
E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2014.10	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	·
Total RAM Bits	147456
Number of I/O	97
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-fg144

Email: info@E-XFL.COM

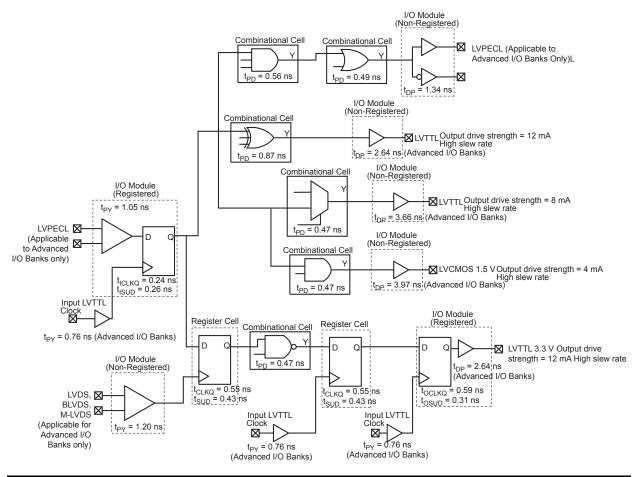
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

0-I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tristate: I/O is tristated

om file Save to file			Show BSR De
Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
BYPASS_IO	ADLIB:INBUF	K1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
LED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
OEa	ADLIB:INBUF	E4	Z
ОЕЬ	ADLIB:INBUF	F1	Z
OSC_EN	ADLIB:INBUF	К3	Z
PAD(10)	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	R7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF_LVCMOS33U	R6	Z


Figure 1-4 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

User I/O Characteristics

Timing Model

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-18 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Advanced I/O Banks

		Equiv.			VIL	VIH		VOL	VOH		
I/O Standard	Drive Strength	Software Default Drive Strength Option ²		Min V	Max V	Min V	Max V	Max V	Min V	IOL ¹ mA	IOH ¹ mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ³	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI – 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.6	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI					Per F	PCI specificat	ions				
3.3 V PCI-X		Per PCI-X specifications									

Notes:

1. Currents are measured at 85°C junction temperature.

2. 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Table 2-20 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks

		Equiv.			VIL	VIH		VOL	VOH		
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew	Min V	Max V	Min V	Max V	Max V	Min V	IOL ¹ mA	IOH ¹ mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
3.3 V LVCMOS Wide Range ³	100 µA	8 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	8 mA	8 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4
1.5 V LVCMOS	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2

Notes:

1. Currents are measured at 85°C junction temperature.

2. 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Table 2-21 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions

	Comr	nercial ¹	Indus	strial ²
	IIL ³	IIH ⁴	IIL ³	IIH ⁴
DC I/O Standards	μΑ	μA	μA	μA
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15
3.3 V LVCMOS Wide Range	10	10	15	15
2.5 V LVCMOS	10	10	15	15
1.8 V LVCMOS	10	10	15	15
1.5 V LVCMOS	10	10	15	15
3.3 V PCI	10	10	15	15
3.3 V PCI-X	10	10	15	15

Notes:

1. Commercial range ($0^{\circ}C < T_A < 70^{\circ}C$)

2. Industrial range $(-40^{\circ}C < T_A < 85^{\circ}C)$

- 3. IIL is the input leakage current per I/O pin over recommended operation conditions where $-0.3V < V_{IN} < V_{IL}$.
- 4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

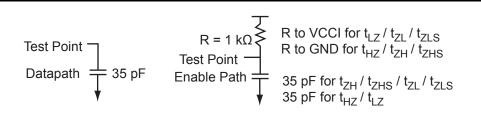
Table 2-39 • Min	imum an	nd Maxim	um DC I	nput and	Output L	evels						
App 3.3 V LVTTL / 3.3 V LVCMOS		o Standa		anks IH	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	
Drive Strength	Min V	Max V	Min V	Max V	Max V	Min V	mA	mA	Max mA ³	Max mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10

Vlicrose

Power Matters.

T

Notes:


1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-7 • AC Loading

Table 2-40 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	35

Note: *Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.

