

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

EXF

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	97
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-2fgg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-13 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings ¹ Applicable to Standard I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	431.08
3.3 V LVCMOS Wide Range ⁴	35	3.3	-	431.08
2.5 V LVCMOS	35	2.5	-	247.36
1.8 V LVCMOS	35	1.8	-	128.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	89.46

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. P_{DC3} is the static power (where applicable) measured on VCCI.

3. P_{AC10} is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

P_{AC1}, P_{AC2}, P_{AC3}, and P_{AC4} are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 $P_{S-CELL} = N_{S-CELL} * (P_{AC5} + \alpha_1 / 2 * P_{AC6}) * F_{CLK}$

 N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.

F_{CLK} is the global clock signal frequency.

Combinatorial Cells Contribution—P_{C-CELL}

 $P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * P_{AC7} * F_{CLK}$

 $N_{C\mbox{-}C\mbox{-}E\mbox{-}L\mbox{-}L}$ is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

Routing Net Contribution—P_{NET}

 $P_{NET} = (N_{S-CELL} + N_{C-CELL}) * \alpha_1 / 2 * P_{AC8} * F_{CLK}$

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.

 F_{CLK} is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS

 $P_{INPUTS} = N_{INPUTS} * \alpha_2 / 2 * P_{AC9} * F_{CLK}$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-14.

 F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * P_{AC10} * F_{CLK}$

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-14.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-17 on page 2-14.

F_{CLK} is the global clock signal frequency.

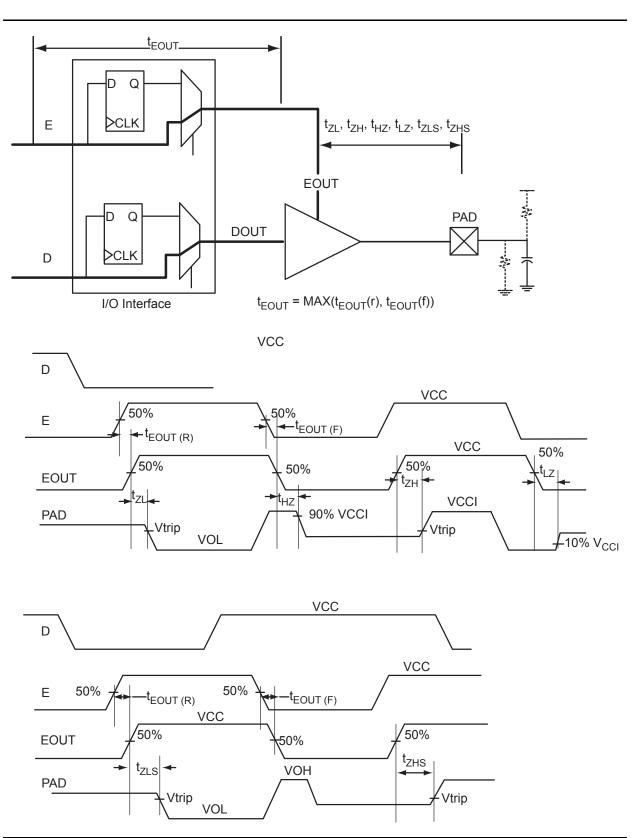


Figure 2-6 • Tristate Output Buffer Timing Model and Delays (Example)

Table 2-19 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings

		Equiv.			VIL	VIH		VOL	VOH		
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min V	Max V	Min V	Max V	Max V	Min V	IOL ¹ mA	IOH ¹ mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ³	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	8 mA	8 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI – 0.45	8	8
1.5 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.6	0.25 * VCCI	0.75 * VCCI	4	4
3.3 V PCI	Per PCI specifications										
3.3 V PCI-X					Per PC	I-X specificat	ions				

Applicable to Standard Plus I/O Banks

Notes:

1. Currents are measured at 85°C junction temperature.

2. 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	16	16	74	91	10	10

Table 2-66 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-67 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	8	8	44	35	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <V CCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
tosue	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
toesud	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
tOESUE	Enable Setup Time for the Output Enable Register	К, Н
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-96 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-15 on page 2-69 for more information.

