E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	·
Total RAM Bits	147456
Number of I/O	154
Number of Gates	100000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-2pq208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3 Devices	A3P015 ¹	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Cortex-M1 Devices ²					M1A3P250	M1A3P400	M1A3P600	M1A3P1000
Package Pins QFN	QN68	QN48, QN68, QN132 ⁷	QN132 ⁷	QN132 ⁷	QN132 ⁷			
CS VQFP TQFP		VQ100	CS121 VQ100 TQ144	VQ100 TQ144	VQ100			
PQFP FBGA			FG144	PQ208 FG144	PQ208 FG144/256 ⁵	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484

Notes:

- A3P015 is not recommended for new designs.
 Refer to the Cortex-M1 product brief for more information.
 AES is not available for Cortex-M1 ProASIC3 devices.
 Six chip (main) and three quadrant global networks are available for A3P060 and above.
 The M1A3P250 device does not support this package.
 For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs datasheet.
 Package not available.

Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3 device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system powerup (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3 FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based ProASIC3 devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based ProASIC3 devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3 device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3 devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3 flash-based FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3 FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power

Flash-based ProASIC3 devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3 devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

ProASIC3 devices also have low dynamic power consumption to further maximize power savings.

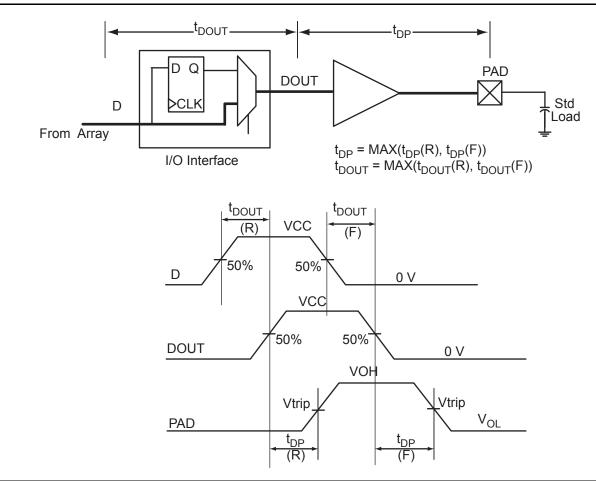


Figure 2-5 • Output Buffer Model and Delays (Example)

Table 2-20 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks

		Equiv.			VIL	VIH		VOL	VOH		
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew	Min V	Max V	Min V	Max V	Max V	Min V	IOL ¹ mA	IOH ¹ mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
3.3 V LVCMOS Wide Range ³	100 µA	8 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	8 mA	8 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4
1.5 V LVCMOS	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2

Notes:

1. Currents are measured at 85°C junction temperature.

2. 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Table 2-21 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions

	Comr	nercial ¹	Industrial ²		
	IIL ³	IIH ⁴	IIL ³	IIH ⁴	
DC I/O Standards	μA	μA	μA	μA	
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15	
3.3 V LVCMOS Wide Range	10	10	15	15	
2.5 V LVCMOS	10	10	15	15	
1.8 V LVCMOS	10	10	15	15	
1.5 V LVCMOS	10	10	15	15	
3.3 V PCI	10	10	15	15	
3.3 V PCI-X	10	10	15	15	

Notes:

1. Commercial range ($0^{\circ}C < T_A < 70^{\circ}C$)

2. Industrial range $(-40^{\circ}C < T_A < 85^{\circ}C)$

- 3. IIL is the input leakage current per I/O pin over recommended operation conditions where $-0.3V < V_{IN} < V_{IL}$.
- 4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

	Applica	ble to St	andard	Plus I/	J Bank	S							
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
4 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
6 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
8 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
12 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns
16 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns

Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	-1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
4 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	–1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
6 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	–1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
8 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	-1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns

Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew	
Commercial-Case Conditions: $T_J = 70^{\circ}C$,	Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks	

