




Welcome to <u>E-XFL.COM</u>

### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                                  |
|--------------------------------|-------------------------------------------------------------------------|
| Number of LABs/CLBs            | -                                                                       |
| Number of Logic Elements/Cells | -                                                                       |
| Total RAM Bits                 | 147456                                                                  |
| Number of I/O                  | 300                                                                     |
| Number of Gates                | 1000000                                                                 |
| Voltage - Supply               | 1.425V ~ 1.575V                                                         |
| Mounting Type                  | Surface Mount                                                           |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                                         |
| Package / Case                 | 484-BGA                                                                 |
| Supplier Device Package        | 484-FPBGA (23x23)                                                       |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-fg484 |
|                                |                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# 1 – ProASIC3 Device Family Overview

## **General Description**

ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC<sup>PLUS®</sup> family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

## **Flash Advantages**

### Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

### Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks.



### I/Os with Advanced I/O Standards

The ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3 FPGAs support many different I/O standards—single-ended and differential.

The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1).

|               |                                                                                         | I/O Standards Supported |                  |                                 |  |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------|-------------------------|------------------|---------------------------------|--|--|--|--|--|
| I/O Bank Type | Device and Bank Location                                                                | LVTTL/<br>LVCMOS        | PCI/PCI-X        | LVPECL, LVDS,<br>B-LVDS, M-LVDS |  |  |  |  |  |
| Advanced      | East and west Banks of A3P250 and larger devices                                        | $\checkmark$            | $\checkmark$     | $\checkmark$                    |  |  |  |  |  |
| Standard Plus | North and south banks of A3P250 and<br>larger devices<br>All banks of A3P060 and A3P125 | $\checkmark$            | $\checkmark$     | Not supported                   |  |  |  |  |  |
| Standard      | All banks of A3P015 and A3P030                                                          | $\checkmark$            | Not<br>supported | Not supported                   |  |  |  |  |  |

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications
- Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications

ProASIC3 banks for the A3P250 device and above support LVPECL, LVDS, B-LVDS and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a poweredup system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

### Wide Range I/O Support

ProASIC3 devices support JEDEC-defined wide range I/O operation. ProASIC3 supports the JESD8-B specification, covering both 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

## **Specifying I/O States During Programming**

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
  - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
  - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
  - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
  - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8).
  - 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
    - 1 I/O is set to drive out logic High



## **Overview of I/O Performance**

## Summary of I/O DC Input and Output Levels – Default I/O Software Settings

### Table 2-18 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Advanced I/O Banks

|                                            |                   | Equiv.                                                          |      |          | VIL         | VIH            |          | VOL         | VOH         |                        |                        |  |  |  |
|--------------------------------------------|-------------------|-----------------------------------------------------------------|------|----------|-------------|----------------|----------|-------------|-------------|------------------------|------------------------|--|--|--|
| I/O Standard                               | Drive<br>Strength | Software<br>Default<br>Drive<br>Strength<br>Option <sup>2</sup> |      | Min<br>V | Max<br>V    | Min<br>V       | Max<br>V | Max<br>V    | Min<br>V    | IOL <sup>1</sup><br>mA | IOH <sup>1</sup><br>mA |  |  |  |
| 3.3 V LVTTL /<br>3.3 V<br>LVCMOS           | 12 mA             | 12 mA                                                           | High | -0.3     | 0.8         | 2              | 3.6      | 0.4         | 2.4         | 12                     | 12                     |  |  |  |
| 3.3 V<br>LVCMOS<br>Wide Range <sup>3</sup> | 100 µA            | 12 mA                                                           | High | -0.3     | 0.8         | 2              | 3.6      | 0.2         | VCCI – 0.2  | 0.1                    | 0.1                    |  |  |  |
| 2.5 V<br>LVCMOS                            | 12 mA             | 12 mA                                                           | High | -0.3     | 0.7         | 1.7            | 2.7      | 0.7         | 1.7         | 12                     | 12                     |  |  |  |
| 1.8 V<br>LVCMOS                            | 12 mA             | 12 mA                                                           | High | -0.3     | 0.35 * VCCI | 0.65 * VCCI    | 1.9      | 0.45        | VCCI – 0.45 | 12                     | 12                     |  |  |  |
| 1.5 V<br>LVCMOS                            | 12 mA             | 12 mA                                                           | High | -0.3     | 0.35 * VCCI | 0.65 * VCCI    | 1.6      | 0.25 * VCCI | 0.75 * VCCI | 12                     | 12                     |  |  |  |
| 3.3 V PCI                                  |                   |                                                                 |      |          | Per F       | PCI specificat | ions     |             |             |                        |                        |  |  |  |
| 3.3 V PCI-X                                |                   | Per PCI-X specifications                                        |      |          |             |                |          |             |             |                        |                        |  |  |  |

Notes:

1. Currents are measured at 85°C junction temperature.

2. 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.



### Table 2-24 • Summary of I/O Timing Characteristics—Software Default Settings

#### -2 Speed Grade, Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst Case VCC = 1.425 V, Worst-Case VCCI (per standard) 1

| - | - | _ | - | _ | - | - |    | _ | - | - | _ | - | ۰ |   | _ | - | _ | <br> |
|---|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|------|
| A | 1 | d | V | а | n | С | əd | l | 0 | В | а | n | ŀ | ( | 5 |   |   |      |

| I/O Standard                            | Drive Strength       | Equiv. Software Default<br>Drive Strength Option <sup>1</sup> | Slew Rate | Capacitive Load (pF) | External Resistor ( $\Omega$ ) | t <sub>DOUT</sub> (ns) | t <sub>DP</sub> (ns) | t <sub>DIN</sub> (ns) | t <sub>PY</sub> (ns) | t <sub>EOUT</sub> (ns) | t <sub>ZL</sub> (ns) | t <sub>ZH</sub> (ns) | t <sub>LZ</sub> (ns) | t <sub>HZ</sub> (ns) | t <sub>ZLS</sub> (ns) | t <sub>ZHS</sub> (ns) | Units |
|-----------------------------------------|----------------------|---------------------------------------------------------------|-----------|----------------------|--------------------------------|------------------------|----------------------|-----------------------|----------------------|------------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-------|
| 3.3 V LVTTL /<br>3.3 V LVCMOS           | 12 mA                | 12 mA                                                         | High      | 35                   | -                              | 0.45                   | 2.64                 | 0.03                  | 0.76                 | 0.32                   | 2.69                 | 2.11                 | 2.40                 | 2.68                 | 4.36                  | 3.78                  | ns    |
| 3.3 V LVCMOS<br>Wide Range <sup>2</sup> | 100 µA               | 12 mA                                                         | High      | 35                   | -                              | 0.45                   | 4.08                 | 0.03                  | 0.76                 | 0.32                   | 4.08                 | 3.20                 | 3.71                 | 4.14                 | 6.61                  | 5.74                  | ns    |
| 2.5 V LVCMOS                            | 12 mA                | 12 mA                                                         | High      | 35                   | Ι                              | 0.45                   | 2.66                 | 0.03                  | 0.98                 | 0.32                   | 2.71                 | 2.56                 | 2.47                 | 2.57                 | 4.38                  | 4.23                  | ns    |
| 1.8 V LVCMOS                            | 12 mA                | 12 mA                                                         | High      | 35                   | Ι                              | 0.45                   | 2.64                 | 0.03                  | 0.91                 | 0.32                   | 2.69                 | 2.27                 | 2.76                 | 3.05                 | 4.36                  | 3.94                  | ns    |
| 1.5 V LVCMOS                            | 12 mA                | 12 mA                                                         | High      | 35                   | Ι                              | 0.45                   | 3.05                 | 0.03                  | 1.07                 | 0.32                   | 3.10                 | 2.67                 | 2.95                 | 3.14                 | 4.77                  | 4.34                  | ns    |
| 3.3 V PCI                               | Per<br>PCI<br>spec   | -                                                             | High      | 10                   | 25 <sup>4</sup>                | 0.45                   | 2.00                 | 0.03                  | 0.65                 | 0.32                   | 2.04                 | 1.46                 | 2.40                 | 2.68                 | 3.71                  | 3.13                  | ns    |
| 3.3 V PCI-X                             | Per<br>PCI-X<br>spec | _                                                             | High      | 10                   | 25 <sup>4</sup>                | 0.45                   | 2.00                 | 0.03                  | 0.62                 | 0.32                   | 2.04                 | 1.46                 | 2.40                 | 2.68                 | 3.71                  | 3.13                  | ns    |
| LVDS                                    | 24 mA                | _                                                             | High      | -                    | -                              | 0.45                   | 1.37                 | 0.03                  | 1.20                 | -                      | _                    | _                    | _                    | -                    | -                     | -                     | ns    |
| LVPECL                                  | 24 mA                | -                                                             | High      | -                    | -                              | 0.45                   | 1.34                 | 0.03                  | 1.05                 | -                      | -                    | -                    | -                    | _                    | -                     | -                     | ns    |

