E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	154
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-1pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3 Devices	A3P015 ¹	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Cortex-M1 Devices ²					M1A3P250	M1A3P400	M1A3P600	M1A3P1000
Package Pins QFN	QN68	QN48, QN68, QN132 ⁷	QN132 ⁷	QN132 ⁷	QN132 ⁷			
CS VQFP TQFP		VQ100	CS121 VQ100 TQ144	VQ100 TQ144	VQ100			
PQFP FBGA			FG144	PQ208 FG144	PQ208 FG144/256 ⁵	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484

Notes:

- A3P015 is not recommended for new designs.
 Refer to the Cortex-M1 product brief for more information.
 AES is not available for Cortex-M1 ProASIC3 devices.
 Six chip (main) and three quadrant global networks are available for A3P060 and above.
 The M1A3P250 device does not support this package.
 For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs datasheet.
 Package not available.

Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3 device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system powerup (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3 FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based ProASIC3 devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based ProASIC3 devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3 device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3 devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3 flash-based FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3 FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power

Flash-based ProASIC3 devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3 devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

ProASIC3 devices also have low dynamic power consumption to further maximize power savings.

Calculating Power Dissipation

Quiescent Supply Current

Table 2-7 • Quiescent Supply Current Characteristics

	A3P015	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Typical (25°C)	2 mA	2 mA	2 mA	2 mA	3 mA	3 mA	5 mA	8 mA
Max. (Commercial)	10 mA	10 mA	10 mA	10 mA	20 mA	20 mA	30 mA	50 mA
Max. (Industrial)	15 mA	15 mA	15 mA	15 mA	30 mA	30 mA	45 mA	75 mA

Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-11 and Table 2-12 on page 2-9.

Power per I/O Pin

Table 2-8 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Advanced I/O Banks

	VMV (V)	Static Power P _{DC2} (mW) ¹	Dynamic Power PAC9 (μW/MHz) ²
Single-Ended		1	
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.22
3.3 V LVCMOS Wide Range ³	3.3	-	16.22
2.5 V LVCMOS	2.5	-	5.12
1.8 V LVCMOS	1.8	-	2.13
1.5 V LVCMOS (JESD8-11)	1.5	-	1.45
3.3 V PCI	3.3	-	18.11
3.3 V PCI-X	3.3	-	18.11
Differential			
LVDS	2.5	2.26	1.20
LVPECL	3.3	5.72	1.87

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks

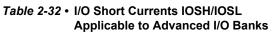
	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.23
3.3 V LVCMOS Wide Range ³	3.3	-	16.23

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-13 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings ¹ Applicable to Standard I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	431.08
3.3 V LVCMOS Wide Range ⁴	35	3.3	-	431.08
2.5 V LVCMOS	35	2.5	-	247.36
1.8 V LVCMOS	35	1.8	-	128.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	89.46


Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. P_{DC3} is the static power (where applicable) measured on VCCI.

3. P_{AC10} is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

	Drive Strength	IOSL (mA) ¹	IOSH (mA) ¹	
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25	
	4 mA	27	25	
	6 mA	54	51	
	8 mA	54	51	
	12 mA	109	103	
	16 mA	127	132	
	24 mA	181	268	
3.3 V LVCMOS Wide Range ²	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS	
2.5 V LVCMOS	2 mA	18	16	
	4 mA	18	16	
	6 mA	37	32	
	8 mA	37	32	
	12 mA	74	65	
	16 mA	87	83	
	24 mA	124	169	
1.8 V LVCMOS	2 mA	11	9	
	4 mA	22	17	
	6 mA	44	35	
	8 mA	51	45	
	12 mA	74	91	
	16 mA	74	91	
1.5 V LVCMOS	2 mA	16	13	
	4 mA	33	25	
	6 mA	39	32	
	8 mA	55	66	
	12 mA	55	66	
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	109	103	

) Microsemi.

Power Matters."