Output Enable Register

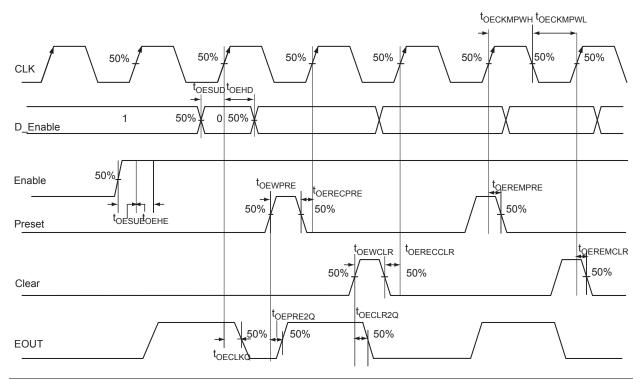


Figure 2-19 • Output Enable Register Timing Diagram

Table 2-111 • A3P250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2		-1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.80	1.01	0.91	1.15	1.07	1.36	ns
t _{RCKH}	Input High Delay for Global Clock	0.78	1.04	0.89	1.18	1.04	1.39	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

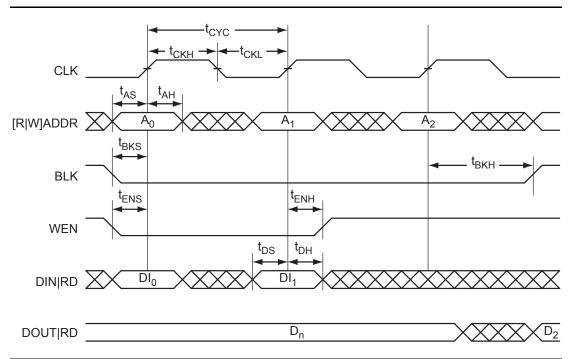
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

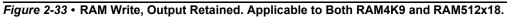
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

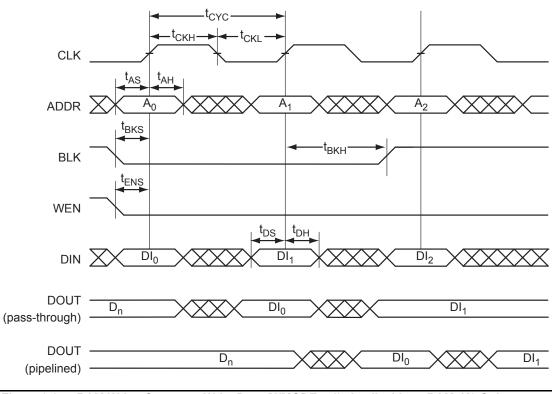
Table 2-112 • A3P400 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2		-1	Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns


Notes:


1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).


2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Figure 2-34 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.