Timing Characteristics

Table 2-70 • 1.8 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive	Speed												
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	11.86	0.04	1.22	0.43	9.14	11.86	2.77	1.66	11.37	14.10	ns
	-1	0.56	10.09	0.04	1.04	0.36	7.77	10.09	2.36	1.41	9.67	11.99	ns
	-2	0.49	8.86	0.03	0.91	0.32	6.82	8.86	2.07	1.24	8.49	10.53	ns
4 mA	Std.	0.66	6.91	0.04	1.22	0.43	5.86	6.91	3.22	2.84	8.10	9.15	ns
	-1	0.56	5.88	0.04	1.04	0.36	4.99	5.88	2.74	2.41	6.89	7.78	ns
	-2	0.49	5.16	0.03	0.91	0.32	4.38	5.16	2.41	2.12	6.05	6.83	ns
6 mA	Std.	0.66	4.45	0.04	1.22	0.43	4.18	4.45	3.53	3.38	6.42	6.68	ns
	-1	0.56	3.78	0.04	1.04	0.36	3.56	3.78	3.00	2.88	5.46	5.69	ns
	-2	0.49	3.32	0.03	0.91	0.32	3.12	3.32	2.64	2.53	4.79	4.99	ns
8 mA	Std.	0.66	3.92	0.04	1.22	0.43	3.93	3.92	3.60	3.52	6.16	6.16	ns
	-1	0.56	3.34	0.04	1.04	0.36	3.34	3.34	3.06	3.00	5.24	5.24	ns
	-2	0.49	2.93	0.03	0.91	0.32	2.93	2.93	2.69	2.63	4.60	4.60	ns
12 mA	Std.	0.66	3.53	0.04	1.22	0.43	3.60	3.04	3.70	4.08	5.84	5.28	ns
	-1	0.56	3.01	0.04	1.04	0.36	3.06	2.59	3.15	3.47	4.96	4.49	ns
	-2	0.49	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns
16 mA	Std.	0.66	3.53	0.04	1.22	0.43	3.60	3.04	3.70	4.08	5.84	5.28	ns
	-1	0.56	3.01	0.04	1.04	0.36	3.06	2.59	3.15	3.47	4.96	4.49	ns
	-2	0.49	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-81 • 1.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks

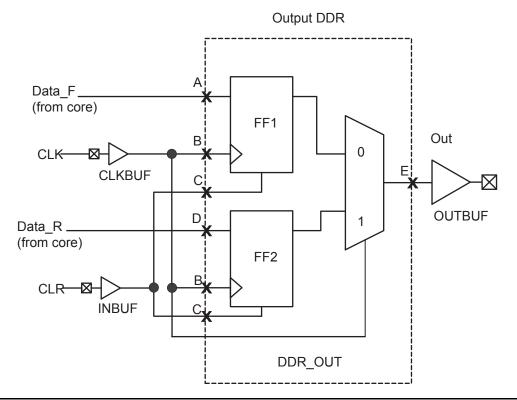
	••												
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	12.78	0.04	1.44	0.43	12.81	12.78	3.40	2.64	15.05	15.02	ns
	-1	0.56	10.87	0.04	1.22	0.36	10.90	10.87	2.89	2.25	12.80	12.78	ns
	-2	0.49	9.55	0.03	1.07	0.32	9.57	9.55	2.54	1.97	11.24	11.22	ns
4 mA	Std.	0.66	10.01	0.04	1.44	0.43	10.19	9.55	3.75	3.27	12.43	11.78	ns
	-1	0.56	8.51	0.04	1.22	0.36	8.67	8.12	3.19	2.78	10.57	10.02	ns
	-2	0.49	7.47	0.03	1.07	0.32	7.61	7.13	2.80	2.44	9.28	8.80	ns
6 mA	Std.	0.66	9.33	0.04	1.44	0.43	9.51	8.89	3.83	3.43	11.74	11.13	ns
	-1	0.56	7.94	0.04	1.22	0.36	8.09	7.56	3.26	2.92	9.99	9.47	ns
	-2	0.49	6.97	0.03	1.07	0.32	7.10	6.64	2.86	2.56	8.77	8.31	ns
8 mA	Std.	0.66	8.91	0.04	1.44	0.43	9.07	8.89	3.95	4.05	11.31	11.13	ns
	-1	0.56	7.58	0.04	1.22	0.36	7.72	7.57	3.36	3.44	9.62	9.47	ns
	-2	0.49	6.65	0.03	1.07	0.32	6.78	6.64	2.95	3.02	8.45	8.31	ns
12 mA	Std.	0.66	8.91	0.04	1.44	0.43	9.07	8.89	3.95	4.05	11.31	11.13	ns
	-1	0.56	7.58	0.04	1.22	0.36	7.72	7.57	3.36	3.44	9.62	9.47	ns
	-2	0.49	6.65	0.03	1.07	0.32	6.78	6.64	2.95	3.02	8.45	8.31	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-82 • 1.5 V LVCMOS High Slew

