15	IO58RSB1		
B16	IO56RSB1		
B17	GND		
B18	IO53RSB1		
B19	IO50RSB1		
B20	GND		
B21	IO46RSB1		
B22	TMS		
B23	TDO		
B24	IO45RSB0		

ON422				
	QN132			
Pin Number	A3P030 Function			
B25	GND			
B26	NC			
B27	IO41RSB0			
B28	GND			
B29	GDA0/IO37RSB0			
B30	NC			
B31	GND			
B32	IO33RSB0			
B33	IO30RSB0			
B34	IO27RSB0			
B35	IO24RSB0			
B36	GND			
B37	IO21RSB0			
B38	IO19RSB0			
B39	GND			
B40	IO16RSB0			
B41	IO13RSB0			
B42	GND			
B43	IO08RSB0			
B44	IO05RSB0			
C1	IO03RSB1			
C2	IO00RSB1			
C3	NC			
C4	IO78RSB1			
C5	GEA0/IO76RSB1			
C6	NC			
C7	NC			
C8	VCCIB1			
C9	IO69RSB1			
C10	IO66RSB1			
C11	IO65RSB1			
C12	IO62RSB1			
C13	NC			
C14	NC			
C15	IO55RSB1			
C16	VCCIB1			

TQ144			
Pin Number	A3P060 Function		
109	NC		
110	NC		
111	GBA1/IO24RSB0		
112	GBA0/IO23RSB0		
113	GBB1/IO22RSB0		
114	GBB0/IO21RSB0		
115	GBC1/IO20RSB0		
116	GBC0/IO19RSB0		
117	VCCIB0		
118	GND		
119	VCC		
120	IO18RSB0		
121	IO17RSB0		
122	IO16RSB0		
123	IO15RSB0		
124	IO14RSB0		
125	IO13RSB0		
126	IO12RSB0		
127	IO11RSB0		
128	NC		
129	IO10RSB0		
130	IO09RSB0		
131	IO08RSB0		
132	GAC1/IO07RSB0		
133	GAC0/IO06RSB0		
134	NC		
135	GND		
136	NC		
137	GAB1/IO05RSB0		
138	GAB0/IO04RSB0		
139	GAA1/IO03RSB0		
140	GAA0/IO02RSB0		
141	IO01RSB0		
142	IO00RSB0		
143	GNDQ		
144	VMV0		

Package Pin Assignments

FG144			
Pin Number A3P125 Function			
A1	GNDQ		
A2	VMV0		
A3	GAB0/IO02RSB0		
A4	GAB1/IO03RSB0		
A5	IO11RSB0		
A6	GND		
A7	IO18RSB0		
A8	VCC		
A9	IO25RSB0		
A10	GBA0/IO39RSB0		
A11	GBA1/IO40RSB0		
A12	GNDQ		
B1	GAB2/IO69RSB1		
B2	GND		
В3	GAA0/IO00RSB0		
B4	GAA1/IO01RSB0		
B5	IO08RSB0		
B6	IO14RSB0		
B7	IO19RSB0		
B8	IO22RSB0		
B9	GBB0/IO37RSB0		
B10	GBB1/IO38RSB0		
B11	GND		
B12	VMV0		
C1	IO132RSB1		
C2	GFA2/IO120RSB1		
C3	GAC2/IO131RSB1		
C4	VCC		
C5	IO10RSB0		
C6	IO12RSB0		
C7	IO21RSB0		
C8	IO24RSB0		
C9	IO27RSB0		
C10	GBA2/IO41RSB0		
C11	IO42RSB0		
C12	GBC2/IO45RSB0		