Notes:

1. $T_J = 100^{\circ}C$

Applicable to 3.3 V LVCMOS Wide Range. I_{OSL}/I_{OSH} dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Applicable to Advanced I/O Banks														
Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
100 µA	2 mA	Std.	0.60	15.86	0.04	1.54	0.43	15.86	13.51	4.09	3.80	19.25	16.90	ns
		-1	0.51	13.49	0.04	1.31	0.36	13.49	11.49	3.48	3.23	16.38	14.38	ns
		-2	0.45	11.84	0.03	1.15	0.32	11.84	10.09	3.05	2.84	14.38	12.62	ns
100 µA	4 mA	Std.	0.60	11.25	0.04	1.54	0.43	11.25	9.54	4.61	4.70	14.64	12.93	ns
		-1	0.51	9.57	0.04	1.31	0.36	9.57	8.11	3.92	4.00	12.46	11.00	ns
		-2	0.45	8.40	0.03	1.15	0.32	8.40	7.12	3.44	3.51	10.93	9.66	ns
100 µA	6 mA	Std.	0.60	11.25	0.04	1.54	0.43	11.25	9.54	4.61	4.70	14.64	12.93	ns
		-1	0.51	9.57	0.04	1.31	0.36	9.57	8.11	3.92	4.00	12.46	11.00	ns
		-2	0.45	8.40	0.03	1.15	0.32	8.40	7.12	3.44	3.51	10.93	9.66	ns
100 µA	8 mA	Std.	0.60	8.63	0.04	1.54	0.43	8.63	7.39	4.96	5.28	12.02	10.79	ns
		-1	0.51	7.34	0.04	1.31	0.36	7.34	6.29	4.22	4.49	10.23	9.18	ns
		-2	0.45	6.44	0.03	1.15	0.32	6.44	5.52	3.70	3.94	8.98	8.06	ns
100 µA	16 mA	Std.	0.60	8.05	0.04	1.54	0.43	8.05	6.93	5.03	5.43	11.44	10.32	ns
		-1	0.51	6.85	0.04	1.31	0.36	6.85	5.90	4.28	4.62	9.74	8.78	ns
		-2	0.45	6.01	0.03	1.15	0.32	6.01	5.18	3.76	4.06	8.55	7.71	ns
100 µA	24 mA	Std.	0.60	7.50	0.04	1.54	0.43	7.50	6.90	5.13	6.00	10.89	10.29	ns
		-1	0.51	6.38	0.04	1.31	0.36	6.38	5.87	4.36	5.11	9.27	8.76	ns
		-2	0.45	5.60	0.03	1.15	0.32	5.60	5.15	3.83	4.48	8.13	7.69	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-62 •	2.5 V LV Commer Applicat	cial-Cas	e Cond	itions:			st-Case	• VCC =	= 1.425	V, Wor	st-Case	VCCI = 2	2.3 V
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	8.28	0.04	1.30	0.43	7.41	8.28	2.25	2.07	9.64	10.51	ns
	-1	0.56	7.04	0.04	1.10	0.36	6.30	7.04	1.92	1.76	8.20	8.94	ns
	-2	0.49	6.18	0.03	0.97	0.32	5.53	6.18	1.68	1.55	7.20	7.85	ns
6 mA	Std.	0.66	4.85	0.04	1.30	0.43	4.65	4.85	2.59	2.71	6.88	7.09	ns
	-1	0.56	4.13	0.04	1.10	0.36	3.95	4.13	2.20	2.31	5.85	6.03	ns
	-2	0.49	3.62	0.03	0.97	0.32	3.47	3.62	1.93	2.02	5.14	5.29	ns
8 mA	Std.	0.66	4.85	0.04	1.30	0.43	4.65	4.85	2.59	2.71	6.88	7.09	ns
	-1	0.56	4.13	0.04	1.10	0.36	3.95	4.13	2.20	2.31	5.85	6.03	ns
	-2	0.49	3.62	0.03	0.97	0.32	3.47	3.62	1.93	2.02	5.14	5.29	ns
12 mA	Std.	0.66	3.21	0.04	1.30	0.43	3.27	3.14	2.82	3.11	5.50	5.38	ns
	-1	0.56	2.73	0.04	1.10	0.36	2.78	2.67	2.40	2.65	4.68	4.57	ns
	-2	0.49	2.39	0.03	0.97	0.32	2.44	2.35	2.11	2.32	4.11	4.02	ns