Commercial-Case Conditions: T	J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus I/O	Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	7.83	0.04	1.42	0.43	6.42	7.83	2.71	2.55	8.65	10.07	ns
	-1	0.56	6.66	0.04	1.21	0.36	5.46	6.66	2.31	2.17	7.36	8.56	ns
	-2	0.49	5.85	0.03	1.06	0.32	4.79	5.85	2.02	1.90	6.46	7.52	ns
4 mA	Std.	0.66	4.84	0.04	1.42	0.43	4.49	4.84	3.03	3.13	6.72	7.08	ns
	-1	0.56	4.12	0.04	1.21	0.36	3.82	4.12	2.58	2.66	5.72	6.02	ns
	-2	0.49	3.61	0.03	1.06	0.32	3.35	3.61	2.26	2.34	5.02	5.28	ns


Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Output DDR Module

Figure 2-22 • Output DDR Timing Model

Table 2-103 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	А, В
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	А, В
t _{DDROHD2}	Data Hold Data_R	D, B

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-115 • ProASIC3 CCC/PLL Specification

Parameter	Minimum	Typical	Maximum	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		350	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT CCC}	0.75		350	MHz
Serial Clock (SCLK) for Dynamic PLL ¹			125	MHz
Delay Increments in Programmable Delay Blocks ^{2, 3}		200 ⁴		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Input Period Jitter			1.5	ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	N	lax Peak-to-F	Peak Period Jitt	er
	1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz	0.50%		0.70%	
24 MHz to 100 MHz	1.00%		1.20%	
100 MHz to 250 MHz	1.75%		2.00%	
250 MHz to 350 MHz	2.50%		5.60%	
Acquisition Time				
(A3P250 and A3P1000 only) LockControl = 0			300	μs
LockControl = 1			300	μs
(all other dies) LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁵				
(A3P250 and A3P1000 only) LockControl = 0			1.6	ns
LockControl = 1			1.6	ns
(all other dies) LockControl = 0			1.6	ns
LockControl = 1			0.8	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{2, 3}	0.6		5.56	ns
Delay Range in Block: Programmable Delay 2 ^{2, 3}	0.225		5.56	ns
Delay Range in Block: Fixed Delay ^{2, 3}		2.2		ns

Notes:

1. Maximum value obtained for a -2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 for deratings.

3. $T_J = 25^{\circ}C$, VCC = 1.5 V

- 4. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help for more information.
- 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

6. The A3P030 device does not contain a PLL.

Table 2-120 • A3P250 FIFO 512×8

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	3.75	4.27	5.02	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

Table 2-121 • A3P250 FIFO 1k×4 Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.05	4.61	5.42	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

3 – Pin Descriptions

Supply Pins

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

GND

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on ProASIC3 devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on ProASIC3 devices.

mode is not used in the design, the FF pin is available as a regular I/O. For IGLOOe, ProASIC3EL, and RT ProASIC3 only, the FF pin can be configured as a Schmitt trigger input.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 1 for more information.