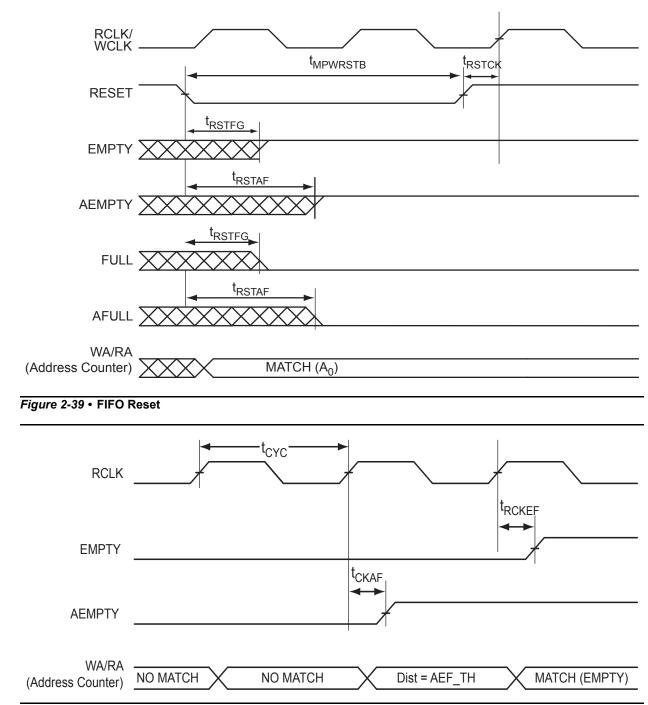


Figure 2-40 • FIFO EMPTY Flag and AEMPTY Flag Assertion

Timing Characteristics

Table 2-118 • FIFO (for all dies except A3P250)Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.34	1.52	1.79	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

VJTAG

JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design.

If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

ProASIC3 devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in Table 2-2 on page 2-2.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to V_{CCI} . With V_{CCI} , VMV, and V_{CC} supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the I/O Structure section of the handbook for the device you are using for an explanation of the naming of global pins.

FF Flash*Freeze Mode Activation Pin

Flash*Freeze is available on IGLOO, ProASIC3L, and RT ProASIC3 devices. It is not supported on ProASIC3/E devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active-low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze

	QN132		QN132		QN132
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
A1	GAB2/IO69RSB1	A37	GBB1/IO38RSB0	B25	GND
A2	IO130RSB1	A38	GBC0/IO35RSB0	B26	NC
A3	VCCIB1	A39	VCCIB0	B27	GCB2/IO58RSB0
A4	GFC1/IO126RSB1	A40	IO28RSB0	B28	GND
A5	GFB0/IO123RSB1	A41	IO22RSB0	B29	GCB0/IO54RSB0
A6	VCCPLF	A42	IO18RSB0	B30	GCC1/IO51RSB0
A7	GFA1/IO121RSB1	A43	IO14RSB0	B31	GND
A8	GFC2/IO118RSB1	A44	IO11RSB0	B32	GBB2/IO43RSB0
A9	IO115RSB1	A45	IO07RSB0	B33	VMV0
A10	VCC	A46	VCC	B34	GBA0/IO39RSB0
A11	GEB1/IO110RSB1	A47	GAC1/IO05RSB0	B35	GBC1/IO36RSB0
A12	GEA0/IO107RSB1	A48	GAB0/IO02RSB0	B36	GND
A13	GEC2/IO104RSB1	B1	IO68RSB1	B37	IO26RSB0
A14	IO100RSB1	B2	GAC2/IO131RSB1	B38	IO21RSB0
A15	VCC	B3	GND	B39	GND
A16	IO99RSB1	B4	GFC0/IO125RSB1	B40	IO13RSB0
A17	IO96RSB1	B5	VCOMPLF	B41	IO08RSB0
A18	IO94RSB1	B6	GND	B42	GND
A19	IO91RSB1	B7	GFB2/IO119RSB1	B43	GAC0/IO04RSB0
A20	IO85RSB1	B8	IO116RSB1	B44	GNDQ
A21	IO79RSB1	B9	GND	C1	GAA2/IO67RSB1
A22	VCC	B10	GEB0/IO109RSB1	C2	IO132RSB1
A23	GDB2/IO71RSB1	B11	VMV1	C3	VCC
A24	TDI	B12	GEB2/IO105RSB1	C4	GFB1/IO124RSB1
A25	TRST	B13	IO101RSB1	C5	GFA0/IO122RSB1
A26	GDC1/IO61RSB0	B14	GND	C6	GFA2/IO120RSB1
A27	VCC	B15	IO98RSB1	C7	IO117RSB1
A28	IO60RSB0	B16	IO95RSB1	C8	VCCIB1
A29	GCC2/IO59RSB0	B17	GND	C9	GEA1/IO108RSB1
A30	GCA2/IO57RSB0	B18	IO87RSB1	C10	GNDQ
A31	GCA0/IO56RSB0	B19	IO81RSB1	C11	GEA2/IO106RSB1
A32	GCB1/IO53RSB0	B20	GND	C12	IO103RSB1
A33	IO49RSB0	B21	GNDQ	C13	VCCIB1
A34	VCC	B22	TMS	C14	IO97RSB1
A35	IO44RSB0	B23	TDO	C15	IO93RSB1
A36	GBA2/IO41RSB0	B24	GDC0/IO62RSB0	C16	IO89RSB1

