E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	18432
Number of I/O	71
Number of Gates	60000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p060-2vqg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User Nonvolatile FlashROM

ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3 development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

ProASIC3 devices (except the A3P015 and A3P030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in A3P015 and A3P030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL. The A3P015 and A3P030 devices do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

Table 2-30 • I/O Output Buffer Maximum Resistances¹ Applicable to Standard I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
3.3 V LVCMOS Wide Range ⁴	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Table 2-31 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK}	PULL-UP) ¹ Ω)	R _(WEAK PULL-DOWN) ² (Ω)			
VCCI	Min	Мах	Min	Мах		
3.3 V	10 k	45 k	10 k	45 k		
3.3 V (wide range I/Os)	10 k	45 k	10 k	45 k		
2.5 V	11 k	55 k	12 k	74 k		
1.8 V	18 k	70 k	17 k	110 k		
1.5 V	19 k	90 k	19 k	140 k		

Notes:

R_(WEAK PULL-UP-MAX) = (VCCI_{MAX} - VOH_{spec}) / I_(WEAK PULL-UP-MIN)
R_(WEAK PULL-DOWN-MAX) = (VOL_{spec}) / I_(WEAK PULL-DOWN-MIN)

Table 2-58 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

2.5 V LVCMOS	v	ΊL	V	ΊH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max., V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	32	37	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-8 • AC Loading

Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	2.5	1.2	35

Note: *Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.

and Switch Fable 2-62 •	2.5 V LV	cteristics CMOS H	igh Sle	W	T - 70	N°C Wor	et Cae		- 1 425	V Wor		Power	Matters.
	Applicat	ole to Sta	indard	Plus I/C	D Bank	s , wor	51-0456	, vcc -	- 1.423	v, wor	51-0450		2.3 V
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.66	8.28	0.04	1.30	0.43	7.41	8.28	2.25	2.07	9.64	10.51	ns
	-1	0.56	7.04	0.04	1.10	0.36	6.30	7.04	1.92	1.76	8.20	8.94	ns
	-2	0.49	6.18	0.03	0.97	0.32	5.53	6.18	1.68	1.55	7.20	7.85	ns
6 mA	Std.	0.66	4.85	0.04	1.30	0.43	4.65	4.85	2.59	2.71	6.88	7.09	ns
	-1	0.56	4.13	0.04	1.10	0.36	3.95	4.13	2.20	2.31	5.85	6.03	ns
	-2	0.49	3.62	0.03	0.97	0.32	3.47	3.62	1.93	2.02	5.14	5.29	ns
8 mA	Std.	0.66	4.85	0.04	1.30	0.43	4.65	4.85	2.59	2.71	6.88	7.09	ns
	-1	0.56	4.13	0.04	1.10	0.36	3.95	4.13	2.20	2.31	5.85	6.03	ns
	-2	0.49	3.62	0.03	0.97	0.32	3.47	3.62	1.93	2.02	5.14	5.29	ns
12 mA	Std.	0.66	3.21	0.04	1.30	0.43	3.27	3.14	2.82	3.11	5.50	5.38	ns
	-1	0.56	2.73	0.04	1.10	0.36	2.78	2.67	2.40	2.65	4.68	4.57	ns
	-2	0.49	2.39	0.03	0.97	0.32	2.44	2.35	2.11	2.32	4.11	4.02	ns

Microsomi

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-63 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.66	10.84	0.04	1.30	0.43	10.64	10.84	2.26	1.99	12.87	13.08	ns
	–1	0.56	9.22	0.04	1.10	0.36	9.05	9.22	1.92	1.69	10.95	11.12	ns
	-2	0.49	8.10	0.03	0.97	0.32	7.94	8.10	1.68	1.49	9.61	9.77	ns
6 mA	Std.	0.66	7.37	0.04	1.30	0.43	7.50	7.36	2.59	2.61	9.74	9.60	ns
	-1	0.56	6.27	0.04	1.10	0.36	6.38	6.26	2.20	2.22	8.29	8.16	ns
	-2	0.49	5.50	0.03	0.97	0.32	5.60	5.50	1.93	1.95	7.27	7.17	ns
8 mA	Std.	0.66	7.37	0.04	1.30	0.43	7.50	7.36	2.59	2.61	9.74	9.60	ns
	-1	0.56	6.27	0.04	1.10	0.36	6.38	6.26	2.20	2.22	8.29	8.16	ns
	-2	0.49	5.50	0.03	0.97	0.32	5.60	5.50	1.93	1.95	7.27	7.17	ns
12 mA	Std.	0.66	5.63	0.04	1.30	0.43	5.73	5.51	2.83	3.01	7.97	7.74	ns
	–1	0.56	4.79	0.04	1.10	0.36	4.88	4.68	2.41	2.56	6.78	6.59	ns
	-2	0.49	4.20	0.03	0.97	0.32	4.28	4.11	2.11	2.25	5.95	5.78	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-86 •	Minimum and	Maximum D	OC Input and	Output Levels
--------------	-------------	-----------	--------------	---------------