Microsomi

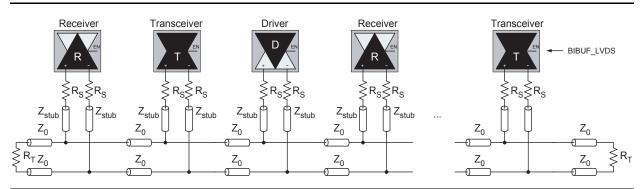
Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-63 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	10.84	0.04	1.30	0.43	10.64	10.84	2.26	1.99	12.87	13.08	ns
	–1	0.56	9.22	0.04	1.10	0.36	9.05	9.22	1.92	1.69	10.95	11.12	ns
	-2	0.49	8.10	0.03	0.97	0.32	7.94	8.10	1.68	1.49	9.61	9.77	ns
6 mA	Std.	0.66	7.37	0.04	1.30	0.43	7.50	7.36	2.59	2.61	9.74	9.60	ns
	–1	0.56	6.27	0.04	1.10	0.36	6.38	6.26	2.20	2.22	8.29	8.16	ns
	-2	0.49	5.50	0.03	0.97	0.32	5.60	5.50	1.93	1.95	7.27	7.17	ns
8 mA	Std.	0.66	7.37	0.04	1.30	0.43	7.50	7.36	2.59	2.61	9.74	9.60	ns
	-1	0.56	6.27	0.04	1.10	0.36	6.38	6.26	2.20	2.22	8.29	8.16	ns
	-2	0.49	5.50	0.03	0.97	0.32	5.60	5.50	1.93	1.95	7.27	7.17	ns
12 mA	Std.	0.66	5.63	0.04	1.30	0.43	5.73	5.51	2.83	3.01	7.97	7.74	ns
	–1	0.56	4.79	0.04	1.10	0.36	4.88	4.68	2.41	2.56	6.78	6.59	ns
	-2	0.49	4.20	0.03	0.97	0.32	4.28	4.11	2.11	2.25	5.95	5.78	ns

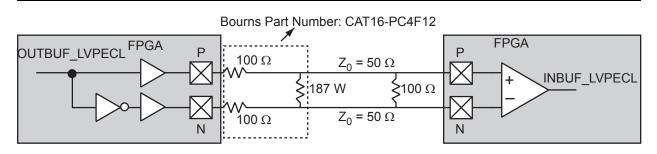

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

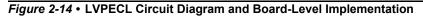


B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-13. The input and output buffer delays are available in the LVDS section in Table 2-92.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").





LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Timing Characteristics

Combinatorial Cell	Equation	Parameter	-2	-1	Std.	Units
INV	Y = !A	t _{PD}	0.40	0.46	0.54	ns
AND2	$Y = A \cdot B$	t _{PD}	0.47	0.54	0.63	ns
NAND2	Y = !(A · B)	t _{PD}	0.47	0.54	0.63	ns
OR2	Y = A + B	t _{PD}	0.49	0.55	0.65	ns
NOR2	Y = !(A + B)	t _{PD}	0.49	0.55	0.65	ns
XOR2	Y = A ⊕ B	t _{PD}	0.74	0.84	0.99	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	0.70	0.79	0.93	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	0.87	1.00	1.17	ns
MUX2	Y = A !S + B S	t _{PD}	0.51	0.58	0.68	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	0.56	0.64	0.75	ns

Table 2-105 • Combinatorial Cell Propagation Delays

Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

VersaTile Specifications as a Sequential Module

The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide*.