-	Applicable													-
Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zнs}	Units
100 µA	2 mA	Std.	0.60	11.14	0.04	1.52	0.43	11.14	9.54	3.51	3.61	14.53	12.94	ns
		-1	0.51	9.48	0.04	1.29	0.36	9.48	8.12	2.99	3.07	12.36	11.00	ns
		-2	0.45	8.32	0.03	1.14	0.32	8.32	7.13	2.62	2.70	10.85	9.66	ns
100 µA	4 mA	Std.	0.60	6.96	0.04	1.52	0.43	6.96	5.79	3.99	4.45	10.35	9.19	ns
		-1	0.51	5.92	0.04	1.29	0.36	5.92	4.93	3.39	3.78	8.81	7.82	ns
		-2	0.45	5.20	0.03	1.14	0.32	5.20	4.33	2.98	3.32	7.73	6.86	ns
100 µA	6 mA	Std.	0.60	6.96	0.04	1.52	0.43	6.96	5.79	3.99	4.45	10.35	9.19	ns
		-1	0.51	5.92	0.04	1.29	0.36	5.92	4.93	3.39	3.78	8.81	7.82	ns
		-2	0.45	5.20	0.03	1.14	0.32	5.20	4.33	2.98	3.32	7.73	6.86	ns
100 µA	8 mA	Std.	0.60	4.89	0.04	1.52	0.43	4.89	3.92	4.31	4.98	8.28	7.32	ns
		-1	0.51	4.16	0.04	1.29	0.36	4.16	3.34	3.67	4.24	7.04	6.22	ns
		-2	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns
100 µA	16 mA	Std.	0.60	4.89	0.04	1.52	0.43	4.89	3.92	4.31	4.98	8.28	7.32	ns
		-1	0.51	4.16	0.04	1.29	0.36	4.16	3.34	3.67	4.24	7.04	6.22	ns
		-2	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns

Notes:

The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
 Software default selection bioblighted in group.

2. Software default selection highlighted in gray.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	16	16	74	91	10	10

Table 2-66 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

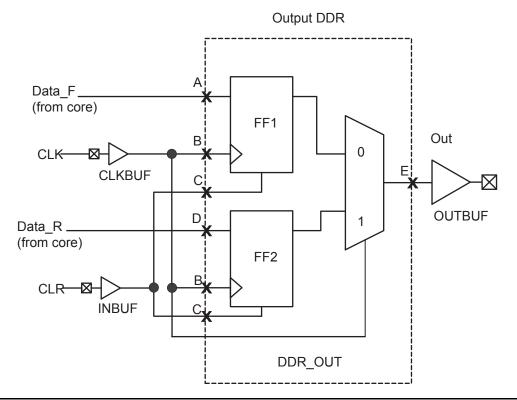
5. Software default selection highlighted in gray.

Table 2-67 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O I/O Banks

1.8 V LVCMOS	VIL		VIH		VIL VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μA ⁴	μA ⁴		
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	2	2	11	9	10	10		
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4	22	17	10	10		
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	6	6	44	35	10	10		
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	8	8	44	35	10	10		

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.


2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <V CCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Output DDR Module

Figure 2-22 • Output DDR Timing Model

Table 2-103 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	А, В
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	А, В
t _{DDROHD2}	Data Hold Data_R	D, B

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.13	0.15	0.17	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{DS}	Input data (WD) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (WD) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	2.16	2.46	2.89	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	0.90	1.02	1.20	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.50	0.43	0.38	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address—Applicable to Opening Edge	0.59	0.50	0.44	ns
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to data out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Table 2-117 • RAM512X18

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-120 • A3P250 FIFO 512×8

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	3.75	4.27	5.02	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Related Documents

User's Guides

ProASIC FPGA Fabric User's Guide http://www.microsemi.com/soc/documents/PA3_UG.pdf

Packaging

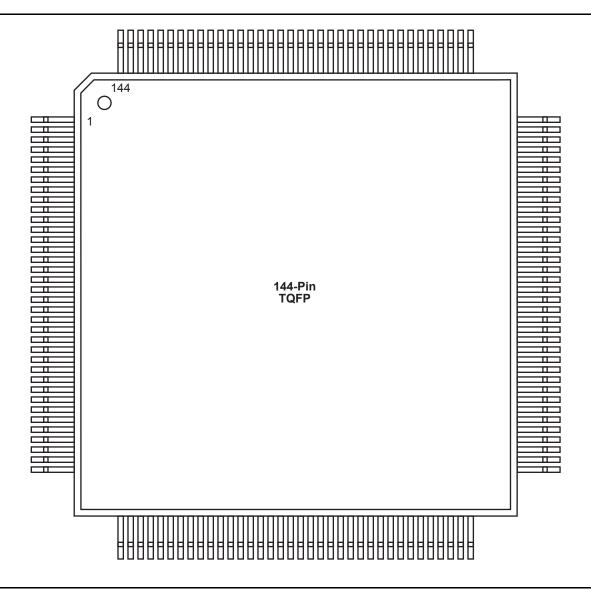
The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings


http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Actel. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials are at http://www.microsemi.com/products/solutions/package/docs.aspx.