3.3 V PCI/PCI-X	VIL		VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max,. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
Per PCI specification		Per PCI curves							10	10		

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-11.

Figure 2-11 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-87.

Table 2-87 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}	10
		0.615 * VCCI for t _{DP(F)}	

Note: *Measuring point = V_{trip} . See Table 2-22 on page 2-22 for a complete table of trip points.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OSUE}	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OESUE}	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Table 2-97 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-16 on page 2-71 for more information.

Output Register

Timing Characteristics

Table 2-99 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.59	0.67	0.79	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.31	0.36	0.42	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.44	0.50	0.59	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OCKMPWH}	Clock Minimum Pulse Width High for the Output Data Register	0.36	0.41	0.48	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-111 • A3P250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.80	1.01	0.91	1.15	1.07	1.36	ns
t _{RCKH}	Input High Delay for Global Clock	0.78	1.04	0.89	1.18	1.04	1.39	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-112 • A3P400 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2		-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-113 • A3P600 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.425 V

		-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Microse

Power Matters.

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-114 • A3P1000 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.94	1.16	1.07	1.32	1.26	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	0.93	1.19	1.06	1.35	1.24	1.59	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.35	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-115 • ProASIC3 CCC/PLL Specification

Parameter		Minimum	Typical	Maximum	Units
Clock Conditioning Circuitry Input Freq	uency f _{IN_CCC}	1.5		350	MHz
Clock Conditioning Circuitry Output Fre	equency f _{OUT_CCC}	0.75		350	MHz
Serial Clock (SCLK) for Dynamic PLL ¹				125	MHz
Delay Increments in Programmable De	lay Blocks ^{2, 3}		200 ⁴		ps
Number of Programmable Values in Delay Block	Each Programmable			32	
Input Period Jitter				1.5	ns
CCC Output Peak-to-Peak Period Jitte	r F _{CCC_OUT}	М	ax Peak-to-F	Peak Period Jit	ter
		1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz		0.50%		0.70%	
24 MHz to 100 MHz		1.00%		1.20%	
100 MHz to 250 MHz		1.75%		2.00%	
250 MHz to 350 MHz		2.50%		5.60%	
Acquisition Time					
(A3P250 and A3P1000 only)	LockControl = 0			300	μs
	LockControl = 1			300	μs
(all other dies)	LockControl = 0			300	μs
	LockControl = 1			6.0	ms
Tracking Jitter ⁵					
(A3P250 and A3P1000 only)	LockControl = 0			1.6	ns
	LockControl = 1			1.6	ns
(all other dies)	LockControl = 0			1.6	ns
	LockControl = 1			0.8	ns
Output Duty Cycle		48.5		51.5	%
Delay Range in Block: Programmable I	Delay 1 ^{2, 3}	0.6		5.56	ns
Delay Range in Block: Programmable I	Delay 2 ^{2, 3}	0.225		5.56	ns
Delay Range in Block: Fixed Delay ^{2, 3}			2.2		ns

Notes:

1. Maximum value obtained for a -2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 for deratings.

3. $T_J = 25^{\circ}C$, VCC = 1.5 V

- 4. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help for more information.
- 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

6. The A3P030 device does not contain a PLL.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Related Documents

User's Guides

ProASIC FPGA Fabric User's Guide http://www.microsemi.com/soc/documents/PA3_UG.pdf

Packaging

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Actel. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials are at http://www.microsemi.com/products/solutions/package/docs.aspx.