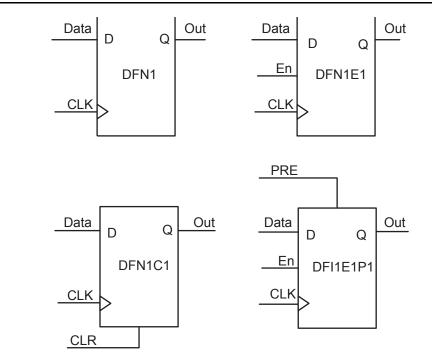
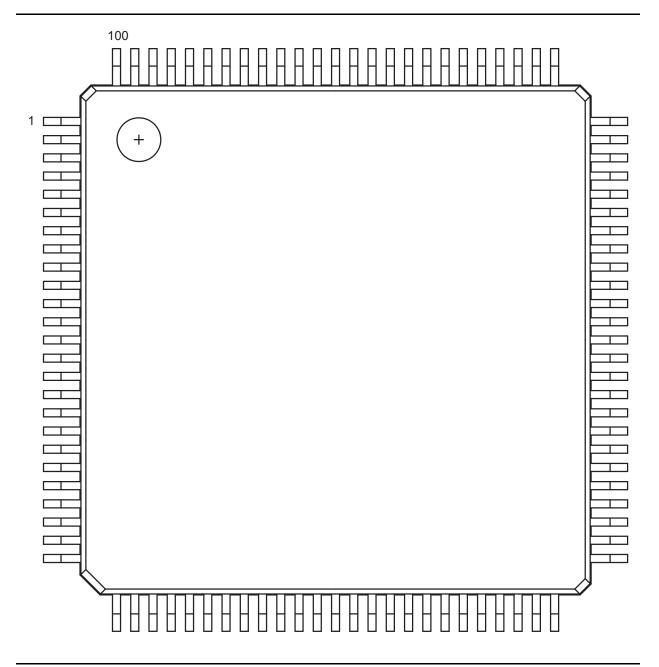


Figure 2-26 • Sample of Sequential Cells

Package Pin Assignments

	QN132
Pin Number	A3P125 Function
C17	IO83RSB1
C18	VCCIB1
C19	ТСК
C20	VMV1
C21	VPUMP
C22	VJTAG
C23	VCCIB0
C24	NC
C25	NC
C26	GCA1/IO55RSB0
C27	GCC0/IO52RSB0
C28	VCCIB0
C29	IO42RSB0
C30	GNDQ
C31	GBA1/IO40RSB0
C32	GBB0/IO37RSB0
C33	VCC
C34	IO24RSB0
C35	IO19RSB0
C36	IO16RSB0
C37	IO10RSB0
C38	VCCIB0
C39	GAB1/IO03RSB0
C40	VMV0
D1	GND
D2	GND
D3	GND
D4	GND