TQ144 – Top View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Microsemi

Package Pin Assignments

PQ208		PQ208		PQ208		
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function	
109	TRST	145	IO46RSB0	181	IO21RSB0	
110	VJTAG	146	NC	182	IO20RSB0	
111	GDA0/IO66RSB0	147	NC	183	IO19RSB0	
112	GDA1/IO65RSB0	148	NC	184	IO18RSB0	
113	GDB0/IO64RSB0	149	GBC2/IO45RSB0	185	IO17RSB0	
114	GDB1/IO63RSB0	150	IO44RSB0	186	VCCIB0	
115	GDC0/IO62RSB0	151	GBB2/IO43RSB0	187	VCC	
116	GDC1/IO61RSB0	152	IO42RSB0	188	IO16RSB0	
117	NC	153	GBA2/IO41RSB0	189	IO15RSB0	
118	NC	154	VMV0	190	IO14RSB0	
119	NC	155	GNDQ	191	IO13RSB0	
120	NC	156	GND	192	IO12RSB0	
121	NC	157	NC	193	IO11RSB0	
122	GND	158	GBA1/IO40RSB0	194	IO10RSB0	
123	VCCIB0	159	GBA0/IO39RSB0	195	GND	
124	NC	160	GBB1/IO38RSB0	196	IO09RSB0	
125	NC	161	GBB0/IO37RSB0	197	IO08RSB0	
126	VCC	162	GND	198	IO07RSB0	
127	IO60RSB0	163	GBC1/IO36RSB0	199	IO06RSB0	
128	GCC2/IO59RSB0	164	GBC0/IO35RSB0	200	VCCIB0	
129	GCB2/IO58RSB0	165	IO34RSB0	201	GAC1/IO05RSB0	
130	GND	166	IO33RSB0	202	GAC0/IO04RSB0	
131	GCA2/IO57RSB0	167	IO32RSB0	203	GAB1/IO03RSB0	
132	GCA0/IO56RSB0	168	IO31RSB0	204	GAB0/IO02RSB0	
133	GCA1/IO55RSB0	169	IO30RSB0	205	GAA1/IO01RSB0	
134	GCB0/IO54RSB0	170	VCCIB0	206	GAA0/IO00RSB0	
135	GCB1/IO53RSB0	171	VCC	207	GNDQ	
136	GCC0/IO52RSB0	172	IO29RSB0	208	VMV0	
137	GCC1/IO51RSB0	173	IO28RSB0			
138	IO50RSB0	174	IO27RSB0			
139	IO49RSB0	175	IO26RSB0			
140	VCCIB0	176	IO25RSB0			
141	GND	177	IO24RSB0			
142	VCC	178	GND			
143	IO48RSB0	179	IO23RSB0			
144	IO47RSB0	180	IO22RSB0			

PQ208		PQ208		PQ208		
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function	
1	GND	37	IO152PDB3	73	IO120RSB2	
2	GAA2/IO174PDB3	38	IO152NDB3	74	IO119RSB2	
3	IO174NDB3	39	IO150PSB3	75	IO118RSB2	
4	GAB2/IO173PDB3	40	VCCIB3	76	IO117RSB2	
5	IO173NDB3	41	GND	77	IO116RSB2	
6	GAC2/IO172PDB3	42	IO147PDB3	78	IO115RSB2	
7	IO172NDB3	43	IO147NDB3	79	IO114RSB2	
8	IO171PDB3	44	GEC1/IO146PDB3	80	IO112RSB2	
9	IO171NDB3	45	GEC0/IO146NDB3	81	GND	
10	IO170PDB3	46	GEB1/IO145PDB3	82	IO111RSB2	
11	IO170NDB3	47	GEB0/IO145NDB3	83	IO110RSB2	
12	IO169PDB3	48	GEA1/IO144PDB3	84	IO109RSB2	
13	IO169NDB3	49	GEA0/IO144NDB3	85	IO108RSB2	
14	IO168PDB3	50	VMV3	86	IO107RSB2	
15	IO168NDB3	51	GNDQ	87	IO106RSB2	
16	VCC	52	GND	88	VCC	
17	GND	53	VMV2	89	VCCIB2	
18	VCCIB3	54	GEA2/IO143RSB2	90	IO104RSB2	
19	IO166PDB3	55	GEB2/IO142RSB2	91	IO102RSB2	
20	IO166NDB3	56	GEC2/IO141RSB2	92	IO100RSB2	
21	GFC1/IO164PDB3	57	IO140RSB2	93	IO98RSB2	
22	GFC0/IO164NDB3	58	IO139RSB2	94	IO96RSB2	
23	GFB1/IO163PDB3	59	IO138RSB2	95	IO92RSB2	
24	GFB0/IO163NDB3	60	IO137RSB2	96	GDC2/IO91RSB2	
25	VCOMPLF	61	IO136RSB2	97	GND	
26	GFA0/IO162NPB3	62	VCCIB2	98	GDB2/IO90RSB2	
27	VCCPLF	63	IO135RSB2	99	GDA2/IO89RSB2	
28	GFA1/IO162PPB3	64	IO133RSB2	100	GNDQ	
29	GND	65	GND	101	ТСК	
30	GFA2/IO161PDB3	66	IO131RSB2	102	TDI	
31	IO161NDB3	67	IO129RSB2	103	TMS	
32	GFB2/IO160PDB3	68	IO127RSB2	104	VMV2	
33	IO160NDB3	69	IO125RSB2	105	GND	
34	GFC2/IO159PDB3	70	IO123RSB2	106	VPUMP	
35	IO159NDB3	71	VCC	107	GNDQ	
36	VCC	72	VCCIB2	108	TDO	

