

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	18432
Number of I/O	96
Number of Gates	60000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p060-fg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Calculating Power Dissipation

Quiescent Supply Current

Table 2-7 • Quiescent Supply Current Characteristics

	A3P015	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Typical (25°C)	2 mA	2 mA	2 mA	2 mA	3 mA	3 mA	5 mA	8 mA
Max. (Commercial)	10 mA	10 mA	10 mA	10 mA	20 mA	20 mA	30 mA	50 mA
Max. (Industrial)	15 mA	15 mA	15 mA	15 mA	30 mA	30 mA	45 mA	75 mA

Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-11 and Table 2-12 on page 2-9.

Power per I/O Pin

Table 2-8 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Advanced I/O Banks

	VMV (V)	Static Power P _{DC2} (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended		1	
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.22
3.3 V LVCMOS Wide Range ³	3.3	-	16.22
2.5 V LVCMOS	2.5	-	5.12
1.8 V LVCMOS	1.8	-	2.13
1.5 V LVCMOS (JESD8-11)	1.5	-	1.45
3.3 V PCI	3.3	-	18.11
3.3 V PCI-X	3.3	-	18.11
Differential			
LVDS	2.5	2.26	1.20
LVPECL	3.3	5.72	1.87

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	_	16.23
3.3 V LVCMOS Wide Range ³	3.3	-	16.23

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

	Definition		Devid	e Spe	cific S	static F	Power	(mW)	
Parameter		A3P1000	A3P600	A3P400	A3P250	A3P125	A3P060	A3P030	A3P015
PDC1	Array static power in Active mode		S	See Ta	ble 2-7	' on pa	age 2-7		
PDC2	I/O input pin static power (standard-dependent)		See	Table Table	2-8 on 2-10 c	page 3 on pag	2-7 thr e 2-8.	ough	
PDC3	I/O output pin static power (standard-dependent)	See Table 2-11 on page 2-9 through Table 2-13 on page 2-10.							
PDC4	Static PLL contribution				2.55	mW			
PDC5	Bank quiescent power (VCCI-dependent)		S	See Ta	ble 2-7	' on pa	age 2-7		

Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices

Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power spreadsheet calculator or SmartPower tool in Libero SoC software.

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- The number and the standard of I/O pins used in the design
- · The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-16 on page 2-14.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-17 on page 2-14.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-17 on page 2-14. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

 $P_{STAT} = P_{DC1} + N_{INPUTS} + P_{DC2} + N_{OUTPUTS} + P_{DC3}$

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

 $P_{CLOCK} = (P_{AC1} + N_{SPINE}*P_{AC2} + N_{ROW}*P_{AC3} + N_{S-CELL}*P_{AC4})*F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3 FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3 FPGA Fabric User's Guide*.

RAM Contribution—P_{MEMORY}

 $\mathsf{P}_{\mathsf{MEMORY}} = \mathsf{P}_{\mathsf{AC11}} * \mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{F}_{\mathsf{READ-CLOCK}} * \beta_2 + \mathsf{P}_{\mathsf{AC12}} * \mathsf{N}_{\mathsf{BLOCK}} * \mathsf{F}_{\mathsf{WRITE-CLOCK}} * \beta_3$

 $N_{\mbox{\scriptsize BLOCKS}}$ is the number of RAM blocks used in the design.

F_{READ-CLOCK} is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations.

F_{WRITE-CLOCK} is the memory write clock frequency.

 β_3 is the RAM enable rate for write operations—guidelines are provided in Table 2-17 on page 2-14.

PLL Contribution—P_{PLL}

 $P_{PLL} = P_{DC4} + P_{AC13} * F_{CLKOUT}$

F_{CLKOUT} is the output clock frequency.¹

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Table 2-16 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α ₁	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 2-17 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β_3	RAM enable rate for write operations	12.5%

The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P_{AC14} * F_{CLKOUT} product) to the total PLL contribution.

Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst Case VCC = 1.425 V, Worst-Case VCCI (per standard)

Standard I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor	t _{bour} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	t _{EoUT} (ns)	t _{zL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	35	-	0.45	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
3.3 V LVCMOS Wide Range ²	100 µA	8 mA	High	35	-	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns
2.5 V LVCMOS	8 mA	8 mA	High	35	_	0.45	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
1.8 V LVCMOS	4 mA	4 mA	High	35	_	0.45	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns
1.5 V LVCMOS	2 mA	2 mA	High	35	-	0.45	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	0.60	10.93	0.04	1.52	0.43	10.93	9.46	3.20	3.32	ns
		-1	0.51	9.29	0.04	1.29	0.36	9.29	8.04	2.72	2.82	ns
		-2	0.45	8.16	0.03	1.13	0.32	8.16	7.06	2.39	2.48	ns
100 µA	4 mA	Std.	0.60	10.93	0.04	1.52	0.43	10.93	9.46	3.20	3.32	ns
		-1	0.51	9.29	0.04	1.29	0.36	9.29	8.04	2.72	2.82	ns
		-2	0.45	8.16	0.03	1.13	0.32	8.16	7.06	2.39	2.48	ns
100 µA	6 mA	Std.	0.60	6.82	0.04	1.52	0.43	6.82	5.70	3.70	4.16	ns
		-1	0.51	5.80	0.04	1.29	0.36	5.80	4.85	3.15	3.54	ns
		-2	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns
100 µA	8 mA	Std.	0.60	6.82	0.04	1.52	0.43	6.82	5.70	3.70	4.16	ns
		-1	0.51	5.80	0.04	1.29	0.36	5.80	4.85	3.15	3.54	ns
		-2	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. Software default selection highlighted in gray.

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	V	ΊL	v	ΊH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL1	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	124	169	10	10

Table 2-56 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-57 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

2.5 V LVCMOS	v	IL.	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Drive Strength 2 mA

4 mA

6 mA

8 mA

ng Chara	octeristics	5		> Mi	Power	Semi Matters.						
1.8 V LVCMOS High Slew Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus I/O Banks												
Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	11.33	0.04	1.20	0.43	8.72	11.33	2.24	1.52	10.96	13.57	ns
-1	0.56	9.64	0.04	1.02	0.36	7.42	9.64	1.91	1.29	9.32	11.54	ns
-2	0.49	8.46	0.03	0.90	0.32	6.51	8.46	1.68	1.14	8.18	10.13	ns
Std.	0.66	6.48	0.04	1.20	0.43	5.48	6.48	2.65	2.60	7.72	8.72	ns
-1	0.56	5.51	0.04	1.02	0.36	4.66	5.51	2.25	2.21	6.56	7.42	ns
-2	0.49	4.84	0.03	0.90	0.32	4.09	4.84	1.98	1.94	5.76	6.51	ns
Std.	0.66	4.06	0.04	1.20	0.43	3.84	4.06	2.93	3.10	6.07	6.30	ns
-1	0.56	3.45	0.04	1.02	0.36	3.27	3.45	2.49	2.64	5.17	5.36	ns

Table 2-72 •

Notes:

1. Software default selection highlighted in gray.

0.49

0.66

0.56

0.49

3.03

4.06

3.45

3.03

0.03 0.90

1.20

1.02

0.90

0.04

0.04

0.03

-2

Std.