VQ100		,	VQ100	VQ100		
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Num	Der A3P125 Function	
1	GND	37	VCC	73	GBA2/IO41RSB0	
2	GAA2/IO67RSB1	38	GND	74	VMV0	
3	IO68RSB1	39	VCCIB1	75	GNDQ	
4	GAB2/IO69RSB1	40	IO87RSB1	76	GBA1/IO40RSB0	
5	IO132RSB1	41	IO84RSB1	77	GBA0/IO39RSB0	
6	GAC2/IO131RSB1	42	IO81RSB1	78	GBB1/IO38RSB0	
7	IO130RSB1	43	IO75RSB1	79	GBB0/IO37RSB0	
8	IO129RSB1	44	GDC2/IO72RSB1	80	GBC1/IO36RSB0	
9	GND	45	GDB2/IO71RSB1	81	GBC0/IO35RSB0	
10	GFB1/IO124RSB1	46	GDA2/IO70RSB1	82	IO32RSB0	
11	GFB0/IO123RSB1	47	ТСК	83	IO28RSB0	
12	VCOMPLF	48	TDI	84	IO25RSB0	
13	GFA0/IO122RSB1	49	TMS	85	IO22RSB0	
14	VCCPLF	50	VMV1	86	IO19RSB0	
15	GFA1/IO121RSB1	51	GND	87	VCCIB0	
16	GFA2/IO120RSB1	52	VPUMP	88	GND	
17	VCC	53	NC	89	VCC	
18	VCCIB1	54	TDO	90	IO15RSB0	
19	GEC0/IO111RSB1	55	TRST	91	IO13RSB0	
20	GEB1/IO110RSB1	56	VJTAG	92	IO11RSB0	
21	GEB0/IO109RSB1	57	GDA1/IO65RSB0	93	IO09RSB0	
22	GEA1/IO108RSB1	58	GDC0/IO62RSB0	94	IO07RSB0	
23	GEA0/IO107RSB1	59	GDC1/IO61RSB0	95	GAC1/IO05RSB0	
24	VMV1	60	GCC2/IO59RSB0	96	GAC0/IO04RSB0	
25	GNDQ	61	GCB2/IO58RSB0	97	GAB1/IO03RSB0	
26	GEA2/IO106RSB1	62	GCA0/IO56RSB0	98	GAB0/IO02RSB0	
27	GEB2/IO105RSB1	63	GCA1/IO55RSB0	99	GAA1/IO01RSB0	
28	GEC2/IO104RSB1	64	GCC0/IO52RSB0	100	GAA0/IO00RSB0	
29	IO102RSB1	65	GCC1/IO51RSB0			
30	IO100RSB1	66	VCCIB0			
31	IO99RSB1	67	GND			
32	IO97RSB1	68	VCC			
33	IO96RSB1	69	IO47RSB0			
34	IO95RSB1	70	GBC2/IO45RSB0			
35	IO94RSB1	71	GBB2/IO43RSB0			
36	IO93RSB1	72	IO42RSB0			

TQ144					
Pin Number	A3P060 Function				
109	NC				
110	NC				
111	GBA1/IO24RSB0				
112	GBA0/IO23RSB0				
113	GBB1/IO22RSB0				
114	GBB0/IO21RSB0				
115	GBC1/IO20RSB0				
116	GBC0/IO19RSB0				
117	VCCIB0				
118	GND				
119	VCC				
120	IO18RSB0				
121	IO17RSB0				
122	IO16RSB0				
123	IO15RSB0				
124	IO14RSB0				
125	IO13RSB0				
126	IO12RSB0				
127	IO11RSB0				
128	NC				
129	IO10RSB0				
130	IO09RSB0				
131	IO08RSB0				
132	GAC1/IO07RSB0				
133	GAC0/IO06RSB0				
134	NC				
135	GND				
136	NC				
137	GAB1/IO05RSB0				
138	GAB0/IO04RSB0				
139	GAA1/IO03RSB0				
140	GAA0/IO02RSB0				
141	IO01RSB0				
142	IO00RSB0				
143	GNDQ				
144	VMV0				