🌜 Microsemi.

Package Pin Assignments

FG144		FG144		FG144		
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number A3P250 Functio		
A1	GNDQ	D1	IO112NDB3	G1	GFA1/IO108PPB3	
A2	VMV0	D2	IO112PDB3	G2	GND	
A3	GAB0/IO02RSB0	D3	IO116VDB3	G3	VCCPLF	
A4	GAB1/IO03RSB0	D4	GAA2/IO118UPB3	G4	GFA0/IO108NPB3	
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND	
A6	GND	D6	GAC1/IO05RSB0	G6	GND	
A7	IO29RSB0	D7	GBC0/IO35RSB0	G7	GND	
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO58UPB1	
A9	IO33RSB0	D9	GBB2/IO42PDB1	G9	IO53NDB1	
A10	GBA0/IO39RSB0	D10	IO42NDB1	G10	GCC2/IO53PDB1	
A11	GBA1/IO40RSB0	D11	IO43NPB1	G11	IO52NDB1	
A12	GNDQ	D12	GCB1/IO49PPB1	G12	GCB2/IO52PDB1	
B1	GAB2/IO117UDB3	E1	VCC	H1	VCC	
B2	GND	E2	GFC0/IO110NDB3	H2	GFB2/IO106PDB3	
B3	GAA0/IO00RSB0	E3	GFC1/IO110PDB3	H3	GFC2/IO105PSB3	
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO100PDB3	
B5	IO14RSB0	E5	IO118VPB3	H5	VCC	
B6	IO19RSB0	E6	VCCIB0	H6	IO79RSB2	
B7	IO22RSB0	E7	VCCIB0	H7	IO65RSB2	
B8	IO30RSB0	E8	GCC1/IO48PDB1	H8	GDB2/IO62RSB2	
B9	GBB0/IO37RSB0	E9	VCCIB1	H9	GDC0/IO58VPB1	
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB1	
B11	GND	E11	GCA0/IO50NDB1	H11	IO54PSB1	
B12	VMV1	E12	IO51NDB1	H12	VCC	
C1	IO117VDB3	F1	GFB0/IO109NPB3	J1	GEB1/IO99PDB3	
C2	GFA2/IO107PPB3	F2	VCOMPLF	J2	IO106NDB3	
C3	GAC2/IO116UDB3	F3	GFB1/IO109PPB3	J3	VCCIB3	
C4	VCC	F4	IO107NPB3	J4	GEC0/IO100NDB3	
C5	IO12RSB0	F5	GND	J5	IO88RSB2	
C6	IO17RSB0	F6	GND	J6	IO81RSB2	
C7	IO24RSB0	F7	GND	J7	VCC	
C8	IO31RSB0	F8	GCC0/IO48NDB1	J8	ТСК	
C9	IO34RSB0	F9	GCB0/IO49NPB1	J9	GDA2/IO61RSB2	
C10	GBA2/IO41PDB1	F10	GND	J10	TDO	
C11	IO41NDB1	F11	GCA1/IO50PDB1	J11	GDA1/IO60UDB1	
C12	GBC2/IO43PPB1	F12	GCA2/IO51PDB1	J12	GDB1/IO59UDB1	