VJTAG	Tie-Off Resistance
3.3 V	200 Ω –1 kΩ
2.5 V	200 Ω –1 kΩ
1.8 V	500 Ω –1 kΩ
1.5 V	500 Ω –1 kΩ

Table 1 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 1 and must satisfy the parallel resistance value requirement. The values in Table 1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

<u>۱</u>	VQ100		/Q100	VQ100	
Pin Number	A3P030 Function	Pin Number	A3P030 Function	Pin Number	A3P030 Function
1	GND	37	VCC	73	IO27RSB0
2	IO82RSB1	38	GND	74	IO26RSB0
3	IO81RSB1	39	VCCIB1	75	IO25RSB0
4	IO80RSB1	40	IO49RSB1	76	IO24RSB0
5	IO79RSB1	41	IO47RSB1	77	IO23RSB0
6	IO78RSB1	42	IO46RSB1	78	IO22RSB0
7	IO77RSB1	43	IO45RSB1	79	IO21RSB0
8	IO76RSB1	44	IO44RSB1	80	IO20RSB0
9	GND	45	IO43RSB1	81	IO19RSB0
10	IO75RSB1	46	IO42RSB1	82	IO18RSB0
11	IO74RSB1	47	ТСК	83	IO17RSB0
12	GEC0/IO73RSB1	48	TDI	84	IO16RSB0
13	GEA0/IO72RSB1	49	TMS	85	IO15RSB0
14	GEB0/IO71RSB1	50	NC	86	IO14RSB0
15	IO70RSB1	51	GND	87	VCCIB0
16	IO69RSB1	52	VPUMP	88	GND
17	VCC	53	NC	89	VCC
18	VCCIB1	54	TDO	90	IO12RSB0
19	IO68RSB1	55	TRST	91	IO10RSB0
20	IO67RSB1	56	VJTAG	92	IO08RSB0
21	IO66RSB1	57	IO41RSB0	93	IO07RSB0
22	IO65RSB1	58	IO40RSB0	94	IO06RSB0
23	IO64RSB1	59	IO39RSB0	95	IO05RSB0
24	IO63RSB1	60	IO38RSB0	96	IO04RSB0
25	IO62RSB1	61	IO37RSB0	97	IO03RSB0
26	IO61RSB1	62	IO36RSB0	98	IO02RSB0
27	IO60RSB1	63	GDB0/IO34RSB0	99	IO01RSB0
28	IO59RSB1	64	GDA0/IO33RSB0	100	IO00RSB0
29	IO58RSB1	65	GDC0/IO32RSB0		
30	IO57RSB1	66	VCCIB0		
31	IO56RSB1	67	GND		
32	IO55RSB1	68	VCC		
33	IO54RSB1	69	IO31RSB0		
34	IO53RSB1	70	IO30RSB0		
35	IO52RSB1	71	IO29RSB0		
36	IO51RSB1	72	IO28RSB0		

Package Pin Assignments

	VQ100		VQ100		VQ100
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
1	GND	37	VCC	73	GBA2/IO41PDB1
2	GAA2/IO118UDB3	38	GND	74	VMV1
3	IO118VDB3	39	VCCIB2	75	GNDQ
4	GAB2/IO117UDB3	40	IO77RSB2	76	GBA1/IO40RSB0
5	IO117VDB3	41	IO74RSB2	77	GBA0/IO39RSB0
6	GAC2/IO116UDB3	42	IO71RSB2	78	GBB1/IO38RSB0
7	IO116VDB3	43	GDC2/IO63RSB2	79	GBB0/IO37RSB0
8	IO112PSB3	44	GDB2/IO62RSB2	80	GBC1/IO36RSB0
9	GND	45	GDA2/IO61RSB2	81	GBC0/IO35RSB0
10	GFB1/IO109PDB3	46	GNDQ	82	IO29RSB0
11	GFB0/IO109NDB3	47	ТСК	83	IO27RSB0
12	VCOMPLF	48	TDI	84	IO25RSB0
13	GFA0/IO108NPB3	49	TMS	85	IO23RSB0
14	VCCPLF	50	VMV2	86	IO21RSB0
15	GFA1/IO108PPB3	51	GND	87	VCCIB0
16	GFA2/IO107PSB3	52	VPUMP	88	GND
17	VCC	53	NC	89	VCC
18	VCCIB3	54	TDO	90	IO15RSB0
19	GFC2/IO105PSB3	55	TRST	91	IO13RSB0
20	GEC1/IO100PDB3	56	VJTAG	92	IO11RSB0
21	GEC0/IO100NDB3	57	GDA1/IO60USB1	93	GAC1/IO05RSB0
22	GEA1/IO98PDB3	58	GDC0/IO58VDB1	94	GAC0/IO04RSB0
23	GEA0/IO98NDB3	59	GDC1/IO58UDB1	95	GAB1/IO03RSB0
24	VMV3	60	IO52NDB1	96	GAB0/IO02RSB0
25	GNDQ	61	GCB2/IO52PDB1	97	GAA1/IO01RSB0
26	GEA2/IO97RSB2	62	GCA1/IO50PDB1	98	GAA0/IO00RSB0
27	GEB2/IO96RSB2	63	GCA0/IO50NDB1	99	GNDQ
28	GEC2/IO95RSB2	64	GCC0/IO48NDB1	100	VMV0
29	IO93RSB2	65	GCC1/IO48PDB1		
30	IO92RSB2	66	VCCIB1		
31	IO91RSB2	67	GND		
32	IO90RSB2	68	VCC		
33	IO88RSB2	69	IO43NDB1		
34	IO86RSB2	70	GBC2/IO43PDB1		
35	IO85RSB2	71	GBB2/IO42PSB1		
36	IO84RSB2	72	IO41NDB1		