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-64 for connectivity. This resistor is not required during normal operation.



# Table 2-29 • I/O Output Buffer Maximum Resistances <sup>1</sup> Applicable to Standard Plus I/O Banks

| Standard                             | Drive Strength              | R <sub>PULL-DOWN</sub> (Ω) <sup>2</sup> | R <sub>PULL-UP</sub> (Ω) <sup>3</sup> |
|--------------------------------------|-----------------------------|-----------------------------------------|---------------------------------------|
| 3.3 V LVTTL / 3.3 V                  | 2 mA                        | 100                                     | 300                                   |
| LVCMOS                               | 4 mA                        | 100                                     | 300                                   |
|                                      | 6 mA                        | 50                                      | 150                                   |
|                                      | 8 mA                        | 50                                      | 150                                   |
|                                      | 12 mA                       | 25                                      | 75                                    |
|                                      | 16 mA                       | 25                                      | 75                                    |
| 3.3 V LVCMOS Wide Range <sup>4</sup> | 100 µA                      | Same as regular 3.3 V LVCMOS            | Same as regular 3.3 V LVCMOS          |
| 2.5 V LVCMOS                         | 2 mA                        | 100                                     | 200                                   |
|                                      | 4 mA                        | 100                                     | 200                                   |
|                                      | 6 mA                        | 50                                      | 100                                   |
|                                      | 8 mA                        | 50                                      | 100                                   |
|                                      | 12 mA                       | 25                                      | 50                                    |
| 1.8 V LVCMOS                         | 2 mA                        | 200                                     | 225                                   |
|                                      | 4 mA                        | 100                                     | 112                                   |
|                                      | 6 mA                        | 50                                      | 56                                    |
|                                      | 8 mA                        | 50                                      | 56                                    |
| 1.5 V LVCMOS                         | 2 mA                        | 200                                     | 224                                   |
| Γ                                    | 4 mA                        | 100                                     | 112                                   |
| 3.3 V PCI/PCI-X                      | Per PCI/PCI-X specification | 25                                      | 75                                    |

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

<sup>2.</sup> R<sub>(PULL-DOWN-MAX)</sub> = (VOLspec) / IOLspec

<sup>3.</sup> R<sub>(PULL-UP-MAX)</sub> = (VCCImax – VOHspec) / IOHspec



### **Timing Characteristics**

### Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions:  $T_J$  = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

| Drive<br>Strength | Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>zLS</sub> | t <sub>zHS</sub> | Units |
|-------------------|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA              | Std.           | 0.66              | 7.66            | 0.04             | 1.02            | 0.43              | 7.80            | 6.59            | 2.65            | 2.61            | 10.03            | 8.82             | ns    |
|                   | -1             | 0.56              | 6.51            | 0.04             | 0.86            | 0.36              | 6.63            | 5.60            | 2.25            | 2.22            | 8.54             | 7.51             | ns    |
|                   | -2             | 0.49              | 5.72            | 0.03             | 0.76            | 0.32              | 5.82            | 4.92            | 1.98            | 1.95            | 7.49             | 6.59             | ns    |
| 4 mA              | Std.           | 0.66              | 7.66            | 0.04             | 1.02            | 0.43              | 7.80            | 6.59            | 2.65            | 2.61            | 10.03            | 8.82             | ns    |
|                   | -1             | 0.56              | 6.51            | 0.04             | 0.86            | 0.36              | 6.63            | 5.60            | 2.25            | 2.22            | 8.54             | 7.51             | ns    |
|                   | -2             | 0.49              | 5.72            | 0.03             | 0.76            | 0.32              | 5.82            | 4.92            | 1.98            | 1.95            | 7.49             | 6.59             | ns    |
| 6 mA              | Std.           | 0.66              | 4.91            | 0.04             | 1.02            | 0.43              | 5.00            | 4.07            | 2.99            | 3.20            | 7.23             | 6.31             | ns    |
|                   | -1             | 0.56              | 4.17            | 0.04             | 0.86            | 0.36              | 4.25            | 3.46            | 2.54            | 2.73            | 6.15             | 5.36             | ns    |
|                   | -2             | 0.49              | 3.66            | 0.03             | 0.76            | 0.32              | 3.73            | 3.04            | 2.23            | 2.39            | 5.40             | 4.71             | ns    |
| 8 mA              | Std.           | 0.66              | 4.91            | 0.04             | 1.02            | 0.43              | 5.00            | 4.07            | 2.99            | 3.20            | 7.23             | 6.31             | ns    |
|                   | -1             | 0.56              | 4.17            | 0.04             | 0.86            | 0.36              | 4.25            | 3.46            | 2.54            | 2.73            | 6.15             | 5.36             | ns    |
|                   | -2             | 0.49              | 3.66            | 0.03             | 0.76            | 0.32              | 3.73            | 3.04            | 2.23            | 2.39            | 5.40             | 4.71             | ns    |
| 12 mA             | Std.           | 0.66              | 3.53            | 0.04             | 1.02            | 0.43              | 3.60            | 2.82            | 3.21            | 3.58            | 5.83             | 5.06             | ns    |
|                   | -1             | 0.56              | 3.00            | 0.04             | 0.86            | 0.36              | 3.06            | 2.40            | 2.73            | 3.05            | 4.96             | 4.30             | ns    |
|                   | -2             | 0.49              | 2.64            | 0.03             | 0.76            | 0.32              | 2.69            | 2.11            | 2.40            | 2.68            | 4.36             | 3.78             | ns    |
| 16 mA             | Std.           | 0.66              | 3.33            | 0.04             | 1.02            | 0.43              | 3.39            | 2.56            | 3.26            | 3.68            | 5.63             | 4.80             | ns    |
|                   | -1             | 0.56              | 2.83            | 0.04             | 0.86            | 0.36              | 2.89            | 2.18            | 2.77            | 3.13            | 4.79             | 4.08             | ns    |
|                   | -2             | 0.49              | 2.49            | 0.03             | 0.76            | 0.32              | 2.53            | 1.91            | 2.44            | 2.75            | 4.20             | 3.58             | ns    |
| 24 mA             | Std.           | 0.66              | 3.08            | 0.04             | 1.02            | 0.43              | 3.13            | 2.12            | 3.32            | 4.06            | 5.37             | 4.35             | ns    |
|                   | –1             | 0.56              | 2.62            | 0.04             | 0.86            | 0.36              | 2.66            | 1.80            | 2.83            | 3.45            | 4.57             | 3.70             | ns    |
|                   | -2             | 0.49              | 2.30            | 0.03             | 0.76            | 0.32              | 2.34            | 1.58            | 2.48            | 3.03            | 4.01             | 3.25             | ns    |

