E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	18432
Number of I/O	71
Number of Gates	60000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p060-vq100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ProASIC3 Device Family Overview

General Description

ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks.

The absolute maximum junction temperature is 100°C. EQ 1 shows a sample calculation of the absolute maximum power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{100°C - 70°C}{20.5°C/W} = 1.463 \text{ W}$$

EQ 1

Table 2-5 • Package Thermal Resistivities

					θ_{ja}		
Package Type	Device	Pin Count	$\theta_{\textbf{jc}}$	Still Air	200 ft/min	500 ft/min	Units
Quad Flat No Lead	A3P030	132	0.4	21.4	16.8	15.3	°C/W
	A3P060	132	0.3	21.2	16.6	15.0	°C/W
	A3P125	132	0.2	21.1	16.5	14.9	°C/W
	A3P250	132	0.1	21.0	16.4	14.8	°C/W
Very Thin Quad Flat Pack (VQFP)	All devices	100	10.0	35.3	29.4	27.1	°C/W
Thin Quad Flat Pack (TQFP)	All devices	144	11.0	33.5	28.0	25.7	°C/W
Plastic Quad Flat Pack (PQFP)	All devices	208	8.0	26.1	22.5	20.8	°C/W
Fine Pitch Ball Grid Array (FBGA)	See note [*]	144	3.8	26.9	22.9	21.5	°C/W
	See note*	256	3.8	26.6	22.8	21.5	°C/W
	See note [*]	484	3.2	20.5	17.0	15.9	°C/W
	A3P1000	144	6.3	31.6	26.2	24.2	°C/W
	A3P1000	256	6.6	28.1	24.4	22.7	°C/W
	A3P1000	484	8.0	23.3	19.0	16.7	°C/W

Note: *This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package thermal information will be available in future revisions of the datasheet.

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 70^{\circ}$ C, VCC = 1.425 V)

Array Voltage VCC	Junction Temperature (°C)								
(V)	–40°C	0°C	25°C	70°C	85°C	100°C			
1.425	0.88	0.93	0.95	1.00	1.02	1.04			
1.500	0.83	0.88	0.90	0.95	0.96	0.98			
1.575	0.80	0.84	0.87	0.91	0.93	0.94			

User I/O Characteristics

Timing Model

Table 2-64 • 2.5 V LVCMOS High Slew

Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	8.20	0.04	1.29	0.43	7.24	8.20	2.03	1.91	ns
	-1	0.56	6.98	0.04	1.10	0.36	6.16	6.98	1.73	1.62	ns
	-2	0.49	6.13	0.03	0.96	0.32	5.41	6.13	1.52	1.43	ns
4 mA	Std.	0.66	8.20	0.04	1.29	0.43	7.24	8.20	2.03	1.91	ns
	-1	0.56	6.98	0.04	1.10	0.36	6.16	6.98	1.73	1.62	ns
	-2	0.49	6.13	0.03	0.96	0.32	5.41	6.13	1.52	1.43	ns
6 mA	Std.	0.66	4.77	0.04	1.29	0.43	4.55	4.77	2.38	2.55	ns
	-1	0.56	4.05	0.04	1.10	0.36	3.87	4.05	2.03	2.17	ns
	-2	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
8 mA	Std.	0.66	4.77	0.04	1.29	0.43	4.55	4.77	2.38	2.55	ns
	-1	0.56	4.05	0.04	1.10	0.36	3.87	4.05	2.03	2.17	ns
	-2	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-65 • 2.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	11.00	0.04	1.29	0.43	10.37	11.00	2.03	1.83	ns
	-1	0.56	9.35	0.04	1.10	0.36	8.83	9.35	1.73	1.56	ns
	-2	0.49	8.21	0.03	0.96	0.32	7.75	8.21	1.52	1.37	ns
4 mA	Std.	0.66	11.00	0.04	1.29	0.43	10.37	11.00	2.03	1.83	ns
	-1	0.56	9.35	0.04	1.10	0.36	8.83	9.35	1.73	1.56	ns
	-2	0.49	8.21	0.03	0.96	0.32	7.75	8.21	1.52	1.37	ns
6 mA	Std.	0.66	7.50	0.04	1.29	0.43	7.36	7.50	2.39	2.46	ns
	-1	0.56	6.38	0.04	1.10	0.36	6.26	6.38	2.03	2.10	ns
	-2	0.49	5.60	0.03	0.96	0.32	5.49	5.60	1.78	1.84	ns
8 mA	Std.	0.66	7.50	0.04	1.29	0.43	7.36	7.50	2.39	2.46	ns
	-1	0.56	6.38	0.04	1.10	0.36	6.26	6.38	2.03	2.10	ns
	-2	0.49	5.60	0.03	0.96	0.32	5.49	5.60	1.78	1.84	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCI	Supply Voltage	2.375	2.5	2.625	V
VOL	Output Low Voltage	0.9	1.075	1.25	V
VOH	Output High Voltage	1.25	1.425	1.6	V
IOL ¹	Output Lower Current	0.65	0.91	1.16	mA
IOH ¹	Output High Current	0.65	0.91	1.16	mA
VI	Input Voltage	0		2.925	V
IIH ^{2,3}	Input High Leakage Current			10	μA
IIL ^{2,4}	Input Low Leakage Current			10	μA
VODIFF	Differential Output Voltage	250	350	450	mV
VOCM	Output Common Mode Voltage	1.125	1.25	1.375	V
VICM	Input Common Mode Voltage	0.05	1.25	2.35	V
VIDIFF	Input Differential Voltage	100	350		mV

Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network)

2. Currents are measured at 85°C junction temperature.

- 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <VCCI. Input current is larger when operating outside recommended ranges.
- 4. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN <VIL.

Table 2-91 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)		
1.075	1.325	Cross point		

Note: *Measuring point = $V_{trip.}$ See Table 2-22 on page 2-22 for a complete table of trip points.

Timing Characteristics

Table 2-92 • LVDS

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	1.83	0.04	1.60	ns
-1	0.56	1.56	0.04	1.36	ns
-2	0.49	1.37	0.03	1.20	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	H, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OESUE}	Enable Setup Time for the Output Enable Register	K, H
t _{OEHE}	Enable Hold Time for the Output Enable Register	K, H
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
tIRECPRE	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-96 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-15 on page 2-69 for more information.

DDR Module Specifications

Input DDR Module

Figure 2-20 • Input DDR Timing Model

	Table 2	2-101 •	Parameter	Definitions
--	---------	---------	-----------	-------------

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	А, В
t _{DDRIHD}	Data Hold Time of DDR input	А, В
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	С, В
t _{DDRIRECCLR}	Clear Recovery	С, В

Global Resource Characteristics

A3P250 Clock Tree Topology

Clock delays are device-specific. Figure 2-28 is an example of a global tree used for clock routing. The global tree presented in Figure 2-28 is driven by a CCC located on the west side of the A3P250 device. It is used to drive all D-flip-flops in the device.

Figure 2-28 • Example of Global Tree Use in an A3P250 Device for Clock Routing

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-90. Table 2-108 to Table 2-114 on page 2-89 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Figure 2-35 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.

Table 2-123	A3P250 FIFO 4k×1 (continued)
	Worst Commercial-Case Conditions: T ₁ = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on DO (pass-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency	310	272	231	MHz

Embedded FlashROM Characteristics

Figure 2-44 • Timing Diagram

Timing Characteristics

Table 2-124 • Embedded FlashROM Access Time

Parameter	Description	-2	-1	Std.	Units
t _{SU}	Address Setup Time	0.53	0.61	0.71	ns
t _{HOLD}	Address Hold Time	0.00	0.00	0.00	ns
t _{CK2Q}	Clock to Out	21.42	24.40	28.68	ns
F _{MAX}	Maximum Clock Frequency	15	15	15	MHz

VJTAG

JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design.

If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

ProASIC3 devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in Table 2-2 on page 2-2.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to V_{CCI} . With V_{CCI} , VMV, and V_{CC} supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the I/O Structure section of the handbook for the device you are using for an explanation of the naming of global pins.

FF Flash*Freeze Mode Activation Pin

Flash*Freeze is available on IGLOO, ProASIC3L, and RT ProASIC3 devices. It is not supported on ProASIC3/E devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active-low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze

mode is not used in the design, the FF pin is available as a regular I/O. For IGLOOe, ProASIC3EL, and RT ProASIC3 only, the FF pin can be configured as a Schmitt trigger input.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 1 for more information.