🌜 Microsemi.

Package Pin Assignments

	FG256		FG256		FG256
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
G13	GCC1/IO48PPB1	K1	GFC2/IO105PDB3	M5	VMV3
G14	IO47NPB1	K2	IO107NPB3	M6	VCCIB2
G15	IO54PDB1	K3	IO104PPB3	M7	VCCIB2
G16	IO54NDB1	K4	NC	M8	NC
H1	GFB0/IO109NPB3	K5	VCCIB3	M9	IO74RSB2
H2	GFA0/IO108NDB3	K6	VCC	M10	VCCIB2
H3	GFB1/IO109PPB3	K7	GND	M11	VCCIB2
H4	VCOMPLF	K8	GND	M12	VMV2
H5	GFC0/IO110NPB3	K9	GND	M13	NC
H6	VCC	K10	GND	M14	GDB1/IO59UPB1
H7	GND	K11	VCC	M15	GDC1/IO58UDB1
H8	GND	K12	VCCIB1	M16	IO56NDB1
H9	GND	K13	IO52NPB1	N1	IO103NDB3
H10	GND	K14	IO55RSB1	N2	IO101PPB3
H11	VCC	K15	IO53NPB1	N3	GEC1/IO100PPB3
H12	GCC0/IO48NPB1	K16	IO51NDB1	N4	NC
H13	GCB1/IO49PPB1	L1	IO105NDB3	N5	GNDQ
H14	GCA0/IO50NPB1	L2	IO104NPB3	N6	GEA2/IO97RSB2
H15	NC	L3	NC	N7	IO86RSB2
H16	GCB0/IO49NPB1	L4	IO102RSB3	N8	IO82RSB2
J1	GFA2/IO107PPB3	L5	VCCIB3	N9	IO75RSB2
J2	GFA1/IO108PDB3	L6	GND	N10	IO69RSB2
J3	VCCPLF	L7	VCC	N11	IO64RSB2
J4	IO106NDB3	L8	VCC	N12	GNDQ
J5	GFB2/IO106PDB3	L9	VCC	N13	NC
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO58VDB1
J8	GND	L12	VCCIB1	N16	GDA1/IO60UDB1
J9	GND	L13	GDB0/IO59VPB1	P1	GEB1/IO99PDB3
J10	GND	L14	IO57VDB1	P2	GEB0/IO99NDB3
J11	VCC	L15	IO57UDB1	P3	NC
J12	GCB2/IO52PPB1	L16	IO56PDB1	P4	NC
J13	GCA1/IO50PPB1	M1	IO103PDB3	P5	IO92RSB2
J14	GCC2/IO53PPB1	M2	NC	P6	IO89RSB2
J15	NC	M3	IO101NPB3	P7	IO85RSB2
J16	GCA2/IO51PDB1	M4	GEC0/IO100NPB3	P8	IO81RSB2

