E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	·
Total RAM Bits	18432
Number of I/O	71
Number of Gates	60000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p060-2vq100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 – ProASIC3 DC and Switching Characteristics

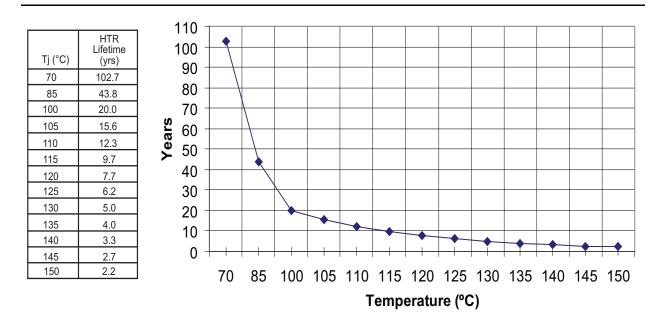
General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 • Absolute Maximum Ratings	Table 2-1 •	Absolute	Maximum	Ratings
--------------------------------------	-------------	----------	---------	---------


Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	–0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	–0.3 to 1.65	V
VCCI	DC I/O output buffer supply voltage	-0.3 to 3.75	V
VMV	DC I/O input buffer supply voltage	–0.3 to 3.75	V
VI	I/O input voltage	–0.3 V to 3.6 V	V
		(when I/O hot insertion mode is enabled)	
		-0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)	
T _{STG} ²	Storage temperature	-65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Microsemi

Power Matters."

Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage. Figure 2-1 • **High-Temperature Data Retention (HTR)**

Tabl	e 2-3 •	Flash Program	ning Limits	 Retention, 	, Storage and	Operating	Temperature ¹	1

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C)	Maximum Operating Junction Temperature $T_J (°C)^2$
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

This is a stress rating only; functional operation at any condition other than those indicated is not implied.
 These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

VCCI and VMV	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
Γ Γ	5%	1.19 V
3.3 V	10%	0.79 V
Γ	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

 Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

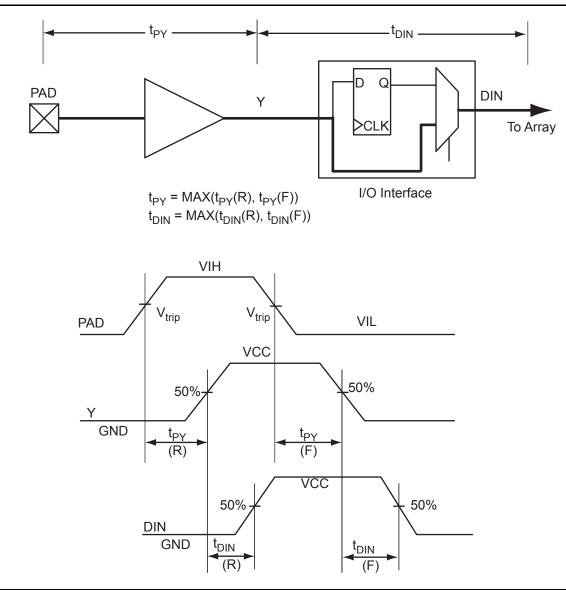


Figure 2-4 • Input Buffer Timing Model and Delays (Example)

Table 2-19 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings

		Equiv.			VIL	VIH		VOL	VOH		
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min V	Max V	Min V	Max V	Max V	Min V	IOL ¹ mA	IOH ¹ mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ³	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	8 mA	8 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI – 0.45	8	8
1.5 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.6	0.25 * VCCI	0.75 * VCCI	4	4
3.3 V PCI		•	-		Per P	CI specification	ons				
3.3 V PCI-X					Per PC	I-X specificat	ions				

Applicable to Standard Plus I/O Banks

Notes:

1. Currents are measured at 85°C junction temperature.

2. 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-20 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks

		Equiv.		VIL		VIH		VOL	VOH		
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew	Min V	Max V	Min V	Max V	Max V	Min V	IOL ¹ mA	IOH ¹ mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
3.3 V LVCMOS Wide Range ³	100 µA	8 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	8 mA	8 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4
1.5 V LVCMOS	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2