VJTAG	Tie-Off Resistance
3.3 V	200 Ω –1 kΩ
2.5 V	200 Ω –1 kΩ
1.8 V	500 Ω –1 kΩ
1.5 V	500 Ω –1 kΩ

Table 1 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 1 and must satisfy the parallel resistance value requirement. The values in Table 1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

Microsemi

PQ208		PQ208		PQ208	
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
109	TRST	145	IO46RSB0	181	IO21RSB0
110	VJTAG	146	NC	182	IO20RSB0
111	GDA0/IO66RSB0	147	NC	183	IO19RSB0
112	GDA1/IO65RSB0	148	NC	184	IO18RSB0
113	GDB0/IO64RSB0	149	GBC2/IO45RSB0	185	IO17RSB0
114	GDB1/IO63RSB0	150	IO44RSB0	186	VCCIB0
115	GDC0/IO62RSB0	151	GBB2/IO43RSB0	187	VCC
116	GDC1/IO61RSB0	152	IO42RSB0	188	IO16RSB0
117	NC	153	GBA2/IO41RSB0	189	IO15RSB0
118	NC	154	VMV0	190	IO14RSB0
119	NC	155	GNDQ	191	IO13RSB0
120	NC	156	GND	192	IO12RSB0
121	NC	157	NC	193	IO11RSB0
122	GND	158	GBA1/IO40RSB0	194	IO10RSB0
123	VCCIB0	159	GBA0/IO39RSB0	195	GND
124	NC	160	GBB1/IO38RSB0	196	IO09RSB0
125	NC	161	GBB0/IO37RSB0	197	IO08RSB0
126	VCC	162	GND	198	IO07RSB0
127	IO60RSB0	163	GBC1/IO36RSB0	199	IO06RSB0
128	GCC2/IO59RSB0	164	GBC0/IO35RSB0	200	VCCIB0
129	GCB2/IO58RSB0	165	IO34RSB0	201	GAC1/IO05RSB0
130	GND	166	IO33RSB0	202	GAC0/IO04RSB0
131	GCA2/IO57RSB0	167	IO32RSB0	203	GAB1/IO03RSB0
132	GCA0/IO56RSB0	168	IO31RSB0	204	GAB0/IO02RSB0
133	GCA1/IO55RSB0	169	IO30RSB0	205	GAA1/IO01RSB0
134	GCB0/IO54RSB0	170	VCCIB0	206	GAA0/IO00RSB0
135	GCB1/IO53RSB0	171	VCC	207	GNDQ
136	GCC0/IO52RSB0	172	IO29RSB0	208	VMV0
137	GCC1/IO51RSB0	173	IO28RSB0		•
138	IO50RSB0	174	IO27RSB0		
139	IO49RSB0	175	IO26RSB0		
140	VCCIB0	176	IO25RSB0		
141	GND	177	IO24RSB0		
142	VCC	178	GND		
143	IO48RSB0	179	IO23RSB0		
144	IO47RSB0	180	IO22RSB0		

🌜 Microsemi.

Р	Q208	P	Q208	PQ20	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
109	TRST	145	IO64PDB1	181	IO27RSB0
110	VJTAG	146	IO63NDB1	182	IO26RSB0
111	GDA0/IO79VDB1	147	IO63PDB1	183	IO25RSB0
112	GDA1/IO79UDB1	148	IO62NDB1	184	IO24RSB0
113	GDB0/IO78VDB1	149	GBC2/IO62PDB1	185	IO23RSB0
114	GDB1/IO78UDB1	150	IO61NDB1	186	VCCIB0
115	GDC0/IO77VDB1	151	GBB2/IO61PDB1	187	VCC
116	GDC1/IO77UDB1	152	IO60NDB1	188	IO21RSB0
117	IO76VDB1	153	GBA2/IO60PDB1	189	IO20RSB0
118	IO76UDB1	154	VMV1	190	IO19RSB0
119	IO75NDB1	155	GNDQ	191	IO18RSB0
120	IO75PDB1	156	GND	192	IO17RSB0
121	IO74RSB1	157	VMV0	193	IO16RSB0
122	GND	158	GBA1/IO59RSB0	194	IO15RSB0
123	VCCIB1	159	GBA0/IO58RSB0	195	GND
124	NC	160	GBB1/IO57RSB0	196	IO13RSB0
125	NC	161	GBB0/IO56RSB0	197	IO11RSB0
126	VCC	162	GND	198	IO09RSB0
127	IO72NDB1	163	GBC1/IO55RSB0	199	IO07RSB0
128	GCC2/IO72PDB1	164	GBC0/IO54RSB0	200	VCCIB0
129	GCB2/IO71PSB1	165	IO52RSB0	201	GAC1/IO05RSB0
130	GND	166	IO49RSB0	202	GAC0/IO04RSB0
131	GCA2/IO70PSB1	167	IO46RSB0	203	GAB1/IO03RSB0
132	GCA1/IO69PDB1	168	IO43RSB0	204	GAB0/IO02RSB0
133	GCA0/IO69NDB1	169	IO40RSB0	205	GAA1/IO01RSB0
134	GCB0/IO68NDB1	170	VCCIB0	206	GAA0/IO00RSB0
135	GCB1/IO68PDB1	171	VCC	207	GNDQ
136	GCC0/IO67NDB1	172	IO36RSB0	208	VMV0
137	GCC1/IO67PDB1	173	IO35RSB0		
138	IO66NDB1	174	IO34RSB0		
139	IO66PDB1	175	IO33RSB0		
140	VCCIB1	176	IO32RSB0		
141	GND	177	IO31RSB0		
142	VCC	178	GND		
143	IO65RSB1	179	IO29RSB0		
144	IO64NDB1	180	IO28RSB0		