F	PQ208	P	PQ208	F	PQ208
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
109	TRST	145	IO64PDB1	181	IO27RSB0
110	VJTAG	146	IO63NDB1	182	IO26RSB0
111	GDA0/IO79VDB1	147	IO63PDB1	183	IO25RSB0
112	GDA1/IO79UDB1	148	IO62NDB1	184	IO24RSB0
113	GDB0/IO78VDB1	149	GBC2/IO62PDB1	185	IO23RSB0
114	GDB1/IO78UDB1	150	IO61NDB1	186	VCCIB0
115	GDC0/IO77VDB1	151	GBB2/IO61PDB1	187	VCC
116	GDC1/IO77UDB1	152	IO60NDB1	188	IO21RSB0
117	IO76VDB1	153	GBA2/IO60PDB1	189	IO20RSB0
118	IO76UDB1	154	VMV1	190	IO19RSB0
119	IO75NDB1	155	GNDQ	191	IO18RSB0
120	IO75PDB1	156	GND	192	IO17RSB0
121	IO74RSB1	157	VMV0	193	IO16RSB0
122	GND	158	GBA1/IO59RSB0	194	IO15RSB0
123	VCCIB1	159	GBA0/IO58RSB0	195	GND
124	NC	160	GBB1/IO57RSB0	196	IO13RSB0
125	NC	161	GBB0/IO56RSB0	197	IO11RSB0
126	VCC	162	GND	198	IO09RSB0
127	IO72NDB1	163	GBC1/IO55RSB0	199	IO07RSB0
128	GCC2/IO72PDB1	164	GBC0/IO54RSB0	200	VCCIB0
129	GCB2/IO71PSB1	165	IO52RSB0	201	GAC1/IO05RSB0
130	GND	166	IO49RSB0	202	GAC0/IO04RSB0
131	GCA2/IO70PSB1	167	IO46RSB0	203	GAB1/IO03RSB0
132	GCA1/IO69PDB1	168	IO43RSB0	204	GAB0/IO02RSB0
133	GCA0/IO69NDB1	169	IO40RSB0	205	GAA1/IO01RSB0
134	GCB0/IO68NDB1	170	VCCIB0	206	GAA0/IO00RSB0
135	GCB1/IO68PDB1	171	VCC	207	GNDQ
136	GCC0/IO67NDB1	172	IO36RSB0	208	VMV0
137	GCC1/IO67PDB1	173	IO35RSB0		
138	IO66NDB1	174	IO34RSB0		
139	IO66PDB1	175	IO33RSB0		
140	VCCIB1	176	IO32RSB0		
141	GND	177	IO31RSB0		
142	VCC	178	GND		
143	IO65RSB1	179	IO29RSB0		
144	IO64NDB1	180	IO28RSB0		