Notes:

1. Currents are measured at 85°C junction temperature.

2. 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Table 2-21 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions

	Comr	nercial ¹	Industrial ²		
	IIL ³	IIH ⁴	IIL ³	IIH ⁴	
DC I/O Standards	μΑ	μA	μA	μA	
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15	
3.3 V LVCMOS Wide Range	10	10	15	15	
2.5 V LVCMOS	10	10	15	15	
1.8 V LVCMOS	10	10	15	15	
1.5 V LVCMOS	10	10	15	15	
3.3 V PCI	10	10	15	15	
3.3 V PCI-X	10	10	15	15	

Notes:

1. Commercial range ($0^{\circ}C < T_A < 70^{\circ}C$)

2. Industrial range $(-40^{\circ}C < T_A < 85^{\circ}C)$

- 3. IIL is the input leakage current per I/O pin over recommended operation conditions where $-0.3V < V_{IN} < V_{IL}$.
- 4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-22 • Summary of AC Measuring Points

Standard	Measuring Trip Point (V _{trip})
3.3 V LVTTL / 3.3 V LVCMOS	1.4 V
3.3 V LVCMOS Wide Range	1.4 V
2.5 V LVCMOS	1.2 V
1.8 V LVCMOS	0.90 V
1.5 V LVCMOS	0.75 V
3.3 V PCI	0.285 * VCCI (RR)
	0.615 * VCCI (FF)
3.3 V PCI-X	0.285 * VCCI (RR)
	0.615 * VCCI (FF)

Table 2-23 • I/O AC Parameter Definitions

Parameter	Parameter Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

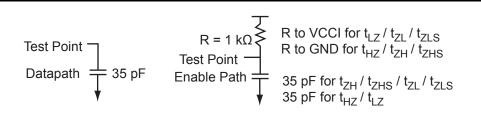
Table 2-39 • Min	imum an	nd Maxim	um DC I	nput and	Output L	evels						
App 3.3 V LVTTL / 3.3 V LVCMOS		o Standa		anks IH	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10

Vlicrose

Power Matters.

T

Notes:


1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

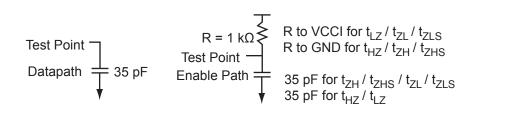
5. Software default selection highlighted in gray.

Figure 2-7 • AC Loading

Table 2-40 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	35

Note: *Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.


Table 2-68 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

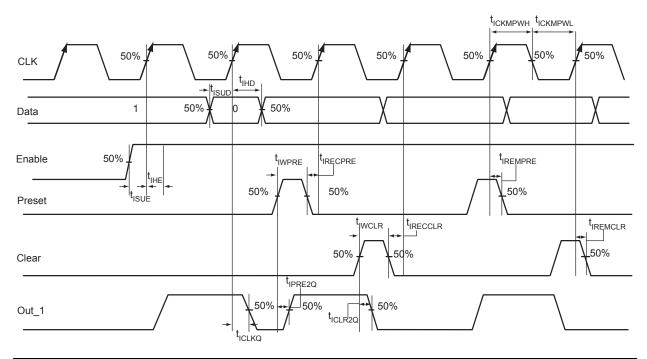
1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4	17	22	10	10

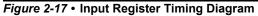
Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-9 • AC Loading


Table 2-69 • AC Waveforms, Measuring Points, and Capacitive Loads


Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.8	0.9	35

Note: *Measuring point = Vtrip_See Table 2-22 on page 2-22 for a complete table of trip points.

Input Register

Timing Characteristics

Table 2-98 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.27	0.32	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.26	0.30	0.35	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.37	0.42	0.50	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-113 • A3P600 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.425 V

		-	-2		-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Microse

Power Matters.