PQ208		PQ208		PQ208		
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	
1	GND	37	IO199PDB3	73	IO162RSB2	
2	GAA2/IO225PDB3	38	IO199NDB3	74	IO160RSB2	
3	IO225NDB3	39	IO197PSB3	75	IO158RSB2	
4	GAB2/IO224PDB3	40	VCCIB3	76	IO156RSB2	
5	IO224NDB3	41	GND	77	IO154RSB2	
6	GAC2/IO223PDB3	42	IO191PDB3	78	IO152RSB2	
7	IO223NDB3	43	IO191NDB3	79	IO150RSB2	
8	IO222PDB3	44	GEC1/IO190PDB3	80	IO148RSB2	
9	IO222NDB3	45	GEC0/IO190NDB3	81	GND	
10	IO220PDB3	46	GEB1/IO189PDB3	82	IO143RSB2	
11	IO220NDB3	47	GEB0/IO189NDB3	83	IO141RSB2	
12	IO218PDB3	48	GEA1/IO188PDB3	84	IO139RSB2	
13	IO218NDB3	49	GEA0/IO188NDB3	85	IO137RSB2	
14	IO216PDB3	50	VMV3	86	IO135RSB2	
15	IO216NDB3	51	GNDQ	87	IO133RSB2	
16	VCC	52	GND	88	VCC	
17	GND	53	VMV2	89	VCCIB2	
18	VCCIB3	54	GEA2/IO187RSB2	90	IO128RSB2	
19	IO212PDB3	55	GEB2/IO186RSB2	91	IO126RSB2	
20	IO212NDB3	56	GEC2/IO185RSB2	92	IO124RSB2	
21	GFC1/IO209PDB3	57	IO184RSB2	93	IO122RSB2	
22	GFC0/IO209NDB3	58	IO183RSB2	94	IO120RSB2	
23	GFB1/IO208PDB3	59	IO182RSB2	95	IO118RSB2	
24	GFB0/IO208NDB3	60	IO181RSB2	96	GDC2/IO116RSB2	
25	VCOMPLF	61	IO180RSB2	97	GND	
26	GFA0/IO207NPB3	62	VCCIB2	98	GDB2/IO115RSB2	
27	VCCPLF	63	IO178RSB2	99	GDA2/IO114RSB2	
28	GFA1/IO207PPB3	64	IO176RSB2	100	GNDQ	
29	GND	65	GND	101	TCK	
30	GFA2/IO206PDB3	66	IO174RSB2	102	TDI	
31	IO206NDB3	67	IO172RSB2	103	TMS	
32	GFB2/IO205PDB3	68	IO170RSB2	104	VMV2	
33	IO205NDB3	69	IO168RSB2	105	GND	
34	GFC2/IO204PDB3	70	IO166RSB2	106	VPUMP	
35	IO204NDB3	71	VCC	107	GNDQ	
36	VCC	72	VCCIB2	108	TDO	

