E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	
Total RAM Bits	147456
Number of I/O	154
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3 Devices	A3P015 ¹	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Cortex-M1 Devices ²					M1A3P250	M1A3P400	M1A3P600	M1A3P1000
Package Pins QFN	QN68	QN48, QN68, QN132 ⁷	QN132 ⁷	QN132 ⁷	QN132 ⁷			
CS VQFP TQFP		VQ100	CS121 VQ100 TQ144	VQ100 TQ144	VQ100			
PQFP FBGA			FG144	PQ208 FG144	PQ208 FG144/256 ⁵	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484

Notes:

- A3P015 is not recommended for new designs.
 Refer to the Cortex-M1 product brief for more information.
 AES is not available for Cortex-M1 ProASIC3 devices.
 Six chip (main) and three quadrant global networks are available for A3P060 and above.
 The M1A3P250 device does not support this package.
 For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs datasheet.
 Package not available.

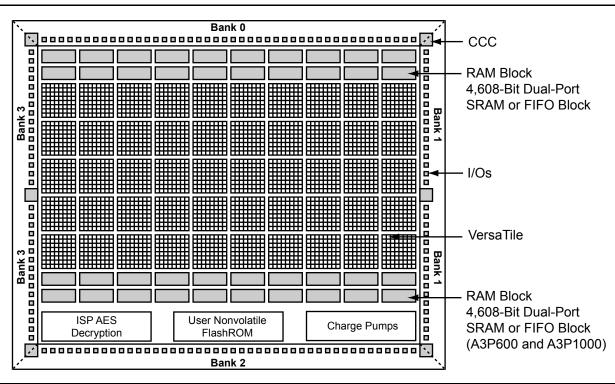
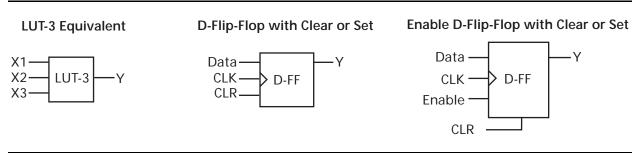


Figure 1-2 • ProASIC3 Device Architecture Overview with Four I/O Banks (A3P250, A3P600, and A3P1000)


The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the ProASIC3 core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the Microsemi ProASIC family of third-generation architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

VersaTiles

The ProASIC3 core consists of VersaTiles, which have been enhanced beyond the ProASIC^{PLUS®} core tiles. The ProASIC3 VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-3 for VersaTile configurations.

3.3 V LVCMOS Wide Range

Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software Default	v	IL	v	ІН	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μA	Max mA ⁴	Max mA ⁴	µA⁵	μΑ ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	132	127	10	10
100 µA	24 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	268	181	10	10

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

Table 2-48 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software	V	L	v	ΊH	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL²	IIH ³
Drive Strength	Default Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μΑ	Max mA ⁴	Max mA ⁴	μA ⁵	μ Α ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10
100 μA	16 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	103	109	10	10

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
tosue	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
toesud	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
tOESUE	Enable Setup Time for the Output Enable Register	К, Н
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-96 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-15 on page 2-69 for more information.