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

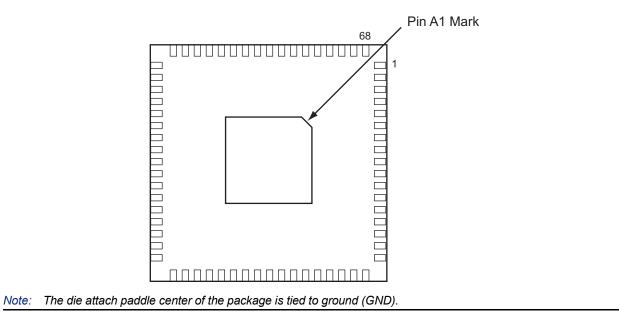
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-114 • A3P1000 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2		-1 Std.		td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.94	1.16	1.07	1.32	1.26	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	0.93	1.19	1.06	1.35	1.24	1.59	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.35	ns

Notes:


1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

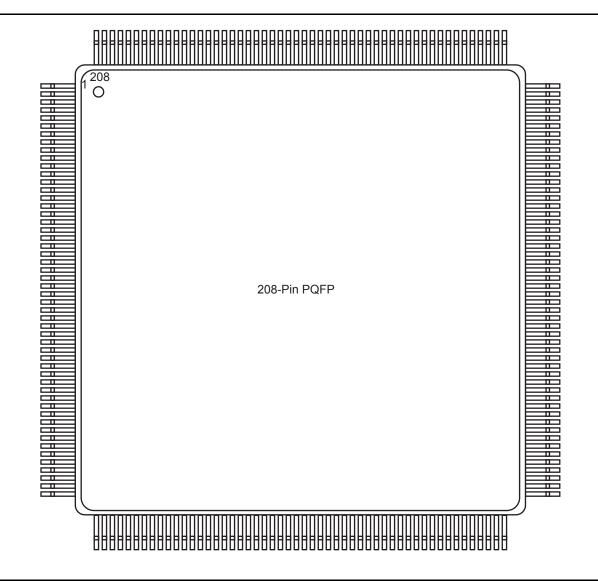
QN68 – Bottom View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

A3P060 Function GND NC GCB2/IO45RSB0 GND GCB0/IO41RSB0 GCC1/IO38RSB0 GND GBB2/IO30RSB0 VMV0 GBA0/IO26RSB0 GBC1/IO23RSB0 GND IO20RSB0 IO17RSB0 GND IO12RSB0 GAC0/IO09RSB0 GND GAA1/IO06RSB0 GNDQ GAA2/IO02RSB1 IO95RSB1 VCC GFB1/IO87RSB1 GFA0/IO85RSB1 GFA2/IO83RSB1 IO80RSB1 VCCIB1 GEA1/IO73RSB1 GNDQ GEA2/IO71RSB1 IO68RSB1 VCCIB1 NC NC IO60RSB1

	QN132		QN132		QN132
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P0
A1	GAB2/IO00RSB1	A37	GBB1/IO25RSB0	B25	
A2	IO93RSB1	A38	GBC0/IO22RSB0	B26	
A3	VCCIB1	A39	VCCIB0	B27	GCB2
A4	GFC1/IO89RSB1	A40	IO21RSB0	B28	
A5	GFB0/IO86RSB1	A41	IO18RSB0	B29	GCBC
A6	VCCPLF	A42	IO15RSB0	B30	GCC1
A7	GFA1/IO84RSB1	A43	IO14RSB0	B31	
A8	GFC2/IO81RSB1	A44	IO11RSB0	B32	GBB2
A9	IO78RSB1	A45	GAB1/IO08RSB0	B33	
A10	VCC	A46	NC	B34	GBAC
A11	GEB1/IO75RSB1	A47	GAB0/IO07RSB0	B35	GBC1
A12	GEA0/IO72RSB1	A48	IO04RSB0	B36	
A13	GEC2/IO69RSB1	B1	IO01RSB1	B37	IO
A14	IO65RSB1	B2	GAC2/IO94RSB1	B38	IO
A15	VCC	B3	GND	B39	
A16	IO64RSB1	B4	GFC0/IO88RSB1	B40	IO
A17	IO63RSB1	B5	VCOMPLF	B41	GAC
A18	IO62RSB1	B6	GND	B42	
A19	IO61RSB1	B7	GFB2/IO82RSB1	B43	GAA1
A20	IO58RSB1	B8	IO79RSB1	B44	
A21	GDB2/IO55RSB1	B9	GND	C1	GAA2
A22	NC	B10	GEB0/IO74RSB1	C2	IO
A23	GDA2/IO54RSB1	B11	VMV1	C3	
A24	TDI	B12	GEB2/IO70RSB1	C4	GFB1
A25	TRST	B13	IO67RSB1	C5	GFAC
A26	GDC1/IO48RSB0	B14	GND	C6	GFA2
A27	VCC	B15	NC	C7	IO
A28	IO47RSB0	B16	NC	C8	\
A29	GCC2/IO46RSB0	B17	GND	C9	GEA1
A30	GCA2/IO44RSB0	B18	IO59RSB1	C10	
A31	GCA0/IO43RSB0	B19	GDC2/IO56RSB1	C11	GEA2
A32	GCB1/IO40RSB0	B20	GND	C12	IO
A33	IO36RSB0	B21	GNDQ	C13	\
A34	VCC	B22	TMS	C14	
A35	IO31RSB0	B23	TDO	C15	
A36	GBA2/IO28RSB0	B24	GDC0/IO49RSB0	C16	IO