FG144				
Pin Number	A3P060 Function			
K1	GEB0/IO74RSB1			
K2	GEA1/IO73RSB1			
K3	GEA0/IO72RSB1			
K4	GEA2/IO71RSB1			
K5	IO65RSB1			
K6	IO64RSB1			
K7	GND			
K8	IO57RSB1			
K9	GDC2/IO56RSB1			
K10	GND			
K11	GDA0/IO50RSB0			
K12	GDB0/IO48RSB0			
L1	GND			
L2	VMV1			
L3	GEB2/IO70RSB1			
L4	IO67RSB1			
L5	VCCIB1			
L6	IO62RSB1			
L7	IO59RSB1			
L8	IO58RSB1			
L9	TMS			
L10	VJTAG			
L11	VMV1			
L12	TRST			
M1	GNDQ			
M2	GEC2/IO69RSB1			
M3	IO68RSB1			
M4	IO66RSB1			
M5	IO63RSB1			
M6	IO61RSB1			
M7	IO60RSB1			
M8	NC			
M9	TDI			
M10	VCCIB1			
M11	VPUMP			
M12	GNDQ			

🌜 Microsemi.

F	FG144		FG144		FG144		
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function		
A1	GNDQ	D1	IO112NDB3	G1	GFA1/IO108PPB3		
A2	VMV0	D2	IO112PDB3	G2	GND		
A3	GAB0/IO02RSB0	D3	IO116VDB3	G3	VCCPLF		
A4	GAB1/IO03RSB0	D4	GAA2/IO118UPB3	G4	GFA0/IO108NPB3		
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND		
A6	GND	D6	GAC1/IO05RSB0	G6	GND		
A7	IO29RSB0	D7	GBC0/IO35RSB0	G7	GND		
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO58UPB1		
A9	IO33RSB0	D9	GBB2/IO42PDB1	G9	IO53NDB1		
A10	GBA0/IO39RSB0	D10	IO42NDB1	G10	GCC2/IO53PDB1		
A11	GBA1/IO40RSB0	D11	IO43NPB1	G11	IO52NDB1		
A12	GNDQ	D12	GCB1/IO49PPB1	G12	GCB2/IO52PDB1		
B1	GAB2/IO117UDB3	E1	VCC	H1	VCC		
B2	GND	E2	GFC0/IO110NDB3	H2	GFB2/IO106PDB3		
B3	GAA0/IO00RSB0	E3	GFC1/IO110PDB3	H3	GFC2/IO105PSB3		
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO100PDB3		
B5	IO14RSB0	E5	IO118VPB3	H5	VCC		
B6	IO19RSB0	E6	VCCIB0	H6	IO79RSB2		
B7	IO22RSB0	E7	VCCIB0	H7	IO65RSB2		
B8	IO30RSB0	E8	GCC1/IO48PDB1	H8	GDB2/IO62RSB2		
B9	GBB0/IO37RSB0	E9	VCCIB1	H9	GDC0/IO58VPB1		
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB1		
B11	GND	E11	GCA0/IO50NDB1	H11	IO54PSB1		
B12	VMV1	E12	IO51NDB1	H12	VCC		
C1	IO117VDB3	F1	GFB0/IO109NPB3	J1	GEB1/IO99PDB3		
C2	GFA2/IO107PPB3	F2	VCOMPLF	J2	IO106NDB3		
C3	GAC2/IO116UDB3	F3	GFB1/IO109PPB3	J3	VCCIB3		
C4	VCC	F4	IO107NPB3	J4	GEC0/IO100NDB3		
C5	IO12RSB0	F5	GND	J5	IO88RSB2		
C6	IO17RSB0	F6	GND	J6	IO81RSB2		
C7	IO24RSB0	F7	GND	J7	VCC		
C8	IO31RSB0	F8	GCC0/IO48NDB1	J8	ТСК		
C9	IO34RSB0	F9	GCB0/IO49NPB1	J9	GDA2/IO61RSB2		
C10	GBA2/IO41PDB1	F10	GND	J10	TDO		
C11	IO41NDB1	F11	GCA1/IO50PDB1	J11	GDA1/IO60UDB1		
C12	GBC2/IO43PPB1	F12	GCA2/IO51PDB1	J12	GDB1/IO59UDB1		