Notes:

1. Software default selection highlighted in gray.



### Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions:  $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

| Drive<br>Strength | Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|-------------------|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA              | Std.           | 0.66              | 7.20            | 0.04             | 1.00            | 0.43              | 7.34            | 6.29            | 2.27            | 2.34            | 9.57             | 8.52             | ns    |
|                   | -1             | 0.56              | 6.13            | 0.04             | 0.85            | 0.36              | 6.24            | 5.35            | 1.93            | 1.99            | 8.14             | 7.25             | ns    |
|                   | -2             | 0.49              | 5.38            | 0.03             | 0.75            | 0.32              | 5.48            | 4.69            | 1.70            | 1.75            | 7.15             | 6.36             | ns    |
| 4 mA              | Std.           | 0.66              | 7.20            | 0.04             | 1.00            | 0.43              | 7.34            | 6.29            | 2.27            | 2.34            | 9.57             | 8.52             | ns    |
|                   | -1             | 0.56              | 6.13            | 0.04             | 0.85            | 0.36              | 6.24            | 5.35            | 1.93            | 1.99            | 8.14             | 7.25             | ns    |
|                   | -2             | 0.49              | 5.38            | 0.03             | 0.75            | 0.32              | 5.48            | 4.69            | 1.70            | 1.75            | 7.15             | 6.36             | ns    |
| 6 mA              | Std.           | 0.66              | 4.50            | 0.04             | 1.00            | 0.43              | 4.58            | 3.82            | 2.58            | 2.88            | 6.82             | 6.05             | ns    |
|                   | -1             | 0.56              | 3.83            | 0.04             | 0.85            | 0.36              | 3.90            | 3.25            | 2.19            | 2.45            | 5.80             | 5.15             | ns    |
|                   | -2             | 0.49              | 3.36            | 0.03             | 0.75            | 0.32              | 3.42            | 2.85            | 1.92            | 2.15            | 5.09             | 4.52             | ns    |
| 8 mA              | Std.           | 0.66              | 4.50            | 0.04             | 1.00            | 0.43              | 4.58            | 3.82            | 2.58            | 2.88            | 6.82             | 6.05             | ns    |
|                   | -1             | 0.56              | 3.83            | 0.04             | 0.85            | 0.36              | 3.90            | 3.25            | 2.19            | 2.45            | 5.80             | 5.15             | ns    |
|                   | -2             | 0.49              | 3.36            | 0.03             | 0.75            | 0.32              | 3.42            | 2.85            | 1.92            | 2.15            | 5.09             | 4.52             | ns    |
| 12 mA             | Std.           | 0.66              | 3.16            | 0.04             | 1.00            | 0.43              | 3.22            | 2.58            | 2.79            | 3.22            | 5.45             | 4.82             | ns    |
|                   | -1             | 0.56              | 2.69            | 0.04             | 0.85            | 0.36              | 2.74            | 2.20            | 2.37            | 2.74            | 4.64             | 4.10             | ns    |
|                   | -2             | 0.49              | 2.36            | 0.03             | 0.75            | 0.32              | 2.40            | 1.93            | 2.08            | 2.41            | 4.07             | 3.60             | ns    |
| 16 mA             | Std.           | 0.66              | 3.16            | 0.04             | 1.00            | 0.43              | 3.22            | 2.58            | 2.79            | 3.22            | 5.45             | 4.82             | ns    |
|                   | -1             | 0.56              | 2.69            | 0.04             | 0.85            | 0.36              | 2.74            | 2.20            | 2.37            | 2.74            | 4.64             | 4.10             | ns    |
|                   | -2             | 0.49              | 2.36            | 0.03             | 0.75            | 0.32              | 2.40            | 1.93            | 2.08            | 2.41            | 4.07             | 3.60             | ns    |

Notes:

1. Software default selection highlighted in gray.



### **Timing Characteristics**

### Table 2-70 • 1.8 V LVCMOS High Slew

Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

| Drive    | Speed |                   |                 |                  |                 |                   |                 |                 |                 |                 |                  |                  |       |
|----------|-------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Strength | Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
| 2 mA     | Std.  | 0.66              | 11.86           | 0.04             | 1.22            | 0.43              | 9.14            | 11.86           | 2.77            | 1.66            | 11.37            | 14.10            | ns    |
|          | -1    | 0.56              | 10.09           | 0.04             | 1.04            | 0.36              | 7.77            | 10.09           | 2.36            | 1.41            | 9.67             | 11.99            | ns    |
|          | -2    | 0.49              | 8.86            | 0.03             | 0.91            | 0.32              | 6.82            | 8.86            | 2.07            | 1.24            | 8.49             | 10.53            | ns    |
| 4 mA     | Std.  | 0.66              | 6.91            | 0.04             | 1.22            | 0.43              | 5.86            | 6.91            | 3.22            | 2.84            | 8.10             | 9.15             | ns    |
|          | -1    | 0.56              | 5.88            | 0.04             | 1.04            | 0.36              | 4.99            | 5.88            | 2.74            | 2.41            | 6.89             | 7.78             | ns    |
|          | -2    | 0.49              | 5.16            | 0.03             | 0.91            | 0.32              | 4.38            | 5.16            | 2.41            | 2.12            | 6.05             | 6.83             | ns    |
| 6 mA     | Std.  | 0.66              | 4.45            | 0.04             | 1.22            | 0.43              | 4.18            | 4.45            | 3.53            | 3.38            | 6.42             | 6.68             | ns    |
|          | -1    | 0.56              | 3.78            | 0.04             | 1.04            | 0.36              | 3.56            | 3.78            | 3.00            | 2.88            | 5.46             | 5.69             | ns    |
|          | -2    | 0.49              | 3.32            | 0.03             | 0.91            | 0.32              | 3.12            | 3.32            | 2.64            | 2.53            | 4.79             | 4.99             | ns    |
| 8 mA     | Std.  | 0.66              | 3.92            | 0.04             | 1.22            | 0.43              | 3.93            | 3.92            | 3.60            | 3.52            | 6.16             | 6.16             | ns    |
|          | -1    | 0.56              | 3.34            | 0.04             | 1.04            | 0.36              | 3.34            | 3.34            | 3.06            | 3.00            | 5.24             | 5.24             | ns    |
|          | -2    | 0.49              | 2.93            | 0.03             | 0.91            | 0.32              | 2.93            | 2.93            | 2.69            | 2.63            | 4.60             | 4.60             | ns    |
| 12 mA    | Std.  | 0.66              | 3.53            | 0.04             | 1.22            | 0.43              | 3.60            | 3.04            | 3.70            | 4.08            | 5.84             | 5.28             | ns    |
|          | -1    | 0.56              | 3.01            | 0.04             | 1.04            | 0.36              | 3.06            | 2.59            | 3.15            | 3.47            | 4.96             | 4.49             | ns    |
|          | -2    | 0.49              | 2.64            | 0.03             | 0.91            | 0.32              | 2.69            | 2.27            | 2.76            | 3.05            | 4.36             | 3.94             | ns    |
| 16 mA    | Std.  | 0.66              | 3.53            | 0.04             | 1.22            | 0.43              | 3.60            | 3.04            | 3.70            | 4.08            | 5.84             | 5.28             | ns    |
|          | -1    | 0.56              | 3.01            | 0.04             | 1.04            | 0.36              | 3.06            | 2.59            | 3.15            | 3.47            | 4.96             | 4.49             | ns    |
|          | -2    | 0.49              | 2.64            | 0.03             | 0.91            | 0.32              | 2.69            | 2.27            | 2.76            | 3.05            | 4.36             | 3.94             | ns    |