F	G144	F	G144	F	G144
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
A1	GNDQ	D1	IO112NDB3	G1	GFA1/IO108PPB3
A2	VMV0	D2	IO112PDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO116VDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO118UPB3	G4	GFA0/IO108NPB3
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO29RSB0	D7	GBC0/IO35RSB0	G7	GND
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO58UPB1
A9	IO33RSB0	D9	GBB2/IO42PDB1	G9	IO53NDB1
A10	GBA0/IO39RSB0	D10	IO42NDB1	G10	GCC2/IO53PDB1
A11	GBA1/IO40RSB0	D11	IO43NPB1	G11	IO52NDB1
A12	GNDQ	D12	GCB1/IO49PPB1	G12	GCB2/IO52PDB1
B1	GAB2/IO117UDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO110NDB3	H2	GFB2/IO106PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO110PDB3	H3	GFC2/IO105PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO100PDB3
B5	IO14RSB0	E5	IO118VPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO79RSB2
B7	IO22RSB0	E7	VCCIB0	H7	IO65RSB2
B8	IO30RSB0	E8	GCC1/IO48PDB1	H8	GDB2/IO62RSB2
B9	GBB0/IO37RSB0	E9	VCCIB1	H9	GDC0/IO58VPB1
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO50NDB1	H11	IO54PSB1
B12	VMV1	E12	IO51NDB1	H12	VCC
C1	IO117VDB3	F1	GFB0/IO109NPB3	J1	GEB1/IO99PDB3
C2	GFA2/IO107PPB3	F2	VCOMPLF	J2	IO106NDB3
C3	GAC2/IO116UDB3	F3	GFB1/IO109PPB3	J3	VCCIB3
C4	VCC	F4	IO107NPB3	J4	GEC0/IO100NDB3
C5	IO12RSB0	F5	GND	J5	IO88RSB2
C6	IO17RSB0	F6	GND	J6	IO81RSB2
C7	IO24RSB0	F7	GND	J7	VCC
C8	IO31RSB0	F8	GCC0/IO48NDB1	J8	ТСК
C9	IO34RSB0	F9	GCB0/IO49NPB1	J9	GDA2/IO61RSB2
C10	GBA2/IO41PDB1	F10	GND	J10	TDO
C11	IO41NDB1	F11	GCA1/IO50PDB1	J11	GDA1/IO60UDB1
C12	GBC2/IO43PPB1	F12	GCA2/IO51PDB1	J12	GDB1/IO59UDB1

FG144		FG144		FG144		
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function	
A1	GNDQ	D1	IO169PDB3	G1	GFA1/IO162PPB3	
A2	VMV0	D2	IO169NDB3	G2	GND	
A3	GAB0/IO02RSB0	D3	IO172NDB3	G3	VCCPLF	
A4	GAB1/IO03RSB0	D4	GAA2/IO174PPB3	G4	GFA0/IO162NPB3	
A5	IO10RSB0	D5	GAC0/IO04RSB0	G5	GND	
A6	GND	D6	GAC1/IO05RSB0	G6	GND	
A7	IO34RSB0	D7	GBC0/IO54RSB0	G7	GND	
A8	VCC	D8	GBC1/IO55RSB0	G8	GDC1/IO86PPB1	
A9	IO50RSB0	D9	GBB2/IO61PDB1	G9	IO74NDB1	
A10	GBA0/IO58RSB0	D10	IO61NDB1	G10	GCC2/IO74PDB1	
A11	GBA1/IO59RSB0	D11	IO62NPB1	G11	IO73NDB1	
A12	GNDQ	D12	GCB1/IO70PPB1	G12	GCB2/IO73PDB1	
B1	GAB2/IO173PDB3	E1	VCC	H1	VCC	
B2	GND	E2	GFC0/IO164NDB3	H2	GFB2/IO160PDB3	
B3	GAA0/IO00RSB0	E3	GFC1/IO164PDB3	H3	GFC2/IO159PSB3	
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO146PDB3	
B5	IO13RSB0	E5	IO174NPB3	H5	VCC	
B6	IO19RSB0	E6	VCCIB0	H6	IO80PDB1	
B7	IO31RSB0	E7	VCCIB0	H7	IO80NDB1	
B8	IO39RSB0	E8	GCC1/IO69PDB1	H8	GDB2/IO90RSB2	
B9	GBB0/IO56RSB0	E9	VCCIB1	H9	GDC0/IO86NPB1	
B10	GBB1/IO57RSB0	E10	VCC	H10	VCCIB1	
B11	GND	E11	GCA0/IO71NDB1	H11	IO84PSB1	
B12	VMV1	E12	IO72NDB1	H12	VCC	
C1	IO173NDB3	F1	GFB0/IO163NPB3	J1	GEB1/IO145PDB3	
C2	GFA2/IO161PPB3	F2	VCOMPLF	J2	IO160NDB3	
C3	GAC2/IO172PDB3	F3	GFB1/IO163PPB3	J3	VCCIB3	
C4	VCC	F4	IO161NPB3	J4	GEC0/IO146NDB3	
C5	IO16RSB0	F5	GND	J5	IO129RSB2	
C6	IO25RSB0	F6	GND	J6	IO131RSB2	
C7	IO28RSB0	F7	GND	J7	VCC	
C8	IO42RSB0	F8	GCC0/IO69NDB1	J8	TCK	
C9	IO45RSB0	F9	GCB0/IO70NPB1	J9	GDA2/IO89RSB2	
C10	GBA2/IO60PDB1	F10	GND	J10	TDO	
C11	IO60NDB1	F11	GCA1/IO71PDB1	J11	GDA1/IO88PDB1	
C12	GBC2/IO62PPB1	F12	GCA2/IO72PDB1	J12	GDB1/IO87PDB1	