FG256				
Pin Number	A3P1000 Function			
R5	IO168RSB2			
R6	IO163RSB2			
R7	IO157RSB2			
R8	IO149RSB2			
R9	IO143RSB2			
R10	IO138RSB2			
R11	IO131RSB2			
R12	IO125RSB2			
R13	GDB2/IO115RSB2			
R14	TDI			
R15	GNDQ			
R16	TDO			
T1	GND			
T2	IO183RSB2			
Т3	GEB2/IO186RSB2			
T4	IO172RSB2			
T5	IO170RSB2			
T6	IO164RSB2			
T7	IO158RSB2			
T8	IO153RSB2			
Т9	IO142RSB2			
T10	IO135RSB2			
T11	IO130RSB2			
T12	GDC2/IO116RSB2			
T13	IO120RSB2			
T14	GDA2/IO114RSB2			
T15	TMS			
T16	GND			

	FG484	FG484		FG484	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
R17	GDB1/IO87PPB1	U9	IO131RSB2	W1	NC
R18	GDC1/IO86PDB1	U10	IO124RSB2	W2	IO148PDB3
R19	IO84NDB1	U11	IO119RSB2	W3	NC
R20	VCC	U12	IO107RSB2	W4	GND
R21	IO81NDB1	U13	IO104RSB2	W5	IO137RSB2
R22	IO82PDB1	U14	IO97RSB2	W6	GEB2/IO142RSB2
T1	IO152PDB3	U15	VMV1	W7	IO134RSB2
T2	IO152NDB3	U16	ТСК	W8	IO125RSB2
Т3	NC	U17	VPUMP	W9	IO123RSB2
T4	IO150NDB3	U18	TRST	W10	IO118RSB2
T5	IO147PPB3	U19	GDA0/IO88NDB1	W11	IO115RSB2
Т6	GEC1/IO146PPB3	U20	NC	W12	IO111RSB2
T7	IO140RSB2	U21	IO83NDB1	W13	IO106RSB2
Т8	GNDQ	U22	NC	W14	IO102RSB2
Т9	GEA2/IO143RSB2	V1	NC	W15	GDC2/IO91RSB2
T10	IO126RSB2	V2	NC	W16	IO93RSB2
T11	IO120RSB2	V3	GND	W17	GDA2/IO89RSB2
T12	IO108RSB2	V4	GEA1/IO144PDB3	W18	TMS
T13	IO103RSB2	V5	GEA0/IO144NDB3	W19	GND
T14	IO99RSB2	V6	IO139RSB2	W20	NC
T15	GNDQ	V7	GEC2/IO141RSB2	W21	NC
T16	IO92RSB2	V8	IO132RSB2	W22	NC
T17	VJTAG	V9	IO127RSB2	Y1	VCCIB3
T18	GDC0/IO86NDB1	V10	IO121RSB2	Y2	IO148NDB3
T19	GDA1/IO88PDB1	V11	IO114RSB2	Y3	NC
T20	NC	V12	IO109RSB2	Y4	NC
T21	IO83PDB1	V13	IO105RSB2	Y5	GND
T22	IO82NDB1	V14	IO98RSB2	Y6	NC
U1	IO149PDB3	V15	IO96RSB2	Y7	NC
U2	IO149NDB3	V16	GDB2/IO90RSB2	Y8	VCC
U3	NC	V17	TDI	Y9	VCC
U4	GEB1/IO145PDB3	V18	GNDQ	Y10	NC
U5	GEB0/IO145NDB3	V19	TDO	Y11	NC
U6	VMV2	V20	GND	Y12	NC
U7	IO138RSB2	V21	NC	Y13	NC
U8	IO136RSB2	V22	NC	Y14	VCC

Revision	Changes	Page
Revision 13 (January 2013)	The "ProASIC3 Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43104).	1-IV
	Added a note to Table 2-2 • Recommended Operating Conditions 1 (SAR 43644): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	2-2
	The note in Table 2-115 • ProASIC3 CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42569).	2-90
	Libero Integrated Design Environment (IDE) was changed to Libero System-on- Chip (SoC) throughout the document (SAR 40284).	NA
Revision 12 (September 2012)	The Security section was modified to clarify that Microsemi does not support read-back of programmed data.	1-1
	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information" to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions 1 (SAR 38321).	2-1 2-2
	Table 2-35 • Duration of Short Circuit Event Before Failure was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37933).	2-31
	In Table 2-93 • Minimum and Maximum DC Input and Output Levels, VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 28549).	2-68
	Figure 2-37 • FIFO Read and Figure 2-38 • FIFO Write are new (SAR 28371).	2-99
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38321). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1