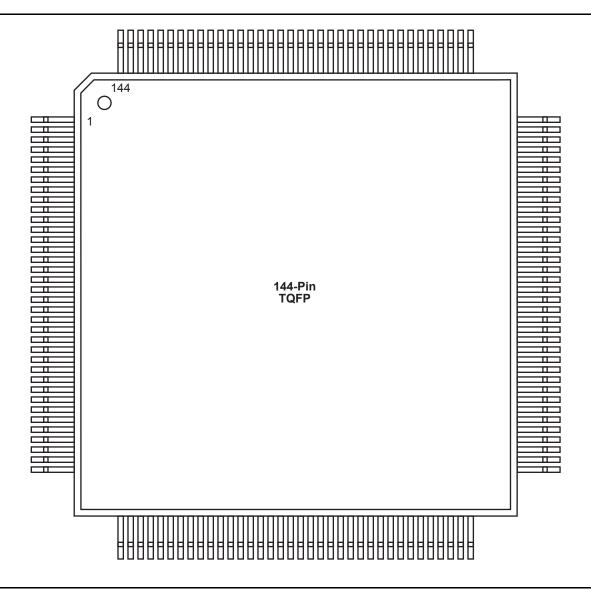


QN132		QN132		QN132	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
A1	GAB2/IO117UPB3	A37	GBB1/IO38RSB0	B25	GND
A2	IO117VPB3	A38	GBC0/IO35RSB0	B26	IO54PDB1
A3	VCCIB3	A39	VCCIB0	B27	GCB2/IO52PDB1
A4	GFC1/IO110PDB3	A40	IO28RSB0	B28	GND
A5	GFB0/IO109NPB3	A41	IO22RSB0	B29	GCB0/IO49NDB1
A6	VCCPLF	A42	IO18RSB0	B30	GCC1/IO48PDB1
A7	GFA1/IO108PPB3	A43	IO14RSB0	B31	GND
A8	GFC2/IO105PPB3	A44	IO11RSB0	B32	GBB2/IO42PDB1
A9	IO103NDB3	A45	IO07RSB0	B33	VMV1
A10	VCC	A46	VCC	B34	GBA0/IO39RSB0
A11	GEA1/IO98PPB3	A47	GAC1/IO05RSB0	B35	GBC1/IO36RSB0
A12	GEA0/IO98NPB3	A48	GAB0/IO02RSB0	B36	GND
A13	GEC2/IO95RSB2	B1	IO118VDB3	B37	IO26RSB0
A14	IO91RSB2	B2	GAC2/IO116UDB3	B38	IO21RSB0
A15	VCC	B3	GND	B39	GND
A16	IO90RSB2	B4	GFC0/IO110NDB3	B40	IO13RSB0
A17	IO87RSB2	B5	VCOMPLF	B41	IO08RSB0
A18	IO85RSB2	B6	GND	B42	GND
A19	IO82RSB2	B7	GFB2/IO106PSB3	B43	GAC0/IO04RSB0
A20	IO76RSB2	B8	IO103PDB3	B44	GNDQ
A21	IO70RSB2	B9	GND	C1	GAA2/IO118UDB3
A22	VCC	B10	GEB0/IO99NDB3	C2	IO116VDB3
A23	GDB2/IO62RSB2	B11	VMV3	C3	VCC
A24	TDI	B12	GEB2/IO96RSB2	C4	GFB1/IO109PPB3
A25	TRST	B13	IO92RSB2	C5	GFA0/IO108NPB3
A26	GDC1/IO58UDB1	B14	GND	C6	GFA2/IO107PSB3
A27	VCC	B15	IO89RSB2	C7	IO105NPB3
A28	IO54NDB1	B16	IO86RSB2	C8	VCCIB3
A29	IO52NDB1	B17	GND	C9	GEB1/IO99PDB3
A30	GCA2/IO51PPB1	B18	IO78RSB2	C10	GNDQ
A31	GCA0/IO50NPB1	B19	IO72RSB2	C11	GEA2/IO97RSB2
A32	GCB1/IO49PDB1	B20	GND	C12	IO94RSB2
A33	IO47NSB1	B21	GNDQ	C13	VCCIB2
A34	VCC	B22	TMS	C14	IO88RSB2
A35	IO41NPB1	B23	TDO	C15	IO84RSB2
A36	GBA2/IO41PPB1	B24	GDC0/IO58VDB1	C16	IO80RSB2

🌜 Microsemi.

Package Pin Assignments

VQ100 – Top View



Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

TQ144 – Top View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

🌜 Microsemi.

Package Pin Assignments

PQ208		PQ208		PQ208	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
109	TRST	145	IO64PDB1	181	IO27RSB0
110	VJTAG	146	IO63NDB1	182	IO26RSB0
111	GDA0/IO79VDB1	147	IO63PDB1	183	IO25RSB0
112	GDA1/IO79UDB1	148	IO62NDB1	184	IO24RSB0
113	GDB0/IO78VDB1	149	GBC2/IO62PDB1	185	IO23RSB0
114	GDB1/IO78UDB1	150	IO61NDB1	186	VCCIB0
115	GDC0/IO77VDB1	151	GBB2/IO61PDB1	187	VCC
116	GDC1/IO77UDB1	152	IO60NDB1	188	IO21RSB0
117	IO76VDB1	153	GBA2/IO60PDB1	189	IO20RSB0
118	IO76UDB1	154	VMV1	190	IO19RSB0
119	IO75NDB1	155	GNDQ	191	IO18RSB0
120	IO75PDB1	156	GND	192	IO17RSB0
121	IO74RSB1	157	VMV0	193	IO16RSB0
122	GND	158	GBA1/IO59RSB0	194	IO15RSB0
123	VCCIB1	159	GBA0/IO58RSB0	195	GND
124	NC	160	GBB1/IO57RSB0	196	IO13RSB0
125	NC	161	GBB0/IO56RSB0	197	IO11RSB0
126	VCC	162	GND	198	IO09RSB0
127	IO72NDB1	163	GBC1/IO55RSB0	199	IO07RSB0
128	GCC2/IO72PDB1	164	GBC0/IO54RSB0	200	VCCIB0
129	GCB2/IO71PSB1	165	IO52RSB0	201	GAC1/IO05RSB0
130	GND	166	IO49RSB0	202	GAC0/IO04RSB0
131	GCA2/IO70PSB1	167	IO46RSB0	203	GAB1/IO03RSB0
132	GCA1/IO69PDB1	168	IO43RSB0	204	GAB0/IO02RSB0
133	GCA0/IO69NDB1	169	IO40RSB0	205	GAA1/IO01RSB0
134	GCB0/IO68NDB1	170	VCCIB0	206	GAA0/IO00RSB0
135	GCB1/IO68PDB1	171	VCC	207	GNDQ
136	GCC0/IO67NDB1	172	IO36RSB0	208	VMV0
137	GCC1/IO67PDB1	173	IO35RSB0		
138	IO66NDB1	174	IO34RSB0		
139	IO66PDB1	175	IO33RSB0		
140	VCCIB1	176	IO32RSB0		
141	GND	177	IO31RSB0		
142	VCC	178	GND		
143	IO65RSB1	179	IO29RSB0		
144	IO64NDB1	180	IO28RSB0		