QN132					
Pin Number	A3P250 Function				
C17	IO74RSB2				
C18	VCCIB2				
C19	ТСК				
C20	VMV2				
C21	VPUMP				
C22	VJTAG				
C23	VCCIB1				
C24	IO53NSB1				
C25	IO51NPB1				
C26	GCA1/IO50PPB1				
C27	GCC0/IO48NDB1				
C28	VCCIB1				
C29	IO42NDB1				
C30	GNDQ				
C31	GBA1/IO40RSB0				
C32	GBB0/IO37RSB0				
C33	VCC				
C34	IO24RSB0				
C35	IO19RSB0				
C36	IO16RSB0				
C37	IO10RSB0				
C38	VCCIB0				
C39	GAB1/IO03RSB0				
C40	VMV0				
D1	GND				
D2	GND				
D3	GND				
D4	GND				

Package Pin Assignments

PQ208 – Top View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Microsemi

	PQ208		PQ208		PQ208
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
109	TRST	145	IO46RSB0	181	IO21RSB0
110	VJTAG	146	NC	182	IO20RSB0
111	GDA0/IO66RSB0	147	NC	183	IO19RSB0
112	GDA1/IO65RSB0	148	NC	184	IO18RSB0
113	GDB0/IO64RSB0	149	GBC2/IO45RSB0	185	IO17RSB0
114	GDB1/IO63RSB0	150	IO44RSB0	186	VCCIB0
115	GDC0/IO62RSB0	151	GBB2/IO43RSB0	187	VCC
116	GDC1/IO61RSB0	152	IO42RSB0	188	IO16RSB0
117	NC	153	GBA2/IO41RSB0	189	IO15RSB0
118	NC	154	VMV0	190	IO14RSB0
119	NC	155	GNDQ	191	IO13RSB0
120	NC	156	GND	192	IO12RSB0
121	NC	157	NC	193	IO11RSB0
122	GND	158	GBA1/IO40RSB0	194	IO10RSB0
123	VCCIB0	159	GBA0/IO39RSB0	195	GND
124	NC	160	GBB1/IO38RSB0	196	IO09RSB0
125	NC	161	GBB0/IO37RSB0	197	IO08RSB0
126	VCC	162	GND	198	IO07RSB0
127	IO60RSB0	163	GBC1/IO36RSB0	199	IO06RSB0
128	GCC2/IO59RSB0	164	GBC0/IO35RSB0	200	VCCIB0
129	GCB2/IO58RSB0	165	IO34RSB0	201	GAC1/IO05RSB0
130	GND	166	IO33RSB0	202	GAC0/IO04RSB0
131	GCA2/IO57RSB0	167	IO32RSB0	203	GAB1/IO03RSB0
132	GCA0/IO56RSB0	168	IO31RSB0	204	GAB0/IO02RSB0
133	GCA1/IO55RSB0	169	IO30RSB0	205	GAA1/IO01RSB0
134	GCB0/IO54RSB0	170	VCCIB0	206	GAA0/IO00RSB0
135	GCB1/IO53RSB0	171	VCC	207	GNDQ
136	GCC0/IO52RSB0	172	IO29RSB0	208	VMV0
137	GCC1/IO51RSB0	173	IO28RSB0		
138	IO50RSB0	174	IO27RSB0		
139	IO49RSB0	175	IO26RSB0		
140	VCCIB0	176	IO25RSB0		
141	GND	177	IO24RSB0		
142	VCC	178	GND		
143	IO48RSB0	179	IO23RSB0		
144	IO47RSB0	180	IO22RSB0		

