E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detailo	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	
Total RAM Bits	147456
Number of I/O	154
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-2pqg208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The CCC block has these key features:

- Wide input frequency range (f_{IN CCC}) = 1.5 MHz to 350 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz to 350 MHz
- Clock delay adjustment via programmable and fixed delays from -7.56 ns to +11.12 ns
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis (for PLL only)

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only).
- Output duty cycle = 50% ± 1.5% or better (for PLL only)
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only)
- Maximum acquisition time = 300 µs (for PLL only)
- Low power consumption of 5 mW
- Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns (for PLL only)
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × (350 MHz / f_{OUT_CCC}) (for PLL only)

Global Clocking

ProASIC3 devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high fanout nets.

	Definition	Device Specific Static Power (mW)									
Parameter		A3P1000	A3P600	A3P400	A3P250	A3P125	A3P060	A3P030	A3P015		
PDC1	Array static power in Active mode	See Table 2-7 on page 2-7.									
PDC2	I/O input pin static power (standard-dependent)		See Table 2-8 on page 2-7 through Table 2-10 on page 2-8.								
PDC3	I/O output pin static power (standard-dependent)	See Table 2-11 on page 2-9 through Table 2-13 on page 2-10.									
PDC4	Static PLL contribution	2.55 mW									
PDC5	Bank quiescent power (VCCI-dependent)	See Table 2-7 on page 2-7.									

Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices

Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power spreadsheet calculator or SmartPower tool in Libero SoC software.

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- The number and the standard of I/O pins used in the design
- · The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-16 on page 2-14.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-17 on page 2-14.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-17 on page 2-14. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

 $P_{STAT} = P_{DC1} + N_{INPUTS} + P_{DC2} + N_{OUTPUTS} + P_{DC3}$

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

 $P_{CLOCK} = (P_{AC1} + N_{SPINE}*P_{AC2} + N_{ROW}*P_{AC3} + N_{S-CELL}*P_{AC4})*F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3 FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3 FPGA Fabric User's Guide*.

RAM Contribution—P_{MEMORY}

 $\mathsf{P}_{\mathsf{MEMORY}} = \mathsf{P}_{\mathsf{AC11}} * \mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{F}_{\mathsf{READ-CLOCK}} * \beta_2 + \mathsf{P}_{\mathsf{AC12}} * \mathsf{N}_{\mathsf{BLOCK}} * \mathsf{F}_{\mathsf{WRITE-CLOCK}} * \beta_3$

 $N_{\mbox{\scriptsize BLOCKS}}$ is the number of RAM blocks used in the design.

F_{READ-CLOCK} is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations.

F_{WRITE-CLOCK} is the memory write clock frequency.

 β_3 is the RAM enable rate for write operations—guidelines are provided in Table 2-17 on page 2-14.

PLL Contribution—P_{PLL}

 $P_{PLL} = P_{DC4} + P_{AC13} * F_{CLKOUT}$

F_{CLKOUT} is the output clock frequency.¹

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Table 2-16 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 2-17 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β ₃	RAM enable rate for write operations	12.5%

The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P_{AC14} * F_{CLKOUT} product) to the total PLL contribution.

Table 2-20 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks

		Equiv.			VIL	VIH		VOL	VOH		
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew	Min V	Max V	Min V	Max V	Max V	Min V	IOL ¹ mA	IOH ¹ mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
3.3 V LVCMOS Wide Range ³	100 µA	8 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	8 mA	8 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4
1.5 V LVCMOS	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2

Notes:

1. Currents are measured at 85°C junction temperature.

2. 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Table 2-21 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions

	Comr	nercial ¹	Indus	strial ²
	IIL ³	IIH ⁴	IIL ³	IIH ⁴
DC I/O Standards	μA	μA	μA	μA
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15
3.3 V LVCMOS Wide Range	10	10	15	15
2.5 V LVCMOS	10	10	15	15
1.8 V LVCMOS	10	10	15	15
1.5 V LVCMOS	10	10	15	15
3.3 V PCI	10	10	15	15
3.3 V PCI-X	10	10	15	15

Notes:

1. Commercial range ($0^{\circ}C < T_A < 70^{\circ}C$)

2. Industrial range $(-40^{\circ}C < T_A < 85^{\circ}C)$

- 3. IIL is the input leakage current per I/O pin over recommended operation conditions where $-0.3V < V_{IN} < V_{IL}$.
- 4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst Case VCC = 1.425 V, Worst-Case VCCI (per standard)

Standard Plus I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor	t _{DOUT} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	3.60	ns
3.3 V LVCMOS Wide Range ²	100 µA	12 mA	High	35	_	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns
2.5 V LVCMOS	12 mA	12 mA	High	35	_	0.45	2.39	0.03	0.97	0.32	2.44	2.35	2.11	2.32	4.11	4.02	ns
1.8 V LVCMOS	8 mA	8 mA	High	35	-	0.45	3.03	0.03	0.90	0.32	2.87	3.03	2.19	2.32	4.54	4.70	ns
1.5 V LVCMOS	4 mA	4 mA	High	35	-	0.45	3.61	0.03	1.06	0.32	3.35	3.61	2.26	2.34	5.02	5.28	ns
3.3 V PCI	Per PCI spec	-	High	10	25 ⁴	0.45	1.72	0.03	0.64	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ⁴	0.45	1.72	0.03	0.62	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-64 for connectivity. This resistor is not required during normal operation.

Table 2-33 • I/O Short Currents IOSH/IOSL Applicable to Standard Plus I/O Banks

	Drive Strength	IOSL (mA) ¹	IOSH (mA) ¹
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
	12 mA	109	103
	16 mA	109	103
3.3 V LVCMOS Wide Range ²	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
	12 mA	74	65
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
	6 mA	44	35
	8 mA	44	35
1.5 V LVCMOS	2 mA	16	13
	4 mA	33	25
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	109	103

Notes:

1. $T_J = 100^{\circ}C$

 Applicable to 3.3 V LVCMOS Wide Range. IOSL/IOSH dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

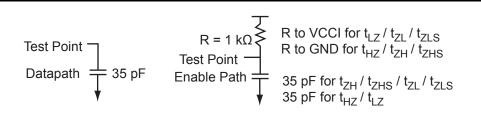
Table 2-39 • Min	imum an	nd Maxim	um DC I	nput and	Output L	evels						
Applicable to Standard I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOH IOSH												
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10

Vlicrose

Power Matters.

T

Notes:


1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-7 • AC Loading

Table 2-40 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	35

Note: *Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.

Timing Characteristics

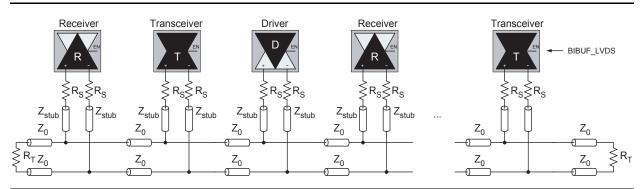
Table 2-70 • 1.8 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive	Speed												
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	11.86	0.04	1.22	0.43	9.14	11.86	2.77	1.66	11.37	14.10	ns
	-1	0.56	10.09	0.04	1.04	0.36	7.77	10.09	2.36	1.41	9.67	11.99	ns
	-2	0.49	8.86	0.03	0.91	0.32	6.82	8.86	2.07	1.24	8.49	10.53	ns
4 mA	Std.	0.66	6.91	0.04	1.22	0.43	5.86	6.91	3.22	2.84	8.10	9.15	ns
	-1	0.56	5.88	0.04	1.04	0.36	4.99	5.88	2.74	2.41	6.89	7.78	ns
	-2	0.49	5.16	0.03	0.91	0.32	4.38	5.16	2.41	2.12	6.05	6.83	ns
6 mA	Std.	0.66	4.45	0.04	1.22	0.43	4.18	4.45	3.53	3.38	6.42	6.68	ns
	-1	0.56	3.78	0.04	1.04	0.36	3.56	3.78	3.00	2.88	5.46	5.69	ns
	-2	0.49	3.32	0.03	0.91	0.32	3.12	3.32	2.64	2.53	4.79	4.99	ns
8 mA	Std.	0.66	3.92	0.04	1.22	0.43	3.93	3.92	3.60	3.52	6.16	6.16	ns
	-1	0.56	3.34	0.04	1.04	0.36	3.34	3.34	3.06	3.00	5.24	5.24	ns
	-2	0.49	2.93	0.03	0.91	0.32	2.93	2.93	2.69	2.63	4.60	4.60	ns
12 mA	Std.	0.66	3.53	0.04	1.22	0.43	3.60	3.04	3.70	4.08	5.84	5.28	ns
	-1	0.56	3.01	0.04	1.04	0.36	3.06	2.59	3.15	3.47	4.96	4.49	ns
	-2	0.49	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns
16 mA	Std.	0.66	3.53	0.04	1.22	0.43	3.60	3.04	3.70	4.08	5.84	5.28	ns
	-1	0.56	3.01	0.04	1.04	0.36	3.06	2.59	3.15	3.47	4.96	4.49	ns
	-2	0.49	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns

Notes:

1. Software default selection highlighted in gray.

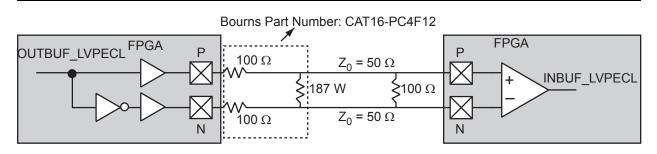

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

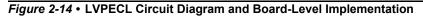


B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-13. The input and output buffer delays are available in the LVDS section in Table 2-92.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").





LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

DDR Module Specifications

Input DDR Module

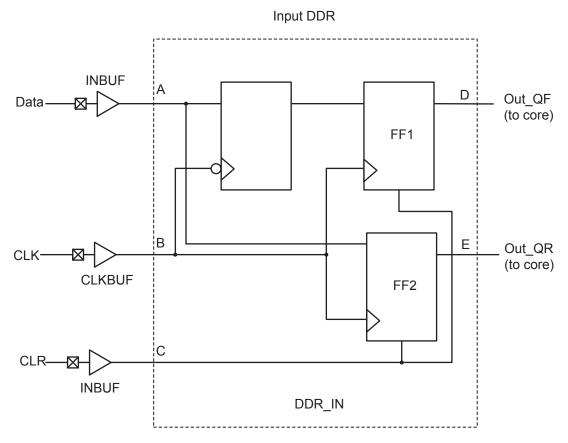
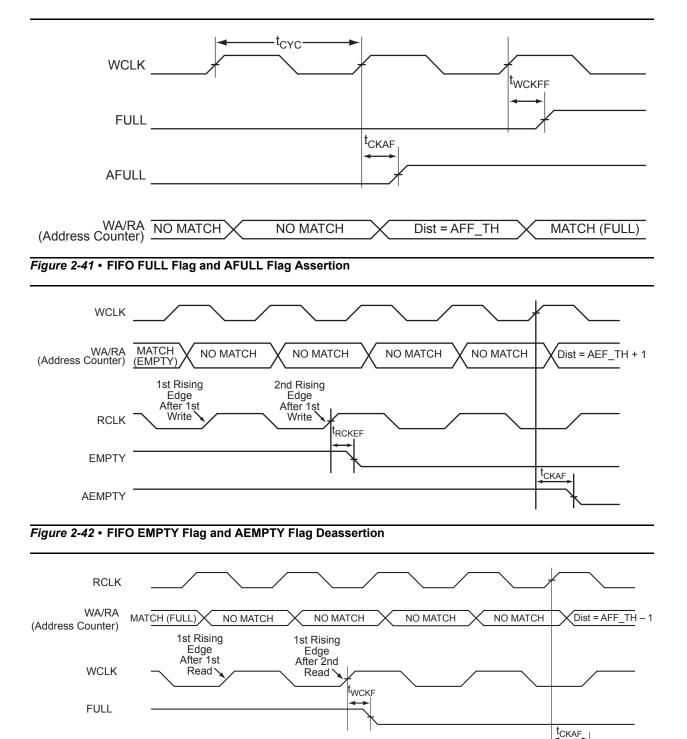
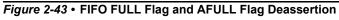



Figure 2-20 • Input DDR Timing Model


Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	A, B
t _{DDRIHD}	Data Hold Time of DDR input	A, B
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	С, В
t _{DDRIRECCLR}	Clear Recovery	C, B