🌜 Microsemi.

Package Pin Assignments

	FG484	FG484		FG484	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
K19	IO73NDB1	M11	GND	P3	NC
K20	NC	M12	GND	P4	IO142NDB3
K21	NC	M13	GND	P5	IO141NPB3
K22	NC	M14	VCC	P6	IO125RSB2
L1	NC	M15	GCB2/IO71PPB1	P7	IO139RSB3
L2	NC	M16	GCA1/IO69PPB1	P8	VCCIB3
L3	NC	M17	GCC2/IO72PPB1	P9	GND
L4	GFB0/IO146NPB3	M18	NC	P10	VCC
L5	GFA0/IO145NDB3	M19	GCA2/IO70PDB1	P11	VCC
L6	GFB1/IO146PPB3	M20	NC	P12	VCC
L7	VCOMPLF	M21	NC	P13	VCC
L8	GFC0/IO147NPB3	M22	NC	P14	GND
L9	VCC	N1	NC	P15	VCCIB1
L10	GND	N2	NC	P16	GDB0/IO78VPB1
L11	GND	N3	NC	P17	IO76VDB1
L12	GND	N4	GFC2/IO142PDB3	P18	IO76UDB1
L13	GND	N5	IO144NPB3	P19	IO75PDB1
L14	VCC	N6	IO141PPB3	P20	NC
L15	GCC0/IO67NPB1	N7	IO120RSB2	P21	NC
L16	GCB1/IO68PPB1	N8	VCCIB3	P22	NC
L17	GCA0/IO69NPB1	N9	VCC	R1	NC
L18	NC	N10	GND	R2	NC
L19	GCB0/IO68NPB1	N11	GND	R3	VCC
L20	NC	N12	GND	R4	IO140PDB3
L21	NC	N13	GND	R5	IO130RSB2
L22	NC	N14	VCC	R6	IO138NPB3
M1	NC	N15	VCCIB1	R7	GEC0/IO137NPB3
M2	NC	N16	IO71NPB1	R8	VMV3
M3	NC	N17	IO74RSB1	R9	VCCIB2
M4	GFA2/IO144PPB3	N18	IO72NPB1	R10	VCCIB2
M5	GFA1/IO145PDB3	N19	IO70NDB1	R11	IO108RSB2
M6	VCCPLF	N20	NC	R12	IO101RSB2
M7	IO143NDB3	N21	NC	R13	VCCIB2
M8	GFB2/IO143PDB3	N22	NC	R14	VCCIB2
M9	VCC	P1	NC	R15	VMV2
M10	GND	P2	NC	R16	IO83RSB2