PQ208			PQ208		PQ208
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
1	GND	37	IO104PDB3	73	IO83RSB2
2	GAA2/IO118UDB3	38	IO104NDB3	74	IO82RSB2
3	IO118VDB3	39	IO103PSB3	75	IO81RSB2
4	GAB2/IO117UDB3	40	VCCIB3	76	IO80RSB2
5	IO117VDB3	41	GND	77	IO79RSB2
6	GAC2/IO116UDB3	42	IO101PDB3	78	IO78RSB2
7	IO116VDB3	43	IO101NDB3	79	IO77RSB2
8	IO115UDB3	44	GEC1/IO100PDB3	80	IO76RSB2
9	IO115VDB3	45	GEC0/IO100NDB3	81	GND
10	IO114UDB3	46	GEB1/IO99PDB3	82	IO75RSB2
11	IO114VDB3	47	GEB0/IO99NDB3	83	IO74RSB2
12	IO113PDB3	48	GEA1/IO98PDB3	84	IO73RSB2
13	IO113NDB3	49	GEA0/IO98NDB3	85	IO72RSB2
14	IO112PDB3	50	VMV3	86	IO71RSB2
15	IO112NDB3	51	GNDQ	87	IO70RSB2
16	VCC	52	GND	88	VCC
17	GND	53	NC	89	VCCIB2
18	VCCIB3	54	NC	90	IO69RSB2
19	IO111PDB3	55	GEA2/IO97RSB2	91	IO68RSB2
20	IO111NDB3	56	GEB2/IO96RSB2	92	IO67RSB2
21	GFC1/IO110PDB3	57	GEC2/IO95RSB2	93	IO66RSB2
22	GFC0/IO110NDB3	58	IO94RSB2	94	IO65RSB2
23	GFB1/IO109PDB3	59	IO93RSB2	95	IO64RSB2
24	GFB0/IO109NDB3	60	IO92RSB2	96	GDC2/IO63RSB2
25	VCOMPLF	61	IO91RSB2	97	GND
26	GFA0/IO108NPB3	62	VCCIB2	98	GDB2/IO62RSB2
27	VCCPLF	63	IO90RSB2	99	GDA2/IO61RSB2
28	GFA1/IO108PPB3	64	IO89RSB2	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO107PDB3	66	IO88RSB2	102	TDI
31	IO107NDB3	67	IO87RSB2	103	TMS
32	GFB2/IO106PDB3	68	IO86RSB2	104	VMV2
33	IO106NDB3	69	IO85RSB2	105	GND
34	GFC2/IO105PDB3	70	IO84RSB2	106	VPUMP
35	IO105NDB3	71	VCC	107	NC
36	NC	72	VCCIB2	108	TDO

FG144					
Pin Number	A3P250 Function				
K1	GEB0/IO99NDB3				
K2	GEA1/IO98PDB3				
K3	GEA0/IO98NDB3				
K4	GEA2/IO97RSB2				
K5	IO90RSB2				
K6	IO84RSB2				
K7	GND				
K8	IO66RSB2				
K9	GDC2/IO63RSB2				
K10	GND				
K11	GDA0/IO60VDB1				
K12	GDB0/IO59VDB1				
L1	GND				
L2	VMV3				
L3	GEB2/IO96RSB2				
L4	IO91RSB2				
L5	VCCIB2				
L6	IO82RSB2				
L7	IO80RSB2				
L8	IO72RSB2				
L9	TMS				
L10	VJTAG				
L11	VMV2				
L12	TRST				
M1	GNDQ				
M2	GEC2/IO95RSB2				
M3	IO92RSB2				
M4	IO89RSB2				
M5	IO87RSB2				
M6	IO85RSB2				
M7	IO78RSB2				
M8	IO76RSB2				
M9	TDI				
M10	VCCIB2				
M11	VPUMP				
M12	GNDQ				

🌜 Microsemi.