	FG484	FG484			FG484
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
K19	IO75NDB1	M11	GND	P3	IO153NDB3
K20	NC	M12	GND	P4	IO159NDB3
K21	IO76NDB1	M13	GND	P5	IO156NPB3
K22	IO76PDB1	M14	VCC	P6	IO151PPB3
L1	NC	M15	GCB2/IO73PPB1	P7	IO158PPB3
L2	IO155PDB3	M16	GCA1/IO71PPB1	P8	VCCIB3
L3	NC	M17	GCC2/IO74PPB1	P9	GND
L4	GFB0/IO163NPB3	M18	IO80PPB1	P10	VCC
L5	GFA0/IO162NDB3	M19	GCA2/IO72PDB1	P11	VCC
L6	GFB1/IO163PPB3	M20	IO79PPB1	P12	VCC
L7	VCOMPLF	M21	IO78PPB1	P13	VCC
L8	GFC0/IO164NPB3	M22	NC	P14	GND
L9	VCC	N1	IO154NDB3	P15	VCCIB1
L10	GND	N2	IO154PDB3	P16	GDB0/IO87NPB1
L11	GND	N3	NC	P17	IO85NDB1
L12	GND	N4	GFC2/IO159PDB3	P18	IO85PDB1
L13	GND	N5	IO161NPB3	P19	IO84PDB1
L14	VCC	N6	IO156PPB3	P20	NC
L15	GCC0/IO69NPB1	N7	IO129RSB2	P21	IO81PDB1
L16	GCB1/IO70PPB1	N8	VCCIB3	P22	NC
L17	GCA0/IO71NPB1	N9	VCC	R1	NC
L18	IO67NPB1	N10	GND	R2	NC
L19	GCB0/IO70NPB1	N11	GND	R3	VCC
L20	IO77PDB1	N12	GND	R4	IO150PDB3
L21	IO77NDB1	N13	GND	R5	IO151NPB3
L22	IO78NPB1	N14	VCC	R6	IO147NPB3
M1	NC	N15	VCCIB1	R7	GEC0/IO146NPB3
M2	IO155NDB3	N16	IO73NPB1	R8	VMV3
M3	IO158NPB3	N17	IO80NPB1	R9	VCCIB2
M4	GFA2/IO161PPB3	N18	IO74NPB1	R10	VCCIB2
M5	GFA1/IO162PDB3	N19	IO72NDB1	R11	IO117RSB2
M6	VCCPLF	N20	NC	R12	IO110RSB2
M7	IO160NDB3	N21	IO79NPB1	R13	VCCIB2
M8	GFB2/IO160PDB3	N22	NC	R14	VCCIB2
M9	VCC	P1	NC	R15	VMV2
M10	GND	P2	IO153PDB3	R16	IO94RSB2

🌜 Microsemi.