Notes:

1. Software default selection highlighted in gray.



| Parameter Name        | Parameter Definition                                            | Measuring Nodes<br>(from, to)* |
|-----------------------|-----------------------------------------------------------------|--------------------------------|
| t <sub>oclkq</sub>    | Clock-to-Q of the Output Data Register                          | HH, DOUT                       |
| tosud                 | Data Setup Time for the Output Data Register                    | FF, HH                         |
| t <sub>OHD</sub>      | Data Hold Time for the Output Data Register                     | FF, HH                         |
| tosue                 | Enable Setup Time for the Output Data Register                  | GG, HH                         |
| t <sub>OHE</sub>      | Enable Hold Time for the Output Data Register                   | GG, HH                         |
| t <sub>OCLR2Q</sub>   | Asynchronous Clear-to-Q of the Output Data Register             | LL, DOUT                       |
| t <sub>OREMCLR</sub>  | Asynchronous Clear Removal Time for the Output Data Register    | LL, HH                         |
| t <sub>ORECCLR</sub>  | Asynchronous Clear Recovery Time for the Output Data Register   | LL, HH                         |
| t <sub>oeclkq</sub>   | Clock-to-Q of the Output Enable Register                        | HH, EOUT                       |
| toesud                | Data Setup Time for the Output Enable Register                  | JJ, HH                         |
| t <sub>OEHD</sub>     | Data Hold Time for the Output Enable Register                   | JJ, HH                         |
| tOESUE                | Enable Setup Time for the Output Enable Register                | KK, HH                         |
| t <sub>OEHE</sub>     | Enable Hold Time for the Output Enable Register                 | KK, HH                         |
| t <sub>OECLR2Q</sub>  | Asynchronous Clear-to-Q of the Output Enable Register           | II, EOUT                       |
| t <sub>OEREMCLR</sub> | Asynchronous Clear Removal Time for the Output Enable Register  | II, HH                         |
| t <sub>OERECCLR</sub> | Asynchronous Clear Recovery Time for the Output Enable Register | II, HH                         |
| t <sub>ICLKQ</sub>    | Clock-to-Q of the Input Data Register                           | AA, EE                         |
| t <sub>ISUD</sub>     | Data Setup Time for the Input Data Register                     | CC, AA                         |
| t <sub>IHD</sub>      | Data Hold Time for the Input Data Register                      | CC, AA                         |
| t <sub>ISUE</sub>     | Enable Setup Time for the Input Data Register                   | BB, AA                         |
| t <sub>IHE</sub>      | Enable Hold Time for the Input Data Register                    | BB, AA                         |
| t <sub>ICLR2Q</sub>   | Asynchronous Clear-to-Q of the Input Data Register              | DD, EE                         |
| t <sub>IREMCLR</sub>  | Asynchronous Clear Removal Time for the Input Data Register     | DD, AA                         |
| t <sub>IRECCLR</sub>  | Asynchronous Clear Recovery Time for the Input Data Register    | DD, AA                         |

### Table 2-97 • Parameter Definition and Measuring Nodes

Note: \*See Figure 2-16 on page 2-71 for more information.

# **Global Resource Characteristics**

## A3P250 Clock Tree Topology

Clock delays are device-specific. Figure 2-28 is an example of a global tree used for clock routing. The global tree presented in Figure 2-28 is driven by a CCC located on the west side of the A3P250 device. It is used to drive all D-flip-flops in the device.

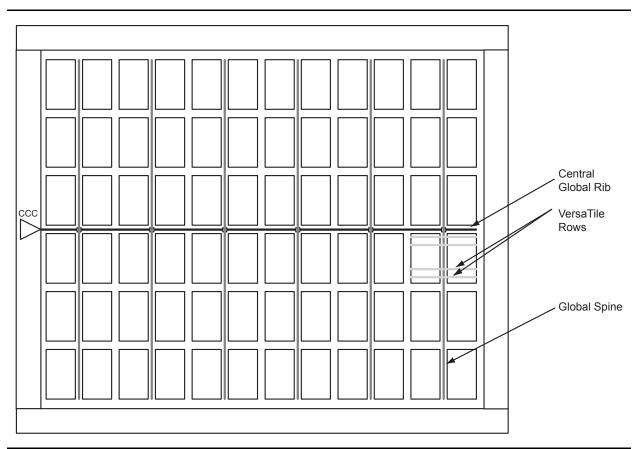



Figure 2-28 • Example of Global Tree Use in an A3P250 Device for Clock Routing

## **Global Tree Timing Characteristics**

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-90. Table 2-108 to Table 2-114 on page 2-89 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

# Table 2-113 • A3P600 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.425 V

|                      |                                           | -                 | -2                | -                 | -1                | St                | td.               |       |
|----------------------|-------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|
| Parameter            | Description                               | Min. <sup>1</sup> | Max. <sup>2</sup> | Min. <sup>1</sup> | Max. <sup>2</sup> | Min. <sup>1</sup> | Max. <sup>2</sup> | Units |
| t <sub>RCKL</sub>    | Input Low Delay for Global Clock          | 0.87              | 1.09              | 0.99              | 1.24              | 1.17              | 1.46              | ns    |
| t <sub>RCKH</sub>    | Input High Delay for Global Clock         | 0.86              | 1.11              | 0.98              | 1.27              | 1.15              | 1.49              | ns    |
| t <sub>RCKMPWH</sub> | Minimum Pulse Width High for Global Clock | 0.75              |                   | 0.85              |                   | 1.00              |                   | ns    |
| t <sub>RCKMPWL</sub> | Minimum Pulse Width Low for Global Clock  | 0.85              |                   | 0.96              |                   | 1.13              |                   | ns    |
| t <sub>RCKSW</sub>   | Maximum Skew for Global Clock             |                   | 0.26              |                   | 0.29              |                   | 0.34              | ns    |

Microse

Power Matters.