-1

-2

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

0.32

0.43

0.36

0.32

2.87

3.84

3.27

2.87

3.03

4.06

3.45

3.03

2.19 2.32

3.10

2.64

2.32

2.93

2.49

2.19

4.54

6.07

5.17

4.54

4.70

6.30

5.36

4.70

ns

ns

ns

ns

Table 2-73 • 1.8 V LVCMOS Low Slew

Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	14.80	0.04	1.20	0.43	13.49	14.80	2.25	1.46	15.73	17.04	ns
	-1	0.56	12.59	0.04	1.02	0.36	11.48	12.59	1.91	1.25	13.38	14.49	ns
	-2	0.49	11.05	0.03	0.90	0.32	10.08	11.05	1.68	1.09	11.75	12.72	ns
4 mA	Std.	0.66	9.90	0.04	1.20	0.43	9.73	9.90	2.65	2.50	11.97	12.13	ns
	-1	0.56	8.42	0.04	1.02	0.36	8.28	8.42	2.26	2.12	10.18	10.32	ns
	-2	0.49	7.39	0.03	0.90	0.32	7.27	7.39	1.98	1.86	8.94	9.06	ns
6 mA	Std.	0.66	7.44	0.04	1.20	0.43	7.58	7.32	2.94	2.99	9.81	9.56	ns
	-1	0.56	6.33	0.04	1.02	0.36	6.44	6.23	2.50	2.54	8.35	8.13	ns
	-2	0.49	5.55	0.03	0.90	0.32	5.66	5.47	2.19	2.23	7.33	7.14	ns
8 mA	Std.	0.66	7.44	0.04	1.20	0.43	7.58	7.32	2.94	2.99	9.81	9.56	ns
	-1	0.56	6.33	0.04	1.02	0.36	6.44	6.23	2.50	2.54	8.35	8.13	ns
	-2	0.49	5.55	0.03	0.90	0.32	5.66	5.47	2.19	2.23	7.33	7.14	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-74 • 1.8 V LVCMOS High SlewCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 VApplicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	11.21	0.04	1.20	0.43	8.53	11.21	1.99	1.21	ns
	-1	0.56	9.54	0.04	1.02	0.36	7.26	9.54	1.69	1.03	ns
	-2	0.49	8.37	0.03	0.90	0.32	6.37	8.37	1.49	0.90	ns
4 mA	Std.	0.66	6.34	0.04	1.20	0.43	5.38	6.34	2.41	2.48	ns
	-1	0.56	5.40	0.04	1.02	0.36	4.58	5.40	2.05	2.11	ns
	-2	0.49	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns

Notes:

1. Software default selection highlighted in gray.

Figure 2-16 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Output Register

Timing Characteristics

Table 2-99 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.59	0.67	0.79	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.31	0.36	0.42	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.44	0.50	0.59	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OCKMPWH}	Clock Minimum Pulse Width High for the Output Data Register	0.36	0.41	0.48	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.32	0.37	0.43	ns

Figure 2-21 • Input DDR Timing Diagram

Timing Characteristics

Table 2-102 • Input DDR Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.27	0.31	0.37	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.39	0.44	0.52	ns
t _{DDRISUD}	Data Setup for Input DDR (Fall)	0.25	0.28	0.33	ns
	Data Setup for Input DDR (Rise)	0.25	0.28	0.33	ns
t _{DDRIHD}	Data Hold for Input DDR (Fall)	0.00	0.00	0.00	ns
	Data Hold for Input DDR (Rise)	0.00	0.00	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	0.46	0.53	0.62	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.57	0.65	0.76	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal time for Input DDR	0.00	0.00	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery time for Input DDR	0.22	0.25	0.30	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.22	0.25	0.30	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width High for Input DDR	0.36	0.41	0.48	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width Low for Input DDR	0.32	0.37	0.43	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	350	309	263	MHz

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *Fusion, IGLOO®/e, and ProASIC3/E Macro Library Guide*.

Figure 2-24 • Sample of Combinatorial Cells

Timing Characteristics

Table 2-116 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	2.36	2.68	3.15	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	1.79	2.03	2.39	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DOUT (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

Timing Waveforms

VJTAG

JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design.

If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

ProASIC3 devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in Table 2-2 on page 2-2.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to V_{CCI} . With V_{CCI} , VMV, and V_{CC} supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the I/O Structure section of the handbook for the device you are using for an explanation of the naming of global pins.

FF Flash*Freeze Mode Activation Pin

Flash*Freeze is available on IGLOO, ProASIC3L, and RT ProASIC3 devices. It is not supported on ProASIC3/E devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active-low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze

Package Pin Assignments

(QN68	QN68		
Pin Number	A3P015 Function	Pin Number	A3P015 Function	
1	IO82RSB1	37	TRST	
2	IO80RSB1	38	VJTAG	
3	IO78RSB1	39	IO40RSB0	
4	IO76RSB1	40	IO37RSB0	
5	GEC0/IO73RSB1	41	GDB0/IO34RSB0	
6	GEA0/IO72RSB1	42	GDA0/IO33RSB0	
7	GEB0/IO71RSB1	43	GDC0/IO32RSB0	
8	VCC	44	VCCIB0	
9	GND	45	GND	
10	VCCIB1	46	VCC	
11	IO68RSB1	47	IO31RSB0	
12	IO67RSB1	48	IO29RSB0	
13	IO66RSB1	49	IO28RSB0	
14	IO65RSB1	50	IO27RSB0	
15	IO64RSB1	51	IO25RSB0	
16	IO63RSB1	52	IO24RSB0	
17	IO62RSB1	53	IO22RSB0	
18	IO60RSB1	54	IO21RSB0	
19	IO58RSB1	55	IO19RSB0	
20	IO56RSB1	56	IO17RSB0	
21	IO54RSB1	57	IO15RSB0	
22	IO52RSB1	58	IO14RSB0	
23	IO51RSB1	59	VCCIB0	
24	VCC	60	GND	
25	GND	61	VCC	
26	VCCIB1	62	IO12RSB0	
27	IO50RSB1	63	IO10RSB0	
28	IO48RSB1	64	IO08RSB0	
29	IO46RSB1	65	IO06RSB0	
30	IO44RSB1	66	IO04RSB0	
31	IO42RSB1	67	IO02RSB0	
32	ТСК	68	IO00RSB0	
33	TDI			
34	TMS			
35	VPUMP			

TDO

36

🌜 Microsemi.

Package Pin Assignments

FG144		F	G144	F	G144
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function
A1	GNDQ	D1	IO91RSB1	G1	GFA1/IO84RSB1
A2	VMV0	D2	IO92RSB1	G2	GND
A3	GAB0/IO04RSB0	D3	IO93RSB1	G3	VCCPLF
A4	GAB1/IO05RSB0	D4	GAA2/IO51RSB1	G4	GFA0/IO85RSB1
A5	IO08RSB0	D5	GAC0/IO06RSB0	G5	GND
A6	GND	D6	GAC1/IO07RSB0	G6	GND
A7	IO11RSB0	D7	GBC0/IO19RSB0	G7	GND
A8	VCC	D8	GBC1/IO20RSB0	G8	GDC1/IO45RSB0
A9	IO16RSB0	D9	GBB2/IO27RSB0	G9	IO32RSB0
A10	GBA0/IO23RSB0	D10	IO18RSB0	G10	GCC2/IO43RSB0
A11	GBA1/IO24RSB0	D11	IO28RSB0	G11	IO31RSB0
A12	GNDQ	D12	GCB1/IO37RSB0	G12	GCB2/IO42RSB0
B1	GAB2/IO53RSB1	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO88RSB1	H2	GFB2/IO82RSB1
B3	GAA0/IO02RSB0	E3	GFC1/IO89RSB1	H3	GFC2/IO81RSB1
B4	GAA1/IO03RSB0	E4	VCCIB1	H4	GEC1/IO77RSB1
B5	IO00RSB0	E5	IO52RSB1	H5	VCC
B6	IO10RSB0	E6	VCCIB0	H6	IO34RSB0
B7	IO12RSB0	E7	VCCIB0	H7	IO44RSB0
B8	IO14RSB0	E8	GCC1/IO35RSB0	H8	GDB2/IO55RSB1
В9	GBB0/IO21RSB0	E9	VCCIB0	H9	GDC0/IO46RSB0
B10	GBB1/IO22RSB0	E10	VCC	H10	VCCIB0
B11	GND	E11	GCA0/IO40RSB0	H11	IO33RSB0
B12	VMV0	E12	IO30RSB0	H12	VCC
C1	IO95RSB1	F1	GFB0/IO86RSB1	J1	GEB1/IO75RSB1
C2	GFA2/IO83RSB1	F2	VCOMPLF	J2	IO78RSB1
C3	GAC2/IO94RSB1	F3	GFB1/IO87RSB1	J3	VCCIB1
C4	VCC	F4	IO90RSB1	J4	GEC0/IO76RSB1
C5	IO01RSB0	F5	GND	J5	IO79RSB1
C6	IO09RSB0	F6	GND	J6	IO80RSB1
C7	IO13RSB0	F7	GND	J7	VCC
C8	IO15RSB0	F8	GCC0/IO36RSB0	J8	ТСК
C9	IO17RSB0	F9	GCB0/IO38RSB0	J9	GDA2/IO54RSB1
C10	GBA2/IO25RSB0	F10	GND	J10	TDO
C11	IO26RSB0	F11	GCA1/IO39RSB0	J11	GDA1/IO49RSB0
C12	GBC2/IO29RSB0	F12	GCA2/IO41RSB0	J12	GDB1/IO47RSB0