	FG484 FG484		FG484		FG484
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
A1	GND	B15	IO63RSB0	D7	GAB0/IO02RSB0
A2	GND	B16	IO66RSB0	D8	IO16RSB0
A3	VCCIB0	B17	IO68RSB0	D9	IO22RSB0
A4	IO07RSB0	B18	IO70RSB0	D10	IO28RSB0
A5	IO09RSB0	B19	NC	D11	IO35RSB0
A6	IO13RSB0	B20	NC	D12	IO45RSB0
A7	IO18RSB0	B21	VCCIB1	D13	IO50RSB0
A8	IO20RSB0	B22	GND	D14	IO55RSB0
A9	IO26RSB0	C1	VCCIB3	D15	IO61RSB0
A10	IO32RSB0	C2	IO220PDB3	D16	GBB1/IO75RSB0
A11	IO40RSB0	C3	NC	D17	GBA0/IO76RSB0
A12	IO41RSB0	C4	NC	D18	GBA1/IO77RSB0
A13	IO53RSB0	C5	GND	D19	GND
A14	IO59RSB0	C6	IO10RSB0	D20	NC
A15	IO64RSB0	C7	IO14RSB0	D21	NC
A16	IO65RSB0	C8	VCC	D22	NC
A17	IO67RSB0	C9	VCC	E1	IO219NDB3
A18	IO69RSB0	C10	IO30RSB0	E2	NC
A19	NC	C11	IO37RSB0	E3	GND
A20	VCCIB0	C12	IO43RSB0	E4	GAB2/IO224PDB3
A21	GND	C13	NC	E5	GAA2/IO225PDB3
A22	GND	C14	VCC	E6	GNDQ
B1	GND	C15	VCC	E7	GAB1/IO03RSB0
B2	VCCIB3	C16	NC	E8	IO17RSB0
B3	NC	C17	NC	E9	IO21RSB0
B4	IO06RSB0	C18	GND	E10	IO27RSB0
B5	IO08RSB0	C19	NC	E11	IO34RSB0
B6	IO12RSB0	C20	NC	E12	IO44RSB0
B7	IO15RSB0	C21	NC	E13	IO51RSB0
B8	IO19RSB0	C22	VCCIB1	E14	IO57RSB0
B9	IO24RSB0	D1	IO219PDB3	E15	GBC1/IO73RSB0
B10	IO31RSB0	D2	IO220NDB3	E16	GBB0/IO74RSB0
B11	IO39RSB0	D3	NC	E17	IO71RSB0
B12	IO48RSB0	D4	GND	E18	GBA2/IO78PDB1
B13	IO54RSB0	D5	GAA0/IO00RSB0	E19	IO81PDB1
B14	IO58RSB0	D6	GAA1/IO01RSB0	E20	GND

🌜 Microsemi.

FG484					
Pin Number	A3P1000 Function				
Y15	VCC				
Y16	NC				
Y17	NC				
Y18	GND				
Y19	NC				
Y20	NC				
Y21	NC				
Y22	VCCIB1				
AA1	GND				
AA2	VCCIB3				
AA3	NC				
AA4	IO181RSB2				
AA5	IO178RSB2				
AA6	IO175RSB2				
AA7	IO169RSB2				
AA8	IO166RSB2				
AA9	IO160RSB2				
AA10	IO152RSB2				
AA11	IO146RSB2				
AA12	IO139RSB2				
AA13	IO133RSB2				
AA14	NC				
AA15	NC				
AA16	IO122RSB2				
AA17	IO119RSB2				
AA18	IO117RSB2				
AA19	NC				
AA20	NC				
AA21	VCCIB1				
AA22	GND				
AB1	GND				
AB2	GND				
AB3	VCCIB2				
AB4	IO180RSB2				
AB5	IO176RSB2				
AB6	IO173RSB2				

	FG484		
Pin Number	A3P1000 Function		
AB7	IO167RSB2		
AB8	IO162RSB2		
AB9	IO156RSB2		
AB10	IO150RSB2		
AB11	IO145RSB2		
AB12	IO144RSB2		
AB13	IO132RSB2		
AB14	IO127RSB2		
AB15	IO126RSB2		
AB16	IO123RSB2		
AB17	IO121RSB2		
AB18	IO118RSB2		
AB19	NC		
AB20	VCCIB2		
AB21	GND		
AB22	GND		