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

### Table 2-114 • A3P1000 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

|                      |                                           | -                 | -2                |                   | -1                |                   | Std.              |       |
|----------------------|-------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|
| Parameter            | Description                               | Min. <sup>1</sup> | Max. <sup>2</sup> | Min. <sup>1</sup> | Max. <sup>2</sup> | Min. <sup>1</sup> | Max. <sup>2</sup> | Units |
| t <sub>RCKL</sub>    | Input Low Delay for Global Clock          | 0.94              | 1.16              | 1.07              | 1.32              | 1.26              | 1.55              | ns    |
| t <sub>RCKH</sub>    | Input High Delay for Global Clock         | 0.93              | 1.19              | 1.06              | 1.35              | 1.24              | 1.59              | ns    |
| t <sub>RCKMPWH</sub> | Minimum Pulse Width High for Global Clock | 0.75              |                   | 0.85              |                   | 1.00              |                   | ns    |
| t <sub>RCKMPWL</sub> | Minimum Pulse Width Low for Global Clock  | 0.85              |                   | 0.96              |                   | 1.13              |                   | ns    |
| t <sub>RCKSW</sub>   | Maximum Skew for Global Clock             |                   | 0.26              |                   | 0.29              |                   | 0.35              | ns    |

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).



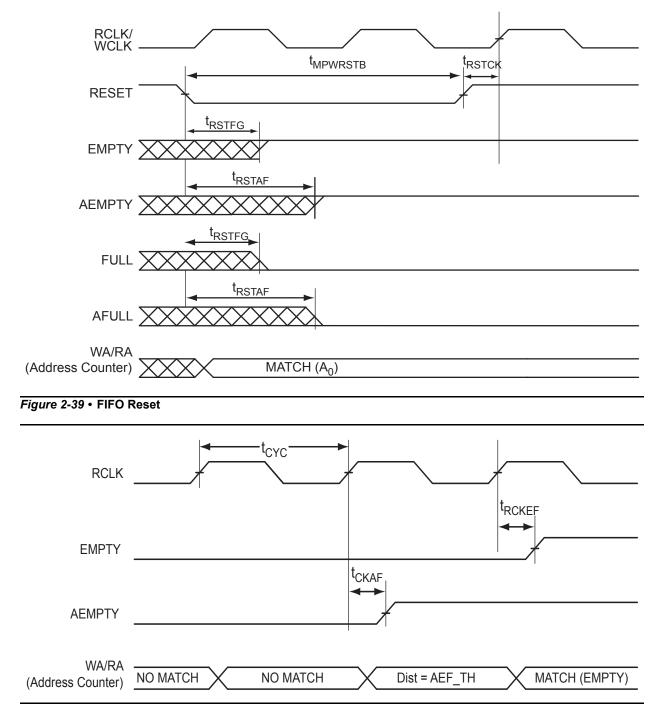



Figure 2-40 • FIFO EMPTY Flag and AEMPTY Flag Assertion



|            | PQ208           |            | PQ208           | PQ208      |                 |
|------------|-----------------|------------|-----------------|------------|-----------------|
| Pin Number | A3P125 Function | Pin Number | A3P125 Function | Pin Number | A3P125 Function |
| 1          | GND             | 37         | IO116RSB1       | 73         | IO92RSB1        |
| 2          | GAA2/IO67RSB1   | 38         | IO115RSB1       | 74         | IO91RSB1        |
| 3          | IO68RSB1        | 39         | NC              | 75         | IO90RSB1        |
| 4          | GAB2/IO69RSB1   | 40         | VCCIB1          | 76         | IO89RSB1        |
| 5          | IO132RSB1       | 41         | GND             | 77         | IO88RSB1        |
| 6          | GAC2/IO131RSB1  | 42         | IO114RSB1       | 78         | IO87RSB1        |
| 7          | NC              | 43         | IO113RSB1       | 79         | IO86RSB1        |
| 8          | NC              | 44         | GEC1/IO112RSB1  | 80         | IO85RSB1        |
| 9          | IO130RSB1       | 45         | GEC0/IO111RSB1  | 81         | GND             |
| 10         | IO129RSB1       | 46         | GEB1/IO110RSB1  | 82         | IO84RSB1        |
| 11         | NC              | 47         | GEB0/IO109RSB1  | 83         | IO83RSB1        |
| 12         | IO128RSB1       | 48         | GEA1/IO108RSB1  | 84         | IO82RSB1        |
| 13         | NC              | 49         | GEA0/IO107RSB1  | 85         | IO81RSB1        |
| 14         | NC              | 50         | VMV1            | 86         | IO80RSB1        |
| 15         | NC              | 51         | GNDQ            | 87         | IO79RSB1        |
| 16         | VCC             | 52         | GND             | 88         | VCC             |
| 17         | GND             | 53         | NC              | 89         | VCCIB1          |
| 18         | VCCIB1          | 54         | NC              | 90         | IO78RSB1        |
| 19         | IO127RSB1       | 55         | GEA2/IO106RSB1  | 91         | IO77RSB1        |
| 20         | NC              | 56         | GEB2/IO105RSB1  | 92         | IO76RSB1        |
| 21         | GFC1/IO126RSB1  | 57         | GEC2/IO104RSB1  | 93         | IO75RSB1        |
| 22         | GFC0/IO125RSB1  | 58         | IO103RSB1       | 94         | IO74RSB1        |
| 23         | GFB1/IO124RSB1  | 59         | IO102RSB1       | 95         | IO73RSB1        |
| 24         | GFB0/IO123RSB1  | 60         | IO101RSB1       | 96         | GDC2/IO72RSB1   |
| 25         | VCOMPLF         | 61         | IO100RSB1       | 97         | GND             |
| 26         | GFA0/IO122RSB1  | 62         | VCCIB1          | 98         | GDB2/IO71RSB1   |
| 27         | VCCPLF          | 63         | IO99RSB1        | 99         | GDA2/IO70RSB1   |
| 28         | GFA1/IO121RSB1  | 64         | IO98RSB1        | 100        | GNDQ            |
| 29         | GND             | 65         | GND             | 101        | ТСК             |
| 30         | GFA2/IO120RSB1  | 66         | IO97RSB1        | 102        | TDI             |
| 31         | NC              | 67         | IO96RSB1        | 103        | TMS             |
| 32         | GFB2/IO119RSB1  | 68         | IO95RSB1        | 104        | VMV1            |
| 33         | NC              | 69         | IO94RSB1        | 105        | GND             |
| 34         | GFC2/IO118RSB1  | 70         | IO93RSB1        | 106        | VPUMP           |
| 35         | IO117RSB1       | 71         | VCC             | 107        | NC              |
| 36         | NC              | 72         | VCCIB1          | 108        | TDO             |