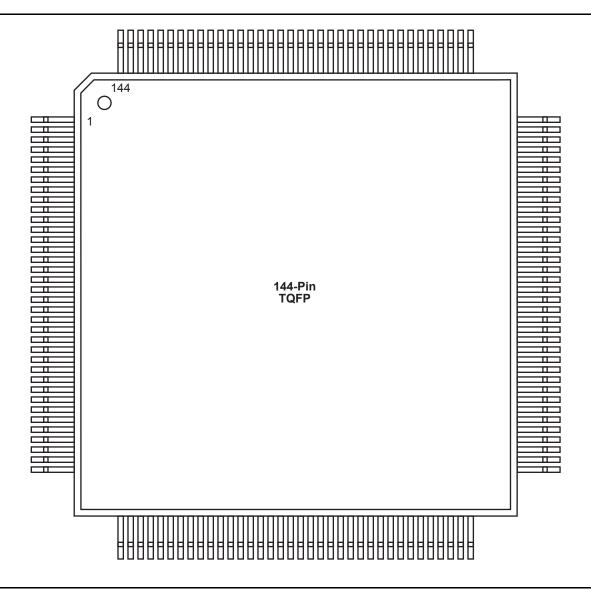
AFULL

Table 2-121 • A3P250 FIFO 1k×4 Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.05	4.61	5.42	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

Package Pin Assignments

CS121		CS121		CS121		
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function	
A1	GNDQ	D4	IO10RSB0	G7	VCC	
A2	IO01RSB0	D5	IO11RSB0	G8	GDC0/IO46RSB0	
A3	GAA1/IO03RSB0	D6	IO18RSB0	G9	GDA1/IO49RSB0	
A4	GAC1/IO07RSB0	D7	IO32RSB0	G10	GDB0/IO48RSB0	
A5	IO15RSB0	D8	IO31RSB0	G11	GCA0/IO40RSB0	
A6	IO13RSB0	D9	GCA2/IO41RSB0	H1	IO75RSB1	
A7	IO17RSB0	D10	IO30RSB0	H2	IO76RSB1	
A8	GBB1/IO22RSB0	D11	IO33RSB0	H3	GFC2/IO78RSB1	
A9	GBA1/IO24RSB0	E1	IO87RSB1	H4	GFA2/IO80RSB1	
A10	GNDQ	E2	GFC0/IO85RSB1	H5	IO77RSB1	
A11	VMV0	E3	IO92RSB1	H6	GEC2/IO66RSB1	
B1	GAA2/IO95RSB1	E4	IO94RSB1	H7	IO54RSB1	
B2	IO00RSB0	E5	VCC	H8	GDC2/IO53RSB1	
B3	GAA0/IO02RSB0	E6	VCCIB0	Н9	VJTAG	
B4	GAC0/IO06RSB0	E7	GND	H10	TRST	
B5	IO08RSB0	E8	GCC0/IO36RSB0	H11	IO44RSB0	
B6	IO12RSB0	E9	IO34RSB0	J1	GEC1/IO74RSB1	
B7	IO16RSB0	E10	GCB1/IO37RSB0	J2	GEC0/IO73RSB1	
B8	GBC1/IO20RSB0	E11	GCC1/IO35RSB0	J3	GEB1/IO72RSB1	
B9	GBB0/IO21RSB0	F1	VCOMPLF	J4	GEA0/IO69RSB1	
B10	GBB2/IO27RSB0	F2	GFB0/IO83RSB1	J5	GEB2/IO67RSB1	
B11	GBA2/IO25RSB0	F3	GFA0/IO82RSB1	J6	IO62RSB1	
C1	IO89RSB1	F4	GFC1/IO86RSB1	J7	GDA2/IO51RSB1	
C2	GAC2/IO91RSB1	F5	VCCIB1	J8	GDB2/IO52RSB1	
C3	GAB1/IO05RSB0	F6	VCC	J9	TDI	
C4	GAB0/IO04RSB0	F7	VCCIB0	J10	TDO	
C5	IO09RSB0	F8	GCB2/IO42RSB0	J11	GDC1/IO45RSB0	
C6	IO14RSB0	F9	GCC2/IO43RSB0	K1	GEB0/IO71RSB1	
C7	GBA0/IO23RSB0	F10	GCB0/IO38RSB0	K2	GEA1/IO70RSB1	
C8	GBC0/IO19RSB0	F11	GCA1/IO39RSB0	K3	GEA2/IO68RSB1	
C9	IO26RSB0	G1	VCCPLF	K4	IO64RSB1	
C10	IO28RSB0	G2	GFB2/IO79RSB1	K5	IO60RSB1	
C11	GBC2/IO29RSB0	G3	GFA1/IO81RSB1	K6	IO59RSB1	
D1	IO88RSB1	G4	GFB1/IO84RSB1	K7	IO56RSB1	
D2	IO90RSB1	G5	GND	K8	ТСК	
D3	GAB2/IO93RSB1	G6	VCCIB1	K9	TMS	