FG484		FG484		FG484		
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function	
E21	NC	G13	IO40RSB0	J5	IO168NPB3	
E22	NC	G14	IO45RSB0	J6	IO167PPB3	
F1	NC	G15	GNDQ	J7	IO169PDB3	
F2	NC	G16	IO50RSB0	J8	VCCIB3	
F3	NC	G17	GBB2/IO61PPB1	J9	GND	
F4	IO173NDB3	G18	IO53RSB0	J10	VCC	
F5	IO174NDB3	G19	IO63NDB1	J11	VCC	
F6	VMV3	G20	NC	J12	VCC	
F7	IO07RSB0	G21	NC	J13	VCC	
F8	GAC0/IO04RSB0	G22	NC	J14	GND	
F9	GAC1/IO05RSB0	H1	NC	J15	VCCIB1	
F10	IO20RSB0	H2	NC	J16	IO62NDB1	
F11	IO24RSB0	H3	VCC	J17	IO64NPB1	
F12	IO33RSB0	H4	IO166PDB3	J18	IO65PPB1	
F13	IO39RSB0	H5	IO167NPB3	J19	IO66NDB1	
F14	IO44RSB0	H6	IO172NDB3	J20	NC	
F15	GBC0/IO54RSB0	H7	IO169NDB3	J21	IO68PDB1	
F16	IO51RSB0	H8	VMV0	J22	IO68NDB1	
F17	VMV0	H9	VCCIB0	K1	IO157PDB3	
F18	IO61NPB1	H10	VCCIB0	К2	IO157NDB3	
F19	IO63PDB1	H11	IO25RSB0	K3	NC	
F20	NC	H12	IO31RSB0	K4	IO165NDB3	
F21	NC	H13	VCCIB0	K5	IO165PDB3	
F22	NC	H14	VCCIB0	K6	IO168PPB3	
G1	IO170NDB3	H15	VMV1	K7	GFC1/IO164PPB3	
G2	IO170PDB3	H16	GBC2/IO62PDB1	K8	VCCIB3	
G3	NC	H17	IO67PPB1	К9	VCC	
G4	IO171NDB3	H18	IO64PPB1	K10	GND	
G5	IO171PDB3	H19	IO66PDB1	K11	GND	
G6	GAC2/IO172PDB3	H20	VCC	K12	GND	
G7	IO06RSB0	H21	NC	K13	GND	
G8	GNDQ	H22	NC	K14	VCC	
G9	IO10RSB0	J1	NC	K15	VCCIB1	
G10	IO19RSB0	J2	NC	K16	GCC1/IO69PPB1	
G11	IO26RSB0	J3	NC	K17	IO65NPB1	
G12	IO30RSB0	J4	IO166NDB3	K18	IO75PDB1	