Revision	Changes	Page
Revision 9 (Oct 2009) The CS121 package was added to table under "Features and Benefits" section product Brief v1.3 The CS121 package 1" table, Table 1 • ProASIC3 FPGAs Package Size Dimensions, "ProASIC3 Ordering Information", and the "Temperature Grad Offerings" table.	I – IV	
	"ProASIC3 Ordering Information" was revised to include the fact that some RoHS compliant packages are halogen-free.	IV
Packaging v1.5	The "CS121 – Bottom View" figure and pin table for A3P060 are new.	4-15
Revision 8 (Aug 2009) Product Brief v1.2	All references to M7 devices (CoreMP7) and speed grade –F were removed from this document.	N/A
	Table 1-1 I/O Standards supported is new.	1-7
	The I/Os with Advanced I/O Standards section was revised to add definitions of hot-swap and cold-sparing.	1-7
DC and Switching Characteristics v1.4	$3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS data.	N/A
	$\rm I_{\rm IL}$ and $\rm I_{\rm IH}$ input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A
	-F was removed from the datasheet. The speed grade is no longer supported.	N/A
	The notes in Table 2-2 • Recommended Operating Conditions 1 were updated.	2-2
	Table 2-4 • Overshoot and Undershoot Limits 1 was updated.	2-3
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	2-6
	In Table 2-116 • RAM4K9, the following specifications were removed: t _{WRO} t _{CCKH}	2-96
	In Table 2-117 • RAM512X18, the following specifications were removed: t _{WRO} t _{CCKH}	2-97
	In the title of Table 2-74 • 1.8 V LVCMOS High Slew, VCCI had a typo. It was changed from 3.0 V to 1.7 V.	2-58
Revision 7 (Feb 2009) Product Brief v1.1	The "Advanced I/O" section was revised to add a bullet regarding wide range power supply voltage support.	I
	The table under "Features and Benefits" section, was updated to include a value for typical equivalent macrocells for A3P250.	I
	The QN48 package was added to the following tables: the table under "Features and Benefits" section, "I/Os Per Package 1" "ProASIC3 FPGAs Package Sizes Dimensions", and "Temperature Grade Offerings".	N/A
	The number of singled-ended I/Os for QN68 was added to the "I/Os Per Package 1" table.	
	The Wide Range I/O Support section is new.	1-7
Revision 6 (Dec 2008)	The "QN48 – Bottom View" section is new.	4-1
Packaging v1.4	The "QN68" pin table for A3P030 is new.	4-5

Datasheet Information

Revision	Changes	Page
Advance v0.3	The "PLL Macro" section was updated. EXTFB information was removed from this section.	2-15
	The CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} was updated in Table 2- 11 • ProASIC3 CCC/PLL Specification	2-29
	EXTFB was removed from Figure 2-27 • CCC/PLL Macro.	2-28
	Table 2-13 • ProASIC3 I/O Features was updated.	2-30
	The "Hot-Swap Support" section was updated.	2-33
	The "Cold-Sparing Support" section was updated.	2-34
	"Electrostatic Discharge (ESD) Protection" section was updated.	2-35
	The LVPECL specification in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.	2-64
	In the Bank 1 area of Figure 2-72, VMV2 was changed to VMV1 and VCCIB2 was changed to VCC_IB1.	2-97
	The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.	2-50
	The "JTAG Pins" section was updated.	2-51
	"128-Bit AES Decryption" section was updated to include M7 device information.	2-53
	Table 3-6 was updated.	3-6
	Table 3-7 was updated.	3-6
	In Table 3-11, PAC4 was updated.	3-93-8
	Table 3-20 was updated.	3-20
	The note in Table 3-32 was updated.	3-27
	All Timing Characteristics tables were updated from LVTTL to Register Delays	3-31 to 3- 73
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-85 to 3-90
	F _{TCKMAX} was updated in Table 3-110.	3-97
Advance v0.2	Figure 2-11 was updated.	2-9
	The "Clock Resources (VersaNets)" section was updated.	2-9
	The "VersaNet Global Networks and Spine Access" section was updated.	2-9
	The "PLL Macro" section was updated.	2-15
	Figure 2-27 was updated.	2-28
	Figure 2-20 was updated.	2-19
	Table 2-5 was updated.	2-25
	Table 2-6 was updated.	2-25
	The "FIFO Flag Usage Considerations" section was updated.	2-27
	Table 2-13 was updated.	2-30
	Figure 2-24 was updated.	2-31
	The "Cold-Sparing Support" section is new.	2-34