Package Pin Assignments

FG256 FG256			FG256		
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
A1	GND	C5	GAC0/IO04RSB0	E9	IO31RSB0
A2	GAA0/IO00RSB0	C6	GAC1/IO05RSB0	E10	VCCIB0
A3	GAA1/IO01RSB0	C7	IO20RSB0	E11	VCCIB0
A4	GAB0/IO02RSB0	C8	IO24RSB0	E12	VMV1
A5	IO16RSB0	C9	IO33RSB0	E13	GBC2/IO62PDB1
A6	IO17RSB0	C10	IO39RSB0	E14	IO65RSB1
A7	IO22RSB0	C11	IO45RSB0	E15	IO52RSB0
A8	IO28RSB0	C12	GBC0/IO54RSB0	E16	IO66PDB1
A9	IO34RSB0	C13	IO48RSB0	F1	IO150NDB3
A10	IO37RSB0	C14	VMV0	F2	IO149NPB3
A11	IO41RSB0	C15	IO61NPB1	F3	IO09RSB0
A12	IO43RSB0	C16	IO63PDB1	F4	IO152UDB3
A13	GBB1/IO57RSB0	D1	IO151VDB3	F5	VCCIB3
A14	GBA0/IO58RSB0	D2	IO151UDB3	F6	GND
A15	GBA1/IO59RSB0	D3	GAC2/IO153UDB3	F7	VCC
A16	GND	D4	IO06RSB0	F8	VCC
B1	GAB2/IO154UDB3	D5	GNDQ	F9	VCC
B2	GAA2/IO155UDB3	D6	IO10RSB0	F10	VCC
B3	IO12RSB0	D7	IO19RSB0	F11	GND
B4	GAB1/IO03RSB0	D8	IO26RSB0	F12	VCCIB1
B5	IO13RSB0	D9	IO30RSB0	F13	IO62NDB1
B6	IO14RSB0	D10	IO40RSB0	F14	IO49RSB0
B7	IO21RSB0	D11	IO46RSB0	F15	IO64PPB1
B8	IO27RSB0	D12	GNDQ	F16	IO66NDB1
B9	IO32RSB0	D13	IO47RSB0	G1	IO148NDB3
B10	IO38RSB0	D14	GBB2/IO61PPB1	G2	IO148PDB3
B11	IO42RSB0	D15	IO53RSB0	G3	IO149PPB3
B12	GBC1/IO55RSB0	D16	IO63NDB1	G4	GFC1/IO147PPB3
B13	GBB0/IO56RSB0	E1	IO150PDB3	G5	VCCIB3
B14	IO44RSB0	E2	IO08RSB0	G6	VCC
B15	GBA2/IO60PDB1	E3	IO153VDB3	G7	GND
B16	IO60NDB1	E4	IO152VDB3	G8	GND
C1	IO154VDB3	E5	VMV0	G9	GND
C2	IO155VDB3	E6	VCCIB0	G10	GND
C3	IO11RSB0	E7	VCCIB0	G11	VCC
C4	IO07RSB0	E8	IO25RSB0	G12	VCCIB1

FG484 FG484			FG484		
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
K19	IO75NDB1	M11	GND	P3	IO153NDB3
K20	NC	M12	GND	P4	IO159NDB3
K21	IO76NDB1	M13	GND	P5	IO156NPB3
K22	IO76PDB1	M14	VCC	P6	IO151PPB3
L1	NC	M15	GCB2/IO73PPB1	P7	IO158PPB3
L2	IO155PDB3	M16	GCA1/IO71PPB1	P8	VCCIB3
L3	NC	M17	GCC2/IO74PPB1	P9	GND
L4	GFB0/IO163NPB3	M18	IO80PPB1	P10	VCC
L5	GFA0/IO162NDB3	M19	GCA2/IO72PDB1	P11	VCC
L6	GFB1/IO163PPB3	M20	IO79PPB1	P12	VCC
L7	VCOMPLF	M21	IO78PPB1	P13	VCC
L8	GFC0/IO164NPB3	M22	NC	P14	GND
L9	VCC	N1	IO154NDB3	P15	VCCIB1
L10	GND	N2	IO154PDB3	P16	GDB0/IO87NPB1
L11	GND	N3	NC	P17	IO85NDB1
L12	GND	N4	GFC2/IO159PDB3	P18	IO85PDB1
L13	GND	N5	IO161NPB3	P19	IO84PDB1
L14	VCC	N6	IO156PPB3	P20	NC
L15	GCC0/IO69NPB1	N7	IO129RSB2	P21	IO81PDB1
L16	GCB1/IO70PPB1	N8	VCCIB3	P22	NC
L17	GCA0/IO71NPB1	N9	VCC	R1	NC
L18	IO67NPB1	N10	GND	R2	NC
L19	GCB0/IO70NPB1	N11	GND	R3	VCC
L20	IO77PDB1	N12	GND	R4	IO150PDB3
L21	IO77NDB1	N13	GND	R5	IO151NPB3
L22	IO78NPB1	N14	VCC	R6	IO147NPB3
M1	NC	N15	VCCIB1	R7	GEC0/IO146NPB3
M2	IO155NDB3	N16	IO73NPB1	R8	VMV3
M3	IO158NPB3	N17	IO80NPB1	R9	VCCIB2
M4	GFA2/IO161PPB3	N18	IO74NPB1	R10	VCCIB2
M5	GFA1/IO162PDB3	N19	IO72NDB1	R11	IO117RSB2
M6	VCCPLF	N20	NC	R12	IO110RSB2
M7	IO160NDB3	N21	IO79NPB1	R13	VCCIB2
M8	GFB2/IO160PDB3	N22	NC	R14	VCCIB2
M9	VCC	P1	NC	R15	VMV2
M10	GND	P2	IO153PDB3	R16	IO94RSB2