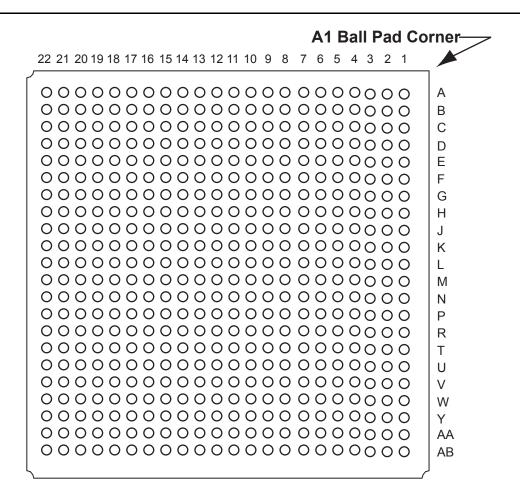
Package Pin Assignments

VQ100		VQ100		VQ100		
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function	
1	GND	37	VCC	73	GBA2/IO25RSB0	
2	GAA2/IO51RSB1	38	GND	74	VMV0	
3	IO52RSB1	39	VCCIB1	75	GNDQ	
4	GAB2/IO53RSB1	40	IO60RSB1	76	GBA1/IO24RSB0	
5	IO95RSB1	41	IO59RSB1	77	GBA0/IO23RSB0	
6	GAC2/IO94RSB1	42	IO58RSB1	78	GBB1/IO22RSB0	
7	IO93RSB1	43	IO57RSB1	79	GBB0/IO21RSB0	
8	IO92RSB1	44	GDC2/IO56RSB1	80	GBC1/IO20RSB0	
9	GND	45	GDB2/IO55RSB1	81	GBC0/IO19RSB0	
10	GFB1/IO87RSB1	46	GDA2/IO54RSB1	82	IO18RSB0	
11	GFB0/IO86RSB1	47	ТСК	83	IO17RSB0	
12	VCOMPLF	48	TDI	84	IO15RSB0	
13	GFA0/IO85RSB1	49	TMS	85	IO13RSB0	
14	VCCPLF	50	VMV1	86	IO11RSB0	
15	GFA1/IO84RSB1	51	GND	87	VCCIB0	
16	GFA2/IO83RSB1	52	VPUMP	88	GND	
17	VCC	53	NC	89	VCC	
18	VCCIB1	54	TDO	90	IO10RSB0	
19	GEC1/IO77RSB1	55	TRST	91	IO09RSB0	
20	GEB1/IO75RSB1	56	VJTAG	92	IO08RSB0	
21	GEB0/IO74RSB1	57	GDA1/IO49RSB0	93	GAC1/IO07RSB0	
22	GEA1/IO73RSB1	58	GDC0/IO46RSB0	94	GAC0/IO06RSB0	
23	GEA0/IO72RSB1	59	GDC1/IO45RSB0	95	GAB1/IO05RSB0	
24	VMV1	60	GCC2/IO43RSB0	96	GAB0/IO04RSB0	
25	GNDQ	61	GCB2/IO42RSB0	97	GAA1/IO03RSB0	
26	GEA2/IO71RSB1	62	GCA0/IO40RSB0	98	GAA0/IO02RSB0	
27	GEB2/IO70RSB1	63	GCA1/IO39RSB0	99	IO01RSB0	
28	GEC2/IO69RSB1	64	GCC0/IO36RSB0	100	IO00RSB0	
29	IO68RSB1	65	GCC1/IO35RSB0		-	
30	IO67RSB1	66	VCCIB0			
31	IO66RSB1	67	GND			
32	IO65RSB1	68	VCC			
33	IO64RSB1	69	IO31RSB0			
34	IO63RSB1	70	GBC2/IO29RSB0			
35	IO62RSB1	71	GBB2/IO27RSB0			
36	IO61RSB1	72	IO26RSB0			