FG144			
Pin Number	A3P125 Function		
D1	IO128RSB1		
D2	IO129RSB1		
D3	IO130RSB1		
D4	GAA2/IO67RSB1		
D5	GAC0/IO04RSB0		
D6	GAC1/IO05RSB0		
D7	GBC0/IO35RSB0		
D8	GBC1/IO36RSB0		
D9	GBB2/IO43RSB0		
D10	IO28RSB0		
D11	IO44RSB0		
D12	GCB1/IO53RSB0		
E1	VCC		
E2	GFC0/IO125RSB1		
E3	GFC1/IO126RSB1		
E4	VCCIB1		
E5	IO68RSB1		
E6	VCCIB0		
E7	VCCIB0		
E8	GCC1/IO51RSB0		
E9	VCCIB0		
E10	VCC		
E11	GCA0/IO56RSB0		
E12	IO46RSB0		
F1	GFB0/IO123RSB1		
F2	VCOMPLF		
F3	GFB1/IO124RSB1		
F4	IO127RSB1		
F5	GND		
F6	GND		
F7	GND		
F8	GCC0/IO52RSB0		
F9	GCB0/IO54RSB0		
F10	GND		
F11	GCA1/IO55RSB0		
F12	GCA2/IO57RSB0		

FG144			
Pin Number A3P125 Function			
G1	GFA1/IO121RSB1		
G2	GND		
G3	VCCPLF		
G4	GFA0/IO122RSB1		
G5	GND		
G6	GND		
G7	GND		
G8	GDC1/IO61RSB0		
G9	IO48RSB0		
G10	GCC2/IO59RSB0		
G11	IO47RSB0		
G12	GCB2/IO58RSB0		
H1	VCC		
H2	GFB2/IO119RSB1		
H3	GFC2/IO118RSB1		
H4	GEC1/IO112RSB1		
H5	VCC		
H6	IO50RSB0		
H7	IO60RSB0		
H8	GDB2/IO71RSB1		
H9	GDC0/IO62RSB0		
H10	VCCIB0		
H11	IO49RSB0		
H12	VCC		
J1	GEB1/IO110RSB1		
J2	IO115RSB1		
J3	VCCIB1		
J4	GEC0/IO111RSB1		
J5	IO116RSB1		
J6	IO117RSB1		
J7	VCC		
J8	TCK		
J9	GDA2/IO70RSB1		
J10	TDO		
J11	GDA1/IO65RSB0		
J12	GDB1/IO63RSB0		

4-42 Revision 18

EGGE			
FG256			
Pin Number	A3P600 Function		
P9	IO107RSB2		
P10	IO104RSB2		
P11	IO97RSB2		
P12	VMV1		
P13	TCK		
P14	VPUMP		
P15	TRST		
P16	GDA0/IO88NDB1		
R1	GEA1/IO144PDB3		
R2	GEA0/IO144NDB3		
R3	IO139RSB2		
R4	GEC2/IO141RSB2		
R5	IO132RSB2		
R6	IO127RSB2		
R7	IO121RSB2		
R8	IO114RSB2		
R9	IO109RSB2		
R10	IO105RSB2		
R11	IO98RSB2		
R12	IO96RSB2		
R13	GDB2/IO90RSB2		
R14	TDI		
R15	GNDQ		
R16	TDO		
T1	GND		
T2	IO137RSB2		
Т3	GEB2/IO142RSB2		
T4	IO134RSB2		
T5	IO125RSB2		
T6	IO123RSB2		
T7	IO118RSB2		
Т8	IO115RSB2		
Т9	IO111RSB2		
T10	IO106RSB2		
T11	IO102RSB2		
T12	GDC2/IO91RSB2		

FG256		
Pin Number	A3P600 Function	
T13	IO93RSB2	
T14	GDA2/IO89RSB2	
T15	TMS	
T16	GND	

Package Pin Assignments

FG256			
Pin Number	A3P1000 Function		
R5	IO168RSB2		
R6	IO163RSB2		
R7	IO157RSB2		
R8	IO149RSB2		
R9	IO143RSB2		
R10	IO138RSB2		
R11	IO131RSB2		
R12	IO125RSB2		
R13	GDB2/IO115RSB2		
R14	TDI		
R15	GNDQ		
R16	TDO		
T1	GND		
T2	IO183RSB2		
Т3	GEB2/IO186RSB2		
T4	IO172RSB2		
T5	IO170RSB2		
T6	IO164RSB2		
T7	IO158RSB2		
Т8	IO153RSB2		
Т9	IO142RSB2		
T10	IO135RSB2		
T11	IO130RSB2		
T12	GDC2/IO116RSB2		
T13	IO120RSB2		
T14	GDA2/IO114RSB2		
T15	TMS		
T16	GND		