F	G256		FG256	FG256		
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function	
A1	GND	C5	GAC0/IO04RSB0	E9	IO24RSB0	
A2	GAA0/IO00RSB0	C6	GAC1/IO05RSB0	E10	VCCIB0	
A3	GAA1/IO01RSB0	C7	IO13RSB0	E11	VCCIB0	
A4	GAB0/IO02RSB0	C8	IO17RSB0	E12	VMV1	
A5	IO07RSB0	C9	IO22RSB0	E13	GBC2/IO43PDB1	
A6	IO10RSB0	C10	IO27RSB0	E14	IO46RSB1	
A7	IO11RSB0	C11	IO31RSB0	E15	NC	
A8	IO15RSB0	C12	GBC0/IO35RSB0	E16	IO45PDB1	
A9	IO20RSB0	C13	IO34RSB0	F1	IO113NDB3	
A10	IO25RSB0	C14	NC	F2	IO112PPB3	
A11	IO29RSB0	C15	IO42NPB1	F3	NC	
A12	IO33RSB0	C16	IO44PDB1	F4	IO115VDB3	
A13	GBB1/IO38RSB0	D1	IO114VDB3	F5	VCCIB3	
A14	GBA0/IO39RSB0	D2	IO114UDB3	F6	GND	
A15	GBA1/IO40RSB0	D3	GAC2/IO116UDB3	F7	VCC	
A16	GND	D4	NC	F8	VCC	
B1	GAB2/IO117UDB3	D5	GNDQ	F9	VCC	
B2	GAA2/IO118UDB3	D6	IO08RSB0	F10	VCC	
B3	NC	D7	IO14RSB0	F11	GND	
B4	GAB1/IO03RSB0	D8	IO18RSB0	F12	VCCIB1	
B5	IO06RSB0	D9	IO23RSB0	F13	IO43NDB1	
B6	IO09RSB0	D10	IO28RSB0	F14	NC	
B7	IO12RSB0	D11	IO32RSB0	F15	IO47PPB1	
B8	IO16RSB0	D12	GNDQ	F16	IO45NDB1	
B9	IO21RSB0	D13	NC	G1	IO111NDB3	
B10	IO26RSB0	D14	GBB2/IO42PPB1	G2	IO111PDB3	
B11	IO30RSB0	D15	NC	G3	IO112NPB3	
B12	GBC1/IO36RSB0	D16	IO44NDB1	G4	GFC1/IO110PPB3	
B13	GBB0/IO37RSB0	E1	IO113PDB3	G5	VCCIB3	
B14	NC	E2	NC	G6	VCC	
B15	GBA2/IO41PDB1	E3	IO116VDB3	G7	GND	
B16	IO41NDB1	E4	IO115UDB3	G8	GND	
C1	IO117VDB3	E5	VMV0	G9	GND	
C2	IO118VDB3	E6	VCCIB0	G10	GND	
C3	NC	E7	VCCIB0	G11	VCC	
C4		ГО	1010BSB0	C12		