	FG256		FG256		FG256
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
A1	GND	C5	GAC0/IO04RSB0	E9	IO31RSB0
A2	GAA0/IO00RSB0	C6	GAC1/IO05RSB0	E10	VCCIB0
A3	GAA1/IO01RSB0	C7	IO20RSB0	E11	VCCIB0
A4	GAB0/IO02RSB0	C8	IO24RSB0	E12	VMV1
A5	IO11RSB0	C9	IO33RSB0	E13	GBC2/IO62PDB1
A6	IO16RSB0	C10	IO39RSB0	E14	IO67PPB1
A7	IO18RSB0	C11	IO44RSB0	E15	IO64PPB1
A8	IO28RSB0	C12	GBC0/IO54RSB0	E16	IO66PDB1
A9	IO34RSB0	C13	IO51RSB0	F1	IO166NDB3
A10	IO37RSB0	C14	VMV0	F2	IO168NPB3
A11	IO41RSB0	C15	IO61NPB1	F3	IO167PPB3
A12	IO43RSB0	C16	IO63PDB1	F4	IO169PDB3
A13	GBB1/IO57RSB0	D1	IO171NDB3	F5	VCCIB3
A14	GBA0/IO58RSB0	D2	IO171PDB3	F6	GND
A15	GBA1/IO59RSB0	D3	GAC2/IO172PDB3	F7	VCC
A16	GND	D4	IO06RSB0	F8	VCC
B1	GAB2/IO173PDB3	D5	GNDQ	F9	VCC
B2	GAA2/IO174PDB3	D6	IO10RSB0	F10	VCC
B3	GNDQ	D7	IO19RSB0	F11	GND
B4	GAB1/IO03RSB0	D8	IO26RSB0	F12	VCCIB1
B5	IO13RSB0	D9	IO30RSB0	F13	IO62NDB1
B6	IO14RSB0	D10	IO40RSB0	F14	IO64NPB1
B7	IO21RSB0	D11	IO45RSB0	F15	IO65PPB1
B8	IO27RSB0	D12	GNDQ	F16	IO66NDB1
B9	IO32RSB0	D13	IO50RSB0	G1	IO165NDB3
B10	IO38RSB0	D14	GBB2/IO61PPB1	G2	IO165PDB3
B11	IO42RSB0	D15	IO53RSB0	G3	IO168PPB3
B12	GBC1/IO55RSB0	D16	IO63NDB1	G4	GFC1/IO164PPB3
B13	GBB0/IO56RSB0	E1	IO166PDB3	G5	VCCIB3
B14	IO52RSB0	E2	IO167NPB3	G6	VCC
B15	GBA2/IO60PDB1	E3	IO172NDB3	G7	GND
B16	IO60NDB1	E4	IO169NDB3	G8	GND
C1	IO173NDB3	E5	VMV0	G9	GND
C2	IO174NDB3	E6	VCCIB0	G10	GND
C3	VMV3	E7	VCCIB0	G11	VCC
C4	IO07RSB0	E8	IO25RSB0	G12	VCCIB1

🌜 Microsemi.

Package Pin Assignments

	FG484		FG484		FG484
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
A1	GND	B15	NC	D7	GAB0/IO02RSB0
A2	GND	B16	NC	D8	IO16RSB0
A3	VCCIB0	B17	NC	D9	IO17RSB0
A4	NC	B18	NC	D10	IO22RSB0
A5	NC	B19	NC	D11	IO28RSB0
A6	IO15RSB0	B20	NC	D12	IO34RSB0
A7	IO18RSB0	B21	VCCIB1	D13	IO37RSB0
A8	NC	B22	GND	D14	IO41RSB0
A9	NC	C1	VCCIB3	D15	IO43RSB0
A10	IO23RSB0	C2	NC	D16	GBB1/IO57RSB0
A11	IO29RSB0	C3	NC	D17	GBA0/IO58RSB0
A12	IO35RSB0	C4	NC	D18	GBA1/IO59RSB0
A13	IO36RSB0	C5	GND	D19	GND
A14	NC	C6	NC	D20	NC
A15	NC	C7	NC	D21	NC
A16	IO50RSB0	C8	VCC	D22	NC
A17	IO51RSB0	C9	VCC	E1	NC
A18	NC	C10	NC	E2	NC
A19	NC	C11	NC	E3	GND
A20	VCCIB0	C12	NC	E4	GAB2/IO154UDB3
A21	GND	C13	NC	E5	GAA2/IO155UDB3
A22	GND	C14	VCC	E6	IO12RSB0
B1	GND	C15	VCC	E7	GAB1/IO03RSB0
B2	VCCIB3	C16	NC	E8	IO13RSB0
B3	NC	C17	NC	E9	IO14RSB0
B4	NC	C18	GND	E10	IO21RSB0
B5	NC	C19	NC	E11	IO27RSB0
B6	NC	C20	NC	E12	IO32RSB0
B7	NC	C21	NC	E13	IO38RSB0
B8	NC	C22	VCCIB1	E14	IO42RSB0
B9	NC	D1	NC	E15	GBC1/IO55RSB0
B10	NC	D2	NC	E16	GBB0/IO56RSB0
B11	NC	D3	NC	E17	IO44RSB0
B12	NC	D4	GND	E18	GBA2/IO60PDB1
B13	NC	D5	GAA0/IO00RSB0	E19	IO60NDB1
B14	NC	D6	GAA1/IO01RSB0	E20	GND