4-64 Revision 18

Revision	Changes	Page
Revision 13 (January 2013)	The "ProASIC3 Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43104).	1-IV
	Added a note to Table 2-2 • Recommended Operating Conditions 1 (SAR 43644): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	2-2
	The note in Table 2-115 • ProASIC3 CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42569).	2-90
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40284). Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 12 (September 2012)	The Security section was modified to clarify that Microsemi does not support read-back of programmed data.	1-1
	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information" to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions 1 (SAR 38321).	2-1 2-2
	Table 2-35 • Duration of Short Circuit Event Before Failure was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37933).	2-31
	In Table 2-93 • Minimum and Maximum DC Input and Output Levels, VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 28549).	2-68
	Figure 2-37 • FIFO Read and Figure 2-38 • FIFO Write are new (SAR 28371).	2-99
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38321). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Information

Revision	Changes	Page
Revision 11 (March 2012)	Note indicating that A3P015 is not recommended for new designs has been added. The "Devices Not Recommended For New Designs" section is new (SAR 36760).	I to IV
	The following sentence was removed from the Advanced Architecture section: "In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR 34687).	NA
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>ProASIC3 FPGA Fabric User's Guide</i> (SAR 34734).	2-12
	Figure 2-4 • Input Buffer Timing Model and Delays (Example) has been modified for the DIN waveform; the Rise and Fall time label has been changed to tDIN (35430).	2-16
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34883).	2-32
	Added values for minimum pulse width and removed the FRMAX row from Table 2-107 through Table 2-114 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SARs 37279, 29269).	2-85

5-3 Revision 18

Datasheet Information

Revision	Changes	Page
Revision 10 (continued)	"TBD" for 3.3 V LVCMOS Wide Range in Table 2-28 • I/O Output Buffer Maximum Resistances1 through Table 2-30 • I/O Output Buffer Maximum Resistances1 was replaced by "Same as regular 3.3 V" (SAR 33852).	2-26 to 2-28
	The equations in the notes for Table 2-31 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 32470).	2-28
	"TBD" for 3.3 V LVCMOS Wide Range in Table 2-32 • I/O Short Currents IOSH/IOSL through Table 2-34 • I/O Short Currents IOSH/IOSL was replaced by "Same as regular 3.3 V LVCMOS" (SAR 33852).	2-29 to 2-31
	In the "3.3 V LVCMOS Wide Range" section, values were added to Table 2-47 through Table 2-49 for IOSL and IOSH, replacing "TBD" (SAR 33852).	2-39 to 2-40
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It uses a 5 V-tolerant input buffer and push-pull output buffer."	2-47
	The table notes were revised for Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels (SAR 33859).	2-66
	Values were added for $F_{DDRIMAX}$ and F_{DDOMAX} in Table 2-102 • Input DDR Propagation Delays and Table 2-104 • Output DDR Propagation Delays (SAR 23919).	2-78, 2-80
	Table 2-115 • ProASIC3 CCC/PLL Specification was updated. A note was added to indicate that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 25705).	2-90
	The following figures were deleted (SAR 29991). Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 21770).	2-92,
	Figure 2-34 • Write Access after Write onto Same Address Figure 2-35 • Read Access after Write onto Same Address Figure 2-35 • Read Access after Write onto Same Address	2-94, 2-99 2-102
	The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-39 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SARs 29991, 30510).	
	The "Pin Descriptions" chapter has been added (SAR 21642).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	4-1
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "ProASIC3 Device Status" table on page IV indicates the status for each device in the device family.	N/A

5-5 Revision 18