	FG256		FG256		FG256
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
H3	GFB1/IO208PPB3	K9	GND	M15	GDC1/IO111PDB1
H4	VCOMPLF	K10	GND	M16	IO107NDB1
H5	GFC0/IO209NPB3	K11	VCC	N1	IO194PSB3
H6	VCC	K12	VCCIB1	N2	IO192PPB3
H7	GND	K13	IO95NPB1	N3	GEC1/IO190PPB3
H8	GND	K14	IO100NPB1	N4	IO192NPB3
H9	GND	K15	IO102NDB1	N5	GNDQ
H10	GND	K16	IO102PDB1	N6	GEA2/IO187RSB2
H11	VCC	L1	IO202NDB3	N7	IO161RSB2
H12	GCC0/IO91NPB1	L2	IO202PDB3	N8	IO155RSB2
H13	GCB1/IO92PPB1	L3	IO196PPB3	N9	IO141RSB2
H14	GCA0/IO93NPB1	L4	IO193PPB3	N10	IO129RSB2
H15	IO96NPB1	L5	VCCIB3	N11	IO124RSB2
H16	GCB0/IO92NPB1	L6	GND	N12	GNDQ
J1	GFA2/IO206PSB3	L7	VCC	N13	IO110PDB1
J2	GFA1/IO207PDB3	L8	VCC	N14	VJTAG
J3	VCCPLF	L9	VCC	N15	GDC0/IO111NDB1
J4	IO205NDB3	L10	VCC	N16	GDA1/IO113PDB1
J5	GFB2/IO205PDB3	L11	GND	P1	GEB1/IO189PDB3
J6	VCC	L12	VCCIB1	P2	GEB0/IO189NDB3
J7	GND	L13	GDB0/IO112NPB1	P3	VMV2
J8	GND	L14	IO106NDB1	P4	IO179RSB2
J9	GND	L15	IO106PDB1	P5	IO171RSB2
J10	GND	L16	IO107PDB1	P6	IO165RSB2
J11	VCC	M1	IO197NSB3	P7	IO159RSB2
J12	GCB2/IO95PPB1	M2	IO196NPB3	P8	IO151RSB2
J13	GCA1/IO93PPB1	M3	IO193NPB3	P9	IO137RSB2
J14	GCC2/IO96PPB1	M4	GEC0/IO190NPB3	P10	IO134RSB2
J15	IO100PPB1	M5	VMV3	P11	IO128RSB2
J16	GCA2/IO94PSB1	M6	VCCIB2	P12	VMV1
K1	GFC2/IO204PDB3	M7	VCCIB2	P13	TCK
K2	IO204NDB3	M8	IO147RSB2	P14	VPUMP
K3	IO203NDB3	M9	IO136RSB2	P15	TRST
K4	IO203PDB3	M10	VCCIB2	P16	GDA0/IO113NDB1
K5	VCCIB3	M11	VCCIB2	R1	GEA1/IO188PDB3
K6	VCC	M12	VMV2	R2	GEA0/IO188NDB3
K7	GND	M13	IO110NDB1	R3	IO184RSB2
K8	GND	M14	GDB1/IO112PPB1	R4	GEC2/IO185RSB2

Revision	Changes	Page					
Advance v0.6 (continued)	The "Programming" section was updated to include information concerning serialization.	2-53					
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54					
	"DC and Switching Characteristics" chapter was updated with new information.	3-1					
	The A3P060 "100-Pin VQFP" pin table was updated.	4-13					
	The A3P125 "100-Pin VQFP" pin table was updated.	4-13					
	The A3P060 "144-Pin TQFP" pin table was updated.	4-16					
	The A3P125 "144-Pin TQFP" pin table was updated.	4-18					
	The A3P125 "208-Pin PQFP" pin table was updated.	4-21					
	The A3P400 "208-Pin PQFP" pin table was updated.	4-25					
	The A3P060 "144-Pin FBGA" pin table was updated.	4-32					
	The A3P125 "144-Pin FBGA" pin table is new.	4-34					
	The A3P400 "144-Pin FBGA" is new.	4-38					
	The A3P400 "256-Pin FBGA" was updated.	4-48					
	The A3P1000 "256-Pin FBGA" was updated.	4-54					
	The A3P400 "484-Pin FBGA" was updated.						
	The A3P1000 "484-Pin FBGA" was updated.						
	The A3P250 "100-Pin VQFP*" pin table was updated.						
	The A3P250 "208-Pin PQFP*" pin table was updated.						
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29					
	The A3P250 "144-Pin FBGA*" pin table was updated.						
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32					
	The A3P250 "256-Pin FBGA*" pin table was updated.						
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54					
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68					
Advance v0.5 (November 2005)	The "I/Os Per Package" table was updated for the following devices and packages:	ii					
	Device Package A3P250/M7ACP250 VQ100 A3P250/M7ACP250 FG144 A3P1000 FG256						
Advance v0.4	M7 device information is new.	N/A					
	The I/O counts in the "I/Os Per Package" table were updated.	ii					
Advance v0.3	The "I/Os Per Package" table was updated.	ii					
	M7 device information is new.	N/A					
	Table 2-4 • ProASIC3 Globals/Spines/Rows by Device was updated to include the number or rows in each top or bottom spine.	2-16					
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24					