	FG484		FG484		FG484
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
K19	IO75NDB1	M11	GND	P3	IO153NDB3
K20	NC	M12	GND	P4	IO159NDB3
K21	IO76NDB1	M13	GND	P5	IO156NPB3
K22	IO76PDB1	M14	VCC	P6	IO151PPB3
L1	NC	M15	GCB2/IO73PPB1	P7	IO158PPB3
L2	IO155PDB3	M16	GCA1/IO71PPB1	P8	VCCIB3
L3	NC	M17	GCC2/IO74PPB1	P9	GND
L4	GFB0/IO163NPB3	M18	IO80PPB1	P10	VCC
L5	GFA0/IO162NDB3	M19	GCA2/IO72PDB1	P11	VCC
L6	GFB1/IO163PPB3	M20	IO79PPB1	P12	VCC
L7	VCOMPLF	M21	IO78PPB1	P13	VCC
L8	GFC0/IO164NPB3	M22	NC	P14	GND
L9	VCC	N1	IO154NDB3	P15	VCCIB1
L10	GND	N2	IO154PDB3	P16	GDB0/IO87NPB1
L11	GND	N3	NC	P17	IO85NDB1
L12	GND	N4	GFC2/IO159PDB3	P18	IO85PDB1
L13	GND	N5	IO161NPB3	P19	IO84PDB1
L14	VCC	N6	IO156PPB3	P20	NC
L15	GCC0/IO69NPB1	N7	IO129RSB2	P21	IO81PDB1
L16	GCB1/IO70PPB1	N8	VCCIB3	P22	NC
L17	GCA0/IO71NPB1	N9	VCC	R1	NC
L18	IO67NPB1	N10	GND	R2	NC
L19	GCB0/IO70NPB1	N11	GND	R3	VCC
L20	IO77PDB1	N12	GND	R4	IO150PDB3
L21	IO77NDB1	N13	GND	R5	IO151NPB3
L22	IO78NPB1	N14	VCC	R6	IO147NPB3
M1	NC	N15	VCCIB1	R7	GEC0/IO146NPB3
M2	IO155NDB3	N16	IO73NPB1	R8	VMV3
M3	IO158NPB3	N17	IO80NPB1	R9	VCCIB2
M4	GFA2/IO161PPB3	N18	IO74NPB1	R10	VCCIB2
M5	GFA1/IO162PDB3	N19	IO72NDB1	R11	IO117RSB2
M6	VCCPLF	N20	NC	R12	IO110RSB2
M7	IO160NDB3	N21	IO79NPB1	R13	VCCIB2
M8	GFB2/IO160PDB3	N22	NC	R14	VCCIB2
M9	VCC	P1	NC	R15	VMV2
M10	GND	P2	IO153PDB3	R16	IO94RSB2

FG484		FG484			FG484	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	
E21	NC	G13	IO52RSB0	J5	IO218NDB3	
E22	IO84PDB1	G14	IO60RSB0	J6	IO216PDB3	
F1	NC	G15	GNDQ	J7	IO216NDB3	
F2	IO215PDB3	G16	IO80NDB1	J8	VCCIB3	
F3	IO215NDB3	G17	GBB2/IO79PDB1	J9	GND	
F4	IO224NDB3	G18	IO79NDB1	J10	VCC	
F5	IO225NDB3	G19	IO82NPB1	J11	VCC	
F6	VMV3	G20	IO85PDB1	J12	VCC	
F7	IO11RSB0	G21	IO85NDB1	J13	VCC	
F8	GAC0/IO04RSB0	G22	NC	J14	GND	
F9	GAC1/IO05RSB0	H1	NC	J15	VCCIB1	
F10	IO25RSB0	H2	NC	J16	IO83NPB1	
F11	IO36RSB0	H3	VCC	J17	IO86NPB1	
F12	IO42RSB0	H4	IO217PDB3	J18	IO90PPB1	
F13	IO49RSB0	H5	IO218PDB3	J19	IO87NDB1	
F14	IO56RSB0	H6	IO221NDB3	J20	NC	
F15	GBC0/IO72RSB0	H7	IO221PDB3	J21	IO89PDB1	
F16	IO62RSB0	H8	VMV0	J22	IO89NDB1	
F17	VMV0	H9	VCCIB0	K1	IO211PDB3	
F18	IO78NDB1	H10	VCCIB0	K2	IO211NDB3	
F19	IO81NDB1	H11	IO38RSB0	K3	NC	
F20	IO82PPB1	H12	IO47RSB0	K4	IO210PPB3	
F21	NC	H13	VCCIB0	K5	IO213NDB3	
F22	IO84NDB1	H14	VCCIB0	K6	IO213PDB3	
G1	IO214NDB3	H15	VMV1	K7	GFC1/IO209PPB3	
G2	IO214PDB3	H16	GBC2/IO80PDB1	K8	VCCIB3	
G3	NC	H17	IO83PPB1	K9	VCC	
G4	IO222NDB3	H18	IO86PPB1	K10	GND	
G5	IO222PDB3	H19	IO87PDB1	K11	GND	
G6	GAC2/IO223PDB3	H20	VCC	K12	GND	
G7	IO223NDB3	H21	NC	K13	GND	
G8	GNDQ	H22	NC	K14	VCC	
G9	IO23RSB0	J1	IO212NDB3	K15	VCCIB1	
G10	IO29RSB0	J2	IO212PDB3	K16	GCC1/IO91PPB1	
G11	IO33RSB0	J3	NC	K17	IO90NPB1	
G12	IO46RSB0	J4	IO217NDB3	K18	IO88PDB1	