## 🌜 Microsemi.

Package Pin Assignments

|            | FG256           |            | FG256           | FG256      |                 |
|------------|-----------------|------------|-----------------|------------|-----------------|
| Pin Number | A3P400 Function | Pin Number | A3P400 Function | Pin Number | A3P400 Function |
| A1         | GND             | C5         | GAC0/IO04RSB0   | E9         | IO31RSB0        |
| A2         | GAA0/IO00RSB0   | C6         | GAC1/IO05RSB0   | E10        | VCCIB0          |
| A3         | GAA1/IO01RSB0   | C7         | IO20RSB0        | E11        | VCCIB0          |
| A4         | GAB0/IO02RSB0   | C8         | IO24RSB0        | E12        | VMV1            |
| A5         | IO16RSB0        | C9         | IO33RSB0        | E13        | GBC2/IO62PDB1   |
| A6         | IO17RSB0        | C10        | IO39RSB0        | E14        | IO65RSB1        |
| A7         | IO22RSB0        | C11        | IO45RSB0        | E15        | IO52RSB0        |
| A8         | IO28RSB0        | C12        | GBC0/IO54RSB0   | E16        | IO66PDB1        |
| A9         | IO34RSB0        | C13        | IO48RSB0        | F1         | IO150NDB3       |
| A10        | IO37RSB0        | C14        | VMV0            | F2         | IO149NPB3       |
| A11        | IO41RSB0        | C15        | IO61NPB1        | F3         | IO09RSB0        |
| A12        | IO43RSB0        | C16        | IO63PDB1        | F4         | IO152UDB3       |
| A13        | GBB1/IO57RSB0   | D1         | IO151VDB3       | F5         | VCCIB3          |
| A14        | GBA0/IO58RSB0   | D2         | IO151UDB3       | F6         | GND             |
| A15        | GBA1/IO59RSB0   | D3         | GAC2/IO153UDB3  | F7         | VCC             |
| A16        | GND             | D4         | IO06RSB0        | F8         | VCC             |
| B1         | GAB2/IO154UDB3  | D5         | GNDQ            | F9         | VCC             |
| B2         | GAA2/IO155UDB3  | D6         | IO10RSB0        | F10        | VCC             |
| B3         | IO12RSB0        | D7         | IO19RSB0        | F11        | GND             |
| B4         | GAB1/IO03RSB0   | D8         | IO26RSB0        | F12        | VCCIB1          |
| B5         | IO13RSB0        | D9         | IO30RSB0        | F13        | IO62NDB1        |
| B6         | IO14RSB0        | D10        | IO40RSB0        | F14        | IO49RSB0        |
| B7         | IO21RSB0        | D11        | IO46RSB0        | F15        | IO64PPB1        |
| B8         | IO27RSB0        | D12        | GNDQ            | F16        | IO66NDB1        |
| B9         | IO32RSB0        | D13        | IO47RSB0        | G1         | IO148NDB3       |
| B10        | IO38RSB0        | D14        | GBB2/IO61PPB1   | G2         | IO148PDB3       |
| B11        | IO42RSB0        | D15        | IO53RSB0        | G3         | IO149PPB3       |
| B12        | GBC1/IO55RSB0   | D16        | IO63NDB1        | G4         | GFC1/IO147PPB3  |
| B13        | GBB0/IO56RSB0   | E1         | IO150PDB3       | G5         | VCCIB3          |
| B14        | IO44RSB0        | E2         | IO08RSB0        | G6         | VCC             |
| B15        | GBA2/IO60PDB1   | E3         | IO153VDB3       | G7         | GND             |
| B16        | IO60NDB1        | E4         | IO152VDB3       | G8         | GND             |
| C1         | IO154VDB3       | E5         | VMV0            | G9         | GND             |
| C2         | IO155VDB3       | E6         | VCCIB0          | G10        | GND             |
| C3         | IO11RSB0        | E7         | VCCIB0          | G11        | VCC             |
| C4         | IO07RSB0        | E8         | IO25RSB0        | G12        | VCCIB1          |

|            | FG256           |            | FG256           | FG256      |                 |
|------------|-----------------|------------|-----------------|------------|-----------------|
| Pin Number | A3P400 Function | Pin Number | A3P400 Function | Pin Number | A3P400 Function |
| G13        | GCC1/IO67PPB1   | K1         | GFC2/IO142PDB3  | M5         | VMV3            |
| G14        | IO64NPB1        | K2         | IO144NPB3       | M6         | VCCIB2          |
| G15        | IO73PDB1        | K3         | IO141PPB3       | M7         | VCCIB2          |
| G16        | IO73NDB1        | K4         | IO120RSB2       | M8         | IO108RSB2       |
| H1         | GFB0/IO146NPB3  | K5         | VCCIB3          | M9         | IO101RSB2       |
| H2         | GFA0/IO145NDB3  | K6         | VCC             | M10        | VCCIB2          |
| H3         | GFB1/IO146PPB3  | K7         | GND             | M11        | VCCIB2          |
| H4         | VCOMPLF         | K8         | GND             | M12        | VMV2            |
| H5         | GFC0/IO147NPB3  | K9         | GND             | M13        | IO83RSB2        |
| H6         | VCC             | K10        | GND             | M14        | GDB1/IO78UPB1   |
| H7         | GND             | K11        | VCC             | M15        | GDC1/IO77UDB1   |
| H8         | GND             | K12        | VCCIB1          | M16        | IO75NDB1        |
| H9         | GND             | K13        | IO71NPB1        | N1         | IO140NDB3       |
| H10        | GND             | K14        | IO74RSB1        | N2         | IO138PPB3       |
| H11        | VCC             | K15        | IO72NPB1        | N3         | GEC1/IO137PPB3  |
| H12        | GCC0/IO67NPB1   | K16        | IO70NDB1        | N4         | IO131RSB2       |
| H13        | GCB1/IO68PPB1   | L1         | IO142NDB3       | N5         | GNDQ            |
| H14        | GCA0/IO69NPB1   | L2         | IO141NPB3       | N6         | GEA2/IO134RSB2  |
| H15        | NC              | L3         | IO125RSB2       | N7         | IO117RSB2       |
| H16        | GCB0/IO68NPB1   | L4         | IO139RSB3       | N8         | IO111RSB2       |
| J1         | GFA2/IO144PPB3  | L5         | VCCIB3          | N9         | IO99RSB2        |
| J2         | GFA1/IO145PDB3  | L6         | GND             | N10        | IO94RSB2        |
| J3         | VCCPLF          | L7         | VCC             | N11        | IO87RSB2        |
| J4         | IO143NDB3       | L8         | VCC             | N12        | GNDQ            |
| J5         | GFB2/IO143PDB3  | L9         | VCC             | N13        | IO93RSB2        |
| J6         | VCC             | L10        | VCC             | N14        | VJTAG           |
| J7         | GND             | L11        | GND             | N15        | GDC0/IO77VDB1   |
| J8         | GND             | L12        | VCCIB1          | N16        | GDA1/IO79UDB1   |
| J9         | GND             | L13        | GDB0/IO78VPB1   | P1         | GEB1/IO136PDB3  |
| J10        | GND             | L14        | IO76VDB1        | P2         | GEB0/IO136NDB3  |
| J11        | VCC             | L15        | IO76UDB1        | P3         | VMV2            |
| J12        | GCB2/IO71PPB1   | L16        | IO75PDB1        | P4         | IO129RSB2       |
| J13        | GCA1/IO69PPB1   | M1         | IO140PDB3       | P5         | IO128RSB2       |
| J14        | GCC2/IO72PPB1   | M2         | IO130RSB2       | P6         | IO122RSB2       |
| J15        | NC              | M3         | IO138NPB3       | P7         | IO115RSB2       |
| J16        | GCA2/IO70PDB1   | M4         | GEC0/IO137NPB3  | P8         | IO110RSB2       |