FG484					
Pin Number	A3P600 Function				
Y15	VCC				
Y16	NC				
Y17	NC				
Y18	GND				
Y19	NC				
Y20	NC				
Y21	NC				
Y22	VCCIB1				
AA1	GND				
AA2	VCCIB3				
AA3	NC				
AA4	NC				
AA5	NC				
AA6	IO135RSB2				
AA7	IO133RSB2				
AA8	NC				
AA9	NC				
AA10	NC				
AA11	NC				
AA12	NC				
AA13	NC				
AA14	NC				
AA15	NC				
AA16	IO101RSB2				
AA17	NC				
AA18	NC				
AA19	NC				
AA20	NC				
AA21	VCCIB1				
AA22	GND				
AB1	GND				
AB2	GND				
AB3	VCCIB2				
AB4	NC				
AB5	NC				
AB6	IO130RSB2				

FG484		
Pin Number	A3P600 Function	
AB7	IO128RSB2	
AB8	IO122RSB2	
AB9	IO116RSB2	
AB10	NC	
AB11	NC	
AB12	IO113RSB2	
AB13	IO112RSB2	
AB14	NC	
AB15	NC	
AB16	IO100RSB2	
AB17	IO95RSB2	
AB18	NC	
AB19	NC	
AB20	VCCIB2	
AB21	GND	
AB22	GND	

Datasheet Information

Revision	Changes	Page
v2.0 (April 2007)	0 In the "Packaging Tables", Ambient was deleted. oril 2007)	ii
	The timing characteristics tables were updated.	N/A
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15
	The "PLL Macro" section was updated to include power-up information.	2-15
	Table 2-11 • ProASIC3 CCC/PLL Specification was updated.	2-29
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21
	The "RESET" section was updated with read and write information.	2-25
	The "RESET" section was updated with read and write information.	2-25
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28
	PCI-X 3.3 V was added to Table 2-11 • VCCI Voltages and Compatible Standards.	2-29
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	2-34
	Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.	2-64
	Notes 3, 4, and 5 were added to Table 2-17 \cdot Comparison Table for 5 V–Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.	2-40
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50
	The "VPUMP Programming Supply Voltage" section was updated.	2-50
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51
	V _{JTAG} was deleted from the "TCK Test Clock" section.	2-51
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os)1.	3-2
	In EQ 3-2, 150 was changed to 110 and the result changed from 3.9 to 1.951.	3-5
	Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	3-6
	Table 3-5 • Package Thermal Resistivities was updated.	3-5
	Table 3-14 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings (Advanced) and Table 3-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions (Standard Plus) were updated.	3-17 to 3- 17

Datasheet Information

Revision	Changes	Page
Advance v0.6	The "RESET" section was updated.	2-25
(continued)	The "WCLK and RCLK" section was updated.	2-25
	The "RESET" section was updated.	2-25
	The "RESET" section was updated.	2-27
	The "Introduction" of the "Advanced I/Os" section was updated.	2-28
	The "I/O Banks" section is new. This section explains the following types of I/Os: Advanced Standard+ Standard	2-29
	Table 2-12 • Automotive ProASIC3 Bank Types Definition and Differences isnew. This table describes the standards listed above.	
	PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 11 • VCCI Voltages and Compatible Standards	2-29
	Table 2-13 • ProASIC3 I/O Features was updated.	2-30
	The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature.	2-32
	The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information.	2-35
	Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices.	2-64
	The notes in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices were updated.	2-64
	The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new.	2-41
	A footnote was added to Table 2-14 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in Automotive ProASIC3 Devices (maximum drive strength and high slew selected).	2-30
	Table 2-18 • Automotive ProASIC3 I/O Attributes vs. I/O Standard Applications	2-45
	Table 2-50 • ProASIC3 Output Drive (OUT_DRIVE) for Standard I/O Bank Type (A3P030 device)	2-83
	Table 2-51 ProASIC3 Output Drive for Standard+ I/O Bank Type was updated.	2-84
	Table 2-54 ProASIC3 Output Drive for Advanced I/O Bank Type was updated.	2-84
	The "x" was updated in the "User I/O Naming Convention" section.	2-48
	The "VCC Core Supply Voltage" pin description was updated.	2-50
	The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected.	2-50
	The "VJTAG JTAG Supply Voltage" pin description was updated.	2-50
	The "VPUMP Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground.	2-50
	The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused.	2-50
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.	2-51