Revision	Changes	Page
Revision 13 (January 2013)	The "ProASIC3 Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43104).	1-IV
	Added a note to Table 2-2 • Recommended Operating Conditions 1 (SAR 43644): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	2-2
	The note in Table 2-115 • ProASIC3 CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42569).	2-90
	Libero Integrated Design Environment (IDE) was changed to Libero System-on- Chip (SoC) throughout the document (SAR 40284). Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 12 (September 2012)	The Security section was modified to clarify that Microsemi does not support read-back of programmed data.	1-1
	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information" to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions 1 (SAR 38321).	2-1 2-2
	Table 2-35 • Duration of Short Circuit Event Before Failure was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37933).	2-31
	In Table 2-93 • Minimum and Maximum DC Input and Output Levels, VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 28549).	2-68
	Figure 2-37 • FIFO Read and Figure 2-38 • FIFO Write are new (SAR 28371).	2-99
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38321). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Information

Revision	Changes	Page
Revision 11 (March 2012)	Note indicating that A3P015 is not recommended for new designs has been added. The "Devices Not Recommended For New Designs" section is new (SAR 36760).	I to IV
	The following sentence was removed from the Advanced Architecture section: "In addition, extensive on-chip programming circuitry allows for rapid, single- voltage (3.3 V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR 34687).	NA
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>ProASIC3 FPGA Fabric User's Guide</i> (SAR 34734).	2-12
	Figure 2-4 • Input Buffer Timing Model and Delays (Example) has been modified for the DIN waveform; the Rise and Fall time label has been changed to tDIN (35430).	2-16
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34883).	2-32
	Added values for minimum pulse width and removed the FRMAX row from Table 2-107 through Table 2-114 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SARs 37279, 29269).	2-85

Datasheet Information

Revision	Changes	Page		
v2.0 (April 2007)	In the "Packaging Tables", Ambient was deleted.	ii		
	The timing characteristics tables were updated.	N/A		
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15		
	The "PLL Macro" section was updated to include power-up information.			
	Table 2-11 • ProASIC3 CCC/PLL Specification was updated.	2-29		
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18		
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21		
	The "RESET" section was updated with read and write information.	2-25		
	The "RESET" section was updated with read and write information.	2-25		
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28		
	PCI-X 3.3 V was added to Table 2-11 • VCCI Voltages and Compatible Standards.	2-29		
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	2-34		
	Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.	2-64		
	Notes 3, 4, and 5 were added to Table 2-17 \cdot Comparison Table for 5 V–Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.	2-40		
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50		
	The "VPUMP Programming Supply Voltage" section was updated.	2-50		
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51		
	V _{JTAG} was deleted from the "TCK Test Clock" section.	2-51		
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51		
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2		
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os)1.	3-2		
	In EQ 3-2, 150 was changed to 110 and the result changed from 3.9 to 1.951.	3-5		
	Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	3-6		
	Table 3-5 • Package Thermal Resistivities was updated.	3-5		
	Table 3-14 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings (Advanced) and Table 3-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions (Standard Plus) were updated.	3-17 to 3- 17		