## 🌜 Microsemi.

Package Pin Assignments

| FG256      |                 |  |  |  |
|------------|-----------------|--|--|--|
| Pin Number | A3P400 Function |  |  |  |
| P9         | IO98RSB2        |  |  |  |
| P10        | IO95RSB2        |  |  |  |
| P11        | IO88RSB2        |  |  |  |
| P12        | IO84RSB2        |  |  |  |
| P13        | ТСК             |  |  |  |
| P14        | VPUMP           |  |  |  |
| P15        | TRST            |  |  |  |
| P16        | GDA0/IO79VDB1   |  |  |  |
| R1         | GEA1/IO135PDB3  |  |  |  |
| R2         | GEA0/IO135NDB3  |  |  |  |
| R3         | IO127RSB2       |  |  |  |
| R4         | GEC2/IO132RSB2  |  |  |  |
| R5         | IO123RSB2       |  |  |  |
| R6         | IO118RSB2       |  |  |  |
| R7         | IO112RSB2       |  |  |  |
| R8         | IO106RSB2       |  |  |  |
| R9         | IO100RSB2       |  |  |  |
| R10        | IO96RSB2        |  |  |  |
| R11        | IO89RSB2        |  |  |  |
| R12        | IO85RSB2        |  |  |  |
| R13        | GDB2/IO81RSB2   |  |  |  |
| R14        | TDI             |  |  |  |
| R15        | NC              |  |  |  |
| R16        | TDO             |  |  |  |
| T1         | GND             |  |  |  |
| T2         | IO126RSB2       |  |  |  |
| Т3         | GEB2/IO133RSB2  |  |  |  |
| T4         | IO124RSB2       |  |  |  |
| T5         | IO116RSB2       |  |  |  |
| Т6         | IO113RSB2       |  |  |  |
| Τ7         | IO107RSB2       |  |  |  |
| Т8         | IO105RSB2       |  |  |  |
| Т9         | IO102RSB2       |  |  |  |
| T10        | IO97RSB2        |  |  |  |
| T11        | IO92RSB2        |  |  |  |
| T12        | GDC2/IO82RSB2   |  |  |  |

| FG256      |                 |  |  |  |  |
|------------|-----------------|--|--|--|--|
| Pin Number | A3P400 Function |  |  |  |  |
| T13        | IO86RSB2        |  |  |  |  |
| T14        | GDA2/IO80RSB2   |  |  |  |  |
| T15        | TMS             |  |  |  |  |
| T16        | GND             |  |  |  |  |



Package Pin Assignments

|            | FG256           |            | FG256           | FG256      |                 |
|------------|-----------------|------------|-----------------|------------|-----------------|
| Pin Number | A3P600 Function | Pin Number | A3P600 Function | Pin Number | A3P600 Function |
| G13        | GCC1/IO69PPB1   | K1         | GFC2/IO159PDB3  | M5         | VMV3            |
| G14        | IO65NPB1        | K2         | IO161NPB3       | M6         | VCCIB2          |
| G15        | IO75PDB1        | K3         | IO156PPB3       | M7         | VCCIB2          |
| G16        | IO75NDB1        | K4         | IO129RSB2       | M8         | IO117RSB2       |
| H1         | GFB0/IO163NPB3  | K5         | VCCIB3          | M9         | IO110RSB2       |
| H2         | GFA0/IO162NDB3  | K6         | VCC             | M10        | VCCIB2          |
| H3         | GFB1/IO163PPB3  | K7         | GND             | M11        | VCCIB2          |
| H4         | VCOMPLF         | K8         | GND             | M12        | VMV2            |
| H5         | GFC0/IO164NPB3  | K9         | GND             | M13        | IO94RSB2        |
| H6         | VCC             | K10        | GND             | M14        | GDB1/IO87PPB1   |
| H7         | GND             | K11        | VCC             | M15        | GDC1/IO86PDB1   |
| H8         | GND             | K12        | VCCIB1          | M16        | IO84NDB1        |
| H9         | GND             | K13        | IO73NPB1        | N1         | IO150NDB3       |
| H10        | GND             | K14        | IO80NPB1        | N2         | IO147PPB3       |
| H11        | VCC             | K15        | IO74NPB1        | N3         | GEC1/IO146PPB3  |
| H12        | GCC0/IO69NPB1   | K16        | IO72NDB1        | N4         | IO140RSB2       |
| H13        | GCB1/IO70PPB1   | L1         | IO159NDB3       | N5         | GNDQ            |
| H14        | GCA0/IO71NPB1   | L2         | IO156NPB3       | N6         | GEA2/IO143RSB2  |
| H15        | IO67NPB1        | L3         | IO151PPB3       | N7         | IO126RSB2       |
| H16        | GCB0/IO70NPB1   | L4         | IO158PSB3       | N8         | IO120RSB2       |
| J1         | GFA2/IO161PPB3  | L5         | VCCIB3          | N9         | IO108RSB2       |
| J2         | GFA1/IO162PDB3  | L6         | GND             | N10        | IO103RSB2       |
| J3         | VCCPLF          | L7         | VCC             | N11        | IO99RSB2        |
| J4         | IO160NDB3       | L8         | VCC             | N12        | GNDQ            |
| J5         | GFB2/IO160PDB3  | L9         | VCC             | N13        | IO92RSB2        |
| J6         | VCC             | L10        | VCC             | N14        | VJTAG           |
| J7         | GND             | L11        | GND             | N15        | GDC0/IO86NDB1   |
| J8         | GND             | L12        | VCCIB1          | N16        | GDA1/IO88PDB1   |
| J9         | GND             | L13        | GDB0/IO87NPB1   | P1         | GEB1/IO145PDB3  |
| J10        | GND             | L14        | IO85NDB1        | P2         | GEB0/IO145NDB3  |
| J11        | VCC             | L15        | IO85PDB1        | P3         | VMV2            |
| J12        | GCB2/IO73PPB1   | L16        | IO84PDB1        | P4         | IO138RSB2       |
| J13        | GCA1/IO71PPB1   | M1         | IO150PDB3       | P5         | IO136RSB2       |
| J14        | GCC2/IO74PPB1   | M2         | IO151NPB3       | P6         | IO131RSB2       |
| J15        | IO80PPB1        | M3         | IO147NPB3       | P7         | IO124RSB2       |
| J16        | GCA2/IO72PDB1   | M4         | GEC0/IO146NPB3  | P8         | IO119RSB2       |