FG256				
Pin Number A3P250 Function				
P9	IO76RSB2			
P10	IO71RSB2			
P11	IO66RSB2			
P12	NC			
P13	ТСК			
P14	VPUMP			
P15	TRST			
P16	GDA0/IO60VDB1			
R1	GEA1/IO98PDB3			
R2	GEA0/IO98NDB3			
R3	NC			
R4	GEC2/IO95RSB2			
R5	IO91RSB2			
R6	IO88RSB2			
R7	IO84RSB2			
R8	IO80RSB2			
R9	IO77RSB2			
R10	IO72RSB2			
R11	IO68RSB2			
R12	IO65RSB2			
R13	GDB2/IO62RSB2			
R14	TDI			
R15	NC			
R16	TDO			
T1	GND			
T2	IO94RSB2			
Т3	GEB2/IO96RSB2			
T4	IO93RSB2			
Τ5	IO90RSB2			
Т6	IO87RSB2			
Τ7	IO83RSB2			
Т8	IO79RSB2			
Т9	IO78RSB2			
T10	IO73RSB2			
T11	IO70RSB2			
T12	GDC2/IO63RSB2			

FG256				
Pin Number	A3P250 Function			
T13	IO67RSB2			
T14	GDA2/IO61RSB2			
T15	TMS			
T16	GND			

Revision	Changes	Page
Revision 10 (September 2011)	The "In-System Programming (ISP) and Security" section and Security section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 32865).	I
	The value of 34 I/Os for the QN48 package in A3P030 was added to the "I/Os Per Package 1" section (SAR 33907).	
	The Y security option and Licensed DPA Logo were added to the "ProASIC3 Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 32151).	IV
	The "Specifying I/O States During Programming" section is new (SAR 21281).	1-7
	In Table 2-2 • Recommended Operating Conditions 1, VPUMP programming voltage in programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45" (SAR 30666). It was corrected in v2.0 of this datasheet in April 2007 but inadvertently changed back to "3.0 to 3.6 V" in v1.4 in August 2009. The following changes were made to Table 2-2 • Recommended Operating Conditions 1: VCCPLL analog power supply (PLL) was changed from "1.4 to 1.6" to "1.425 to 1.575" (SAR 33850).	2-2
	For VCCI and VMV, values for 3.3 V DC and 3.3 V DC Wide Range were corrected. The correct value for 3.3 V DC is "3.0 to 3.6 V" and the correct value for 3.3 V Wide Range is "2.7 to 3.6" (SAR 33848).	
	Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings was update to restore values to the correct columns. Previously the Slew Rate column was missing and data were aligned incorrectly (SAR 34034).	2-24
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section and "3.3 V LVCMOS Wide Range" section tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	2-22, 2-39

Datasheet Information

Revision	Changes	Page
Advance v0.3	The "PLL Macro" section was updated. EXTFB information was removed from this section.	2-15
	The CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} was updated in Table 2- 11 • ProASIC3 CCC/PLL Specification	2-29
	EXTFB was removed from Figure 2-27 • CCC/PLL Macro.	2-28
	Table 2-13 • ProASIC3 I/O Features was updated.	2-30
	The "Hot-Swap Support" section was updated.	2-33
	The "Cold-Sparing Support" section was updated.	2-34
	"Electrostatic Discharge (ESD) Protection" section was updated.	2-35
	The LVPECL specification in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.	2-64
	In the Bank 1 area of Figure 2-72, VMV2 was changed to VMV1 and VCCIB2 was changed to VCC_IB1.	2-97
	The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.	2-50
	The "JTAG Pins" section was updated.	2-51
	"128-Bit AES Decryption" section was updated to include M7 device information.	2-53
	Table 3-6 was updated.	3-6
	Table 3-7 was updated.	3-6
	In Table 3-11, PAC4 was updated.	3-93-8
	Table 3-20 was updated.	3-20
	The note in Table 3-32 was updated.	3-27
	All Timing Characteristics tables were updated from LVTTL to Register Delays	3-31 to 3- 73
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-85 to 3-90
	F _{TCKMAX} was updated in Table 3-110.	3-97
Advance v0.2	Figure 2-11 was updated.	2-9
	The "Clock Resources (VersaNets)" section was updated.	2-9
	The "VersaNet Global Networks and Spine Access" section was updated.	2-9
	The "PLL Macro" section was updated.	2-15
	Figure 2-27 was updated.	2-28
	Figure 2-20 was updated.	2-19
	Table 2-5 was updated.	2-25
	Table 2-6 was updated.	2-25
	The "FIFO Flag Usage Considerations" section was updated.	2-27
	Table 2-13 was updated.	2-30
	Figure 2-24 was updated.	2-31
	The "Cold-Sparing Support" section is new.	2-34

Revision	Changes	Page
Advance v0.2,	Table 2-43 was updated.	2-64
(continued)	Table 2-18 was updated.	2-45
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "User I/O Naming Convention" section was updated.	2-48
	Table 3-7 was updated.	3-6
	The "Methodology" section was updated.	3-10
	Table 3-40 and Table 3-39 were updated.	3-33,3-32
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3 Device Status" table on page IV, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Unmarked (production)

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.