TQ144 – Top View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.



FG144			
Pin Number A3P060 Function			
K1	GEB0/IO74RSB1		
K2	GEA1/IO73RSB1		
К3	GEA0/IO72RSB1		
K4	GEA2/IO71RSB1		
K5	IO65RSB1		
K6	IO64RSB1		
K7	GND		
K8	IO57RSB1		
K9	GDC2/IO56RSB1		
K10	GND		
K11	GDA0/IO50RSB0		
K12	GDB0/IO48RSB0		
L1	GND		
L2	VMV1		
L3	GEB2/IO70RSB1		
L4	IO67RSB1		
L5	VCCIB1		
L6	IO62RSB1		
L7	IO59RSB1		
L8	IO58RSB1		
L9	TMS		
L10	VJTAG		
L11	VMV1		
L12	TRST		
M1	GNDQ		
M2	GEC2/IO69RSB1		
M3	IO68RSB1		
M4	IO66RSB1		
M5	IO63RSB1		
M6	IO61RSB1		
M7	IO60RSB1		
M8	NC		
M9	TDI		
M10	VCCIB1		
M11	VPUMP		
M12	GNDQ		

FG144				
Pin Number A3P400 Function				
K1	GEB0/IO136NDB3			
K2	GEA1/IO135PDB3			
K3	GEA0/IO135NDB3			
K4	GEA2/IO134RSB2			
K5	IO127RSB2			
K6	IO121RSB2			
K7	GND			
K8	IO104RSB2			
K9	GDC2/IO82RSB2			
K10	GND			
K11	GDA0/IO79VDB1			
K12	GDB0/IO78VDB1			
L1	GND			
L2	VMV3			
L3	GEB2/IO133RSB2			
L4	IO128RSB2			
L5	VCCIB2			
L6	IO119RSB2			
L7	IO114RSB2			
L8	IO110RSB2			
L9	TMS			
L10	VJTAG			
L11	VMV2			
L12	TRST			
M1	GNDQ			
M2	GEC2/IO132RSB2			
M3	IO129RSB2			
M4	IO126RSB2			
M5	IO124RSB2			
M6	IO122RSB2			
M7	IO117RSB2			
M8	IO115RSB2			
M9	TDI			
M10	VCCIB2			
M11	VPUMP			
M12	GNDQ			