|            | FG484            |            | FG484            | FG484      |                  |
|------------|------------------|------------|------------------|------------|------------------|
| Pin Number | A3P1000 Function | Pin Number | A3P1000 Function | Pin Number | A3P1000 Function |
| E21        | NC               | G13        | IO52RSB0         | J5         | IO218NDB3        |
| E22        | IO84PDB1         | G14        | IO60RSB0         | J6         | IO216PDB3        |
| F1         | NC               | G15        | GNDQ             | J7         | IO216NDB3        |
| F2         | IO215PDB3        | G16        | IO80NDB1         | J8         | VCCIB3           |
| F3         | IO215NDB3        | G17        | GBB2/IO79PDB1    | J9         | GND              |
| F4         | IO224NDB3        | G18        | IO79NDB1         | J10        | VCC              |
| F5         | IO225NDB3        | G19        | IO82NPB1         | J11        | VCC              |
| F6         | VMV3             | G20        | IO85PDB1         | J12        | VCC              |
| F7         | IO11RSB0         | G21        | IO85NDB1         | J13        | VCC              |
| F8         | GAC0/IO04RSB0    | G22        | NC               | J14        | GND              |
| F9         | GAC1/IO05RSB0    | H1         | NC               | J15        | VCCIB1           |
| F10        | IO25RSB0         | H2         | NC               | J16        | IO83NPB1         |
| F11        | IO36RSB0         | H3         | VCC              | J17        | IO86NPB1         |
| F12        | IO42RSB0         | H4         | IO217PDB3        | J18        | IO90PPB1         |
| F13        | IO49RSB0         | H5         | IO218PDB3        | J19        | IO87NDB1         |
| F14        | IO56RSB0         | H6         | IO221NDB3        | J20        | NC               |
| F15        | GBC0/IO72RSB0    | H7         | IO221PDB3        | J21        | IO89PDB1         |
| F16        | IO62RSB0         | H8         | VMV0             | J22        | IO89NDB1         |
| F17        | VMV0             | H9         | VCCIB0           | K1         | IO211PDB3        |
| F18        | IO78NDB1         | H10        | VCCIB0           | K2         | IO211NDB3        |
| F19        | IO81NDB1         | H11        | IO38RSB0         | K3         | NC               |
| F20        | IO82PPB1         | H12        | IO47RSB0         | K4         | IO210PPB3        |
| F21        | NC               | H13        | VCCIB0           | K5         | IO213NDB3        |
| F22        | IO84NDB1         | H14        | VCCIB0           | K6         | IO213PDB3        |
| G1         | IO214NDB3        | H15        | VMV1             | K7         | GFC1/IO209PPB3   |
| G2         | IO214PDB3        | H16        | GBC2/IO80PDB1    | K8         | VCCIB3           |
| G3         | NC               | H17        | IO83PPB1         | K9         | VCC              |
| G4         | IO222NDB3        | H18        | IO86PPB1         | K10        | GND              |
| G5         | IO222PDB3        | H19        | IO87PDB1         | K11        | GND              |
| G6         | GAC2/IO223PDB3   | H20        | VCC              | K12        | GND              |
| G7         | IO223NDB3        | H21        | NC               | K13        | GND              |
| G8         | GNDQ             | H22        | NC               | K14        | VCC              |
| G9         | IO23RSB0         | J1         | IO212NDB3        | K15        | VCCIB1           |
| G10        | IO29RSB0         | J2         | IO212PDB3        | K16        | GCC1/IO91PPB1    |
| G11        | IO33RSB0         | J3         | NC               | K17        | IO90NPB1         |
| G12        | IO46RSB0         | J4         | IO217NDB3        | K18        | IO88PDB1         |



Datasheet Information

| Revision                    | Changes                                                                                                                                                                                                                                                                   | Page    |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Revision 11<br>(March 2012) | Note indicating that A3P015 is not recommended for new designs has been added. The "Devices Not Recommended For New Designs" section is new (SAR 36760).                                                                                                                  | I to IV |
|                             | The following sentence was removed from the Advanced Architecture section:<br>"In addition, extensive on-chip programming circuitry allows for rapid, single-<br>voltage (3.3 V) programming of IGLOO devices via an IEEE 1532 JTAG<br>interface" (SAR 34687).            | NA      |
|                             | The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>ProASIC3 FPGA Fabric User's Guide</i> (SAR 34734). | 2-12    |
|                             | Figure 2-4 • Input Buffer Timing Model and Delays (Example) has been modified for the DIN waveform; the Rise and Fall time label has been changed to tDIN (35430).                                                                                                        | 2-16    |
|                             | The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34883).                                                                 | 2-32    |
|                             | Added values for minimum pulse width and removed the FRMAX row from Table 2-107 through Table 2-114 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SARs 37279, 29269).                        | 2-85    |



Datasheet Information

| Revision     | Changes                                                                                                                       | Page             |
|--------------|-------------------------------------------------------------------------------------------------------------------------------|------------------|
| Advance v0.3 | The "PLL Macro" section was updated. EXTFB information was removed from this section.                                         | 2-15             |
|              | The CCC Output Peak-to-Peak Period Jitter F <sub>CCC_OUT</sub> was updated in Table 2-<br>11 • ProASIC3 CCC/PLL Specification | 2-29             |
|              | EXTFB was removed from Figure 2-27 • CCC/PLL Macro.                                                                           | 2-28             |
|              | Table 2-13 • ProASIC3 I/O Features was updated.                                                                               | 2-30             |
|              | The "Hot-Swap Support" section was updated.                                                                                   | 2-33             |
|              | The "Cold-Sparing Support" section was updated.                                                                               | 2-34             |
|              | "Electrostatic Discharge (ESD) Protection" section was updated.                                                               | 2-35             |
|              | The LVPECL specification in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.   | 2-64             |
|              | In the Bank 1 area of Figure 2-72, VMV2 was changed to VMV1 and VCCIB2 was changed to VCC_IB1.                                | 2-97             |
|              | The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.                                            | 2-50             |
|              | The "JTAG Pins" section was updated.                                                                                          | 2-51             |
|              | "128-Bit AES Decryption" section was updated to include M7 device information.                                                | 2-53             |
|              | Table 3-6 was updated.                                                                                                        | 3-6              |
|              | Table 3-7 was updated.                                                                                                        | 3-6              |
|              | In Table 3-11, PAC4 was updated.                                                                                              | 3-93-8           |
|              | Table 3-20 was updated.                                                                                                       | 3-20             |
|              | The note in Table 3-32 was updated.                                                                                           | 3-27             |
|              | All Timing Characteristics tables were updated from LVTTL to Register Delays                                                  | 3-31 to 3-<br>73 |
|              | The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.                                                      | 3-85 to<br>3-90  |
|              | F <sub>TCKMAX</sub> was updated in Table 3-110.                                                                               | 3-97             |
| Advance v0.2 | Figure 2-11 was updated.                                                                                                      | 2-9              |
|              | The "Clock Resources (VersaNets)" section was updated.                                                                        | 2-9              |
|              | The "VersaNet Global Networks and Spine Access" section was updated.                                                          | 2-9              |
|              | The "PLL Macro" section was updated.                                                                                          | 2-15             |
|              | Figure 2-27 was updated.                                                                                                      | 2-28             |
|              | Figure 2-20 was updated.                                                                                                      | 2-19             |
|              | Table 2-5 was updated.                                                                                                        | 2-25             |
|              | Table 2-6 was updated.                                                                                                        | 2-25             |
|              | The "FIFO Flag Usage Considerations" section was updated.                                                                     | 2-27             |
|              | Table 2-13 was updated.                                                                                                       | 2-30             |
|              | Figure 2-24 was updated.                                                                                                      | 2-31             |
|              | The "Cold-Sparing Support" section is new.                                                                                    | 2-34             |