FG484			
Pin Number A3P1000 Function			
Y15	VCC		
Y16	NC		
Y17	NC		
Y18	GND		
Y19	NC		
Y20	NC		
Y21	NC		
Y22	VCCIB1		
AA1	GND		
AA2	VCCIB3		
AA3	NC		
AA4	IO181RSB2		
AA5	IO178RSB2		
AA6	IO175RSB2		
AA7	IO169RSB2		
AA8	IO166RSB2		
AA9	IO160RSB2		
AA10	IO152RSB2		
AA11	IO146RSB2		
AA12	IO139RSB2		
AA13	IO133RSB2		
AA14	NC		
AA15	NC		
AA16	IO122RSB2		
AA17	IO119RSB2		
AA18	IO117RSB2		
AA19	NC		
AA20	NC		
AA21	VCCIB1		
AA22	GND		
AB1	GND		
AB2	GND		
AB3	VCCIB2		
AB4	IO180RSB2		
AB5	IO176RSB2		
AB6	IO173RSB2		

	FG484		
Pin Number	A3P1000 Function		
AB7	IO167RSB2		
AB8	IO162RSB2		
AB9	IO156RSB2		
AB10	IO150RSB2		
AB11	IO145RSB2		
AB12	IO144RSB2		
AB13	IO132RSB2		
AB14	IO127RSB2		
AB15	IO126RSB2		
AB16	IO123RSB2		
AB17	IO121RSB2		
AB18	IO118RSB2		
AB19	NC		
AB20	VCCIB2		
AB21	GND		
AB22	GND		

Datasheet Information

Revision	Changes	Page
Advance v0.6 (continued)	The "RESET" section was updated.	2-25
	The "WCLK and RCLK" section was updated.	
	The "RESET" section was updated.	2-25
	The "RESET" section was updated.	2-27
	The "Introduction" of the "Advanced I/Os" section was updated.	2-28
	The "I/O Banks" section is new. This section explains the following types of I/Os: Advanced Standard+ Standard Table 2-12 • Automotive ProASIC3 Bank Types Definition and Differences is	2-29
	new. This table describes the standards listed above.	0.00
	PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 11 • VCCI Voltages and Compatible Standards	2-29
	Table 2-13 • ProASIC3 I/O Features was updated.	2-30
	The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature.	2-32
	The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information.	2-35
	Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices.	2-64
	The notes in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices were updated.	2-64
	The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new.	2-41
	A footnote was added to Table 2-14 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in Automotive ProASIC3 Devices (maximum drive strength and high slew selected).	2-30
	Table 2-18 • Automotive ProASIC3 I/O Attributes vs. I/O Standard Applications	2-45
	Table 2-50 • ProASIC3 Output Drive (OUT_DRIVE) for Standard I/O Bank Type (A3P030 device)	2-83
	Table 2-51 • ProASIC3 Output Drive for Standard+ I/O Bank Type was updated.	2-84
	Table 2-54 • ProASIC3 Output Drive for Advanced I/O Bank Type was updated.	2-84
	The "x" was updated in the "User I/O Naming Convention" section.	2-48
	The "VCC Core Supply Voltage" pin description was updated.	2-50
	The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected.	2-50
	The "VJTAG JTAG Supply Voltage" pin description was updated.	2-50
	The "VPUMP Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground.	2-50
	The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused.	2-50
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.	2-51

Revision	Changes	Page
Advance v0.2, (continued)	Table 2-43 was updated.	2-64
	Table 2-18 was updated.	2-45
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "User I/O Naming Convention" section was updated.	2-48
	Table 3-7 was updated.	3-6
	The "Methodology" section was updated.	3-10
	Table 3-40 and Table 3-39 were updated.	3-33,3-32
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68