FG484 – Bottom View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

FG484			FG484	FG484		
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function	
E21	NC	G13	IO40RSB0	J5	IO149NPB3	
E22	NC	G14	IO46RSB0	J6	IO09RSB0	
F1	NC	G15	GNDQ	J7	IO152UDB3	
F2	NC	G16	IO47RSB0	J8	VCCIB3	
F3	NC	G17	GBB2/IO61PPB1	J9	GND	
F4	IO154VDB3	G18	IO53RSB0	J10	VCC	
F5	IO155VDB3	G19	IO63NDB1	J11	VCC	
F6	IO11RSB0	G20	NC	J12	VCC	
F7	IO07RSB0	G21	NC	J13	VCC	
F8	GAC0/IO04RSB0	G22	NC	J14	GND	
F9	GAC1/IO05RSB0	H1	NC	J15	VCCIB1	
F10	IO20RSB0	H2	NC	J16	IO62NDB1	
F11	IO24RSB0	H3	VCC	J17	IO49RSB0	
F12	IO33RSB0	H4	IO150PDB3	J18	IO64PPB1	
F13	IO39RSB0	H5	IO08RSB0	J19	IO66NDB1	
F14	IO45RSB0	H6	IO153VDB3	J20	NC	
F15	GBC0/IO54RSB0	H7	IO152VDB3	J21	NC	
F16	IO48RSB0	H8	VMV0	J22	NC	
F17	VMV0	H9	VCCIB0	K1	NC	
F18	IO61NPB1	H10	VCCIB0	K2	NC	
F19	IO63PDB1	H11	IO25RSB0	K3	NC	
F20	NC	H12	IO31RSB0	K4	IO148NDB3	
F21	NC	H13	VCCIB0	K5	IO148PDB3	
F22	NC	H14	VCCIB0	K6	IO149PPB3	
G1	NC	H15	VMV1	K7	GFC1/IO147PPB3	
G2	NC	H16	GBC2/IO62PDB1	K8	VCCIB3	
G3	NC	H17	IO65RSB1	K9	VCC	
G4	IO151VDB3	H18	IO52RSB0	K10	GND	
G5	IO151UDB3	H19	IO66PDB1	K11	GND	
G6	GAC2/IO153UDB3	H20	VCC	K12	GND	
G7	IO06RSB0	H21	NC	K13	GND	
G8	GNDQ	H22	NC	K14	VCC	
G9	IO10RSB0	J1	NC	K15	VCCIB1	
G10	IO19RSB0	J2	NC	K16	GCC1/IO67PPB1	
G11	IO26RSB0	J3	NC	K17	IO64NPB1	
G12	IO30RSB0	J4	IO150NDB3	K18	IO73PDB1	

Revision	Changes	Page
Revision 2 (cont'd)	The "ProASIC3 FPGAs Package Sizes Dimensions" table is new.	
	In the "ProASIC3 Ordering Information", the QN package measurements were updated to include both 0.4 mm and 0.5 mm.	IV
	In the General Description section the number of I/Os was updated from 288 to 300.	1-1
Packaging v1.2	The "QN68 – Bottom View" section is new.	4-3
Revision 1 (Feb 2008) DC and Switching Characteristics v1.1	In Table 2-2 • Recommended Operating Conditions 1, T_J was listed in the symbol column and was incorrect. It was corrected and changed to T_A .	2-2
	In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades.	2-3
	The "PLL Behavior at Brownout Condition" section is new.	2-4
	In the "PLL Contribution—PPLL" section, the following was deleted: FCLKIN is the input clock frequency.	2-14
	In Table 2-21 • Summary of Maximum and Minimum DC Input Levels, the note was incorrect. It previously said T_J and it was corrected and changed to T_A .	2-21
	In Table 2-115 • ProASIC3 CCC/PLL Specification, the SCLK parameter and note 1 are new.	2-90
	Table 2-125 • JTAG 1532 was populated with the parameter data, which was not in the previous version of the document.	2-108
Packaging v1.1	In the "VQ100" A3P030 pin table, the function of pin 63 was incorrect and changed from IO39RSB0 to GDB0/IO38RSB0.	4-19
Revision 0 (Jan 2008)	This document was previously in datasheet v2.2. As a result of moving to the handbook format, Actel has restarted the version numbers.	N/A
v2.2 (July 2007)	The M7 and M1 device part numbers have been updated in Table 1 • ProASIC3 Product Family, "I/Os Per Package", "Automotive ProASIC3 Ordering Information", "Temperature Grade Offerings", and "Speed Grade and Temperature Grade Matrix".	i, ii, iii, iii, iv
	The words "ambient temperature" were added to the temperature range in the "Automotive ProASIC3 Ordering Information", "Temperature Grade Offerings", and "Speed Grade and Temperature Grade Matrix" sections.	iii, iv
	The T _J parameter in Table 3-2 \cdot Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 4–6 were added.	3-2
v2.1 (May 2007)	In the "Clock Conditioning Circuit (CCC) and PLL" section, the Wide Input Frequency Range (1.5 MHz to 200 MHz) was changed to (1.5 MHz to 350 MHz).	i
	The "Clock Conditioning Circuit (CCC) and PLL" section was updated.	i
	In the "I/Os Per Package" section, the A3P030, A3P060, A3P125, ACP250, and A3P600 device I/Os were updated.	ii
	Table 3-5 • Package Thermal Resistivities was updated with A3P1000information. The note below the table is also new.	3-5