Revision	Changes	Page
Revision 10 (September 2011)	The "In-System Programming (ISP) and Security" section and Security section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 32865).	I
	The value of 34 I/Os for the QN48 package in A3P030 was added to the "I/Os Per Package 1" section (SAR 33907).	
	The Y security option and Licensed DPA Logo were added to the "ProASIC3 Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 32151).	IV
	The "Specifying I/O States During Programming" section is new (SAR 21281).	1-7
	In Table 2-2 • Recommended Operating Conditions 1, VPUMP programming voltage in programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45" (SAR 30666). It was corrected in v2.0 of this datasheet in April 2007 but inadvertently changed back to "3.0 to 3.6 V" in v1.4 in August 2009. The following changes were made to Table 2-2 • Recommended Operating Conditions 1: VCCPLL analog power supply (PLL) was changed from "1.4 to 1.6" to "1.425 to 1.575" (SAR 33850).	2-2
	For VCCI and VMV, values for 3.3 V DC and 3.3 V DC Wide Range were corrected. The correct value for 3.3 V DC is "3.0 to 3.6 V" and the correct value for 3.3 V Wide Range is "2.7 to 3.6" (SAR 33848).	
	Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings was update to restore values to the correct columns. Previously the Slew Rate column was missing and data were aligned incorrectly (SAR 34034).	2-24
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section and "3.3 V LVCMOS Wide Range" section tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	2-22, 2-39

Datasheet Information

Revision	Changes	Page
Revision 10 (continued)	"TBD" for 3.3 V LVCMOS Wide Range in Table 2-28 • I/O Output Buffer Maximum Resistances1 through Table 2-30 • I/O Output Buffer Maximum Resistances1 was replaced by "Same as regular 3.3 V" (SAR 33852).	2-26 to 2-28
	The equations in the notes for Table 2-31 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 32470).	2-28
	"TBD" for 3.3 V LVCMOS Wide Range in Table 2-32 • I/O Short Currents IOSH/IOSL through Table 2-34 • I/O Short Currents IOSH/IOSL was replaced by "Same as regular 3.3 V LVCMOS" (SAR 33852).	2-29 to 2-31
	In the "3.3 V LVCMOS Wide Range" section, values were added to Table 2-47 through Table 2-49 for IOSL and IOSH, replacing "TBD" (SAR 33852).	2-39 to 2-40
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It uses a 5 V-tolerant input buffer and push-pull output buffer."	2-47
	The table notes were revised for Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels (SAR 33859).	2-66
	Values were added for $F_{DDRIMAX}$ and F_{DDOMAX} in Table 2-102 • Input DDR Propagation Delays and Table 2-104 • Output DDR Propagation Delays (SAR 23919).	2-78, 2-80
	Table 2-115 • ProASIC3 CCC/PLL Specification was updated. A note was added to indicate that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 25705).	2-90
	The following figures were deleted (SAR 29991). Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 21770).	2-92,
	Figure 2-34 • Write Access after Write onto Same Address Figure 2-35 • Read Access after Write onto Same Address Figure 2-35 • Read Access after Write onto Same Address	2-94, 2-99 2-102
	The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-39 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SARs 29991, 30510).	
	The "Pin Descriptions" chapter has been added (SAR 21642).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	4-1
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "ProASIC3 Device Status" table on page IV indicates the status for each device in the device family.	N/A