Embedded SRAM and FIFO Characteristics

SRAM

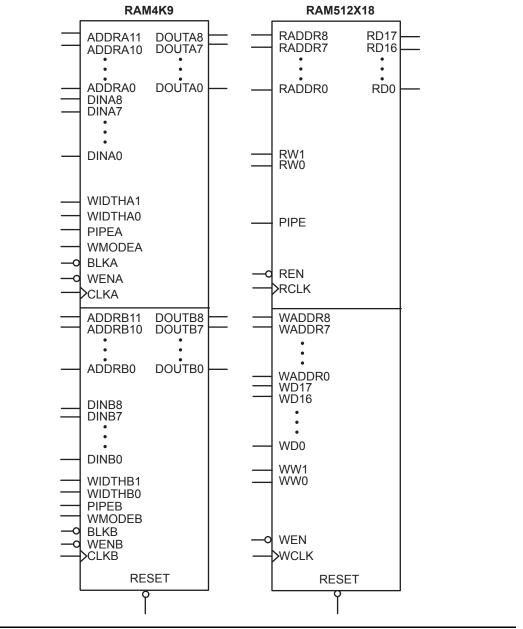


Figure 2-30 • RAM Models

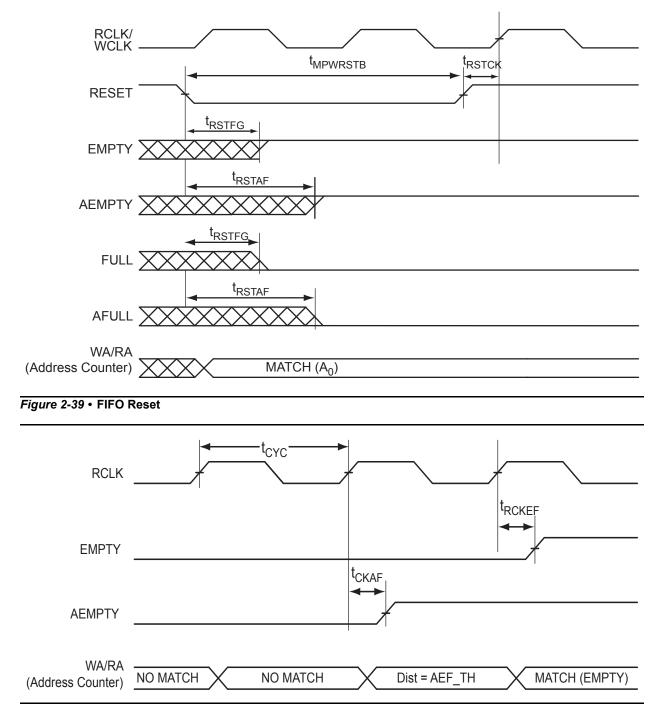
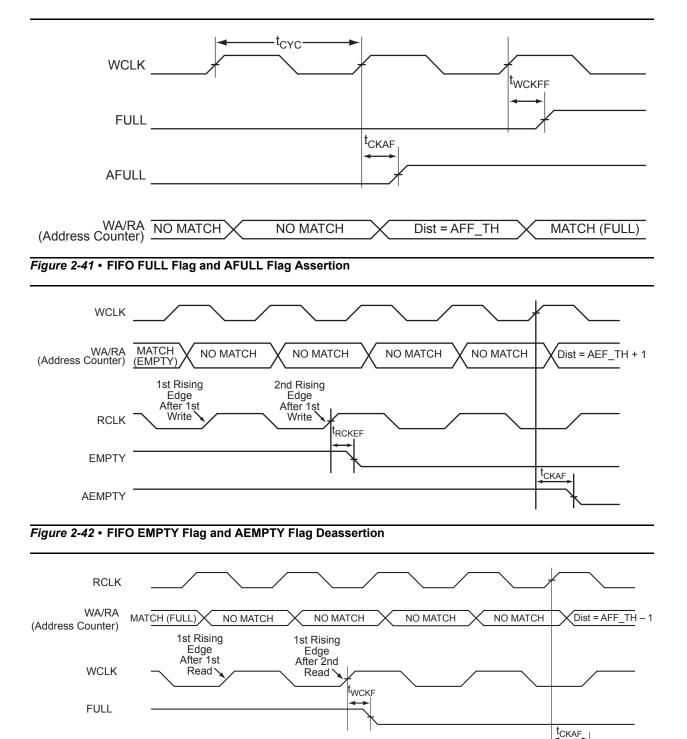
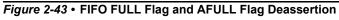




Figure 2-40 • FIFO EMPTY Flag and AEMPTY Flag Assertion

AFULL

3 – Pin Descriptions

Supply Pins

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

GND

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on ProASIC3 devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on ProASIC3 devices.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Related Documents

User's Guides

ProASIC FPGA Fabric User's Guide http://www.microsemi.com/soc/documents/PA3_UG.pdf

Packaging

The following documents provide packaging information and device selection for low power flash devices.

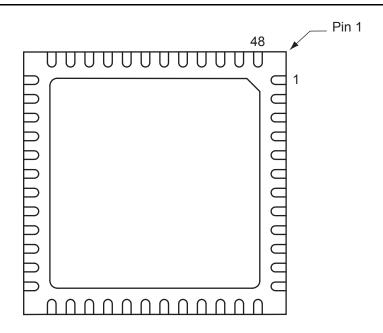
Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

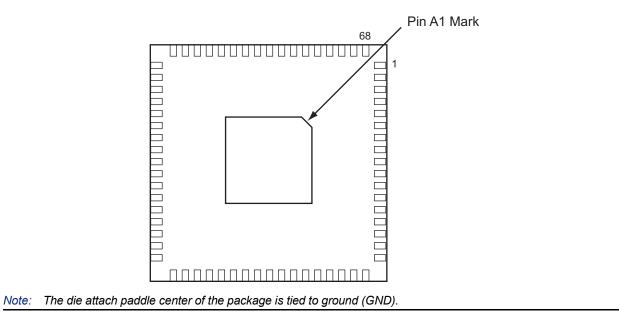
http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf


This document contains the package mechanical drawings for all packages currently or previously supplied by Actel. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials are at http://www.microsemi.com/products/solutions/package/docs.aspx.

4 – Package Pin Assignments

QN48 – Bottom View


Note: The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

QN68 – Bottom View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

VQ100		\ \	/Q100	\ \	VQ100		
Pin Number	A3P030 Function	Pin Number	A3P030 Function	Pin Number	A3P030 Function		
1	GND	37	VCC	73	IO27RSB0		
2	IO82RSB1	38	GND	74	IO26RSB0		
3	IO81RSB1	39	VCCIB1	75	IO25RSB0		
4	IO80RSB1	40	IO49RSB1	76	IO24RSB0		
5	IO79RSB1	41	IO47RSB1	77	IO23RSB0		
6	IO78RSB1	42	IO46RSB1	78	IO22RSB0		
7	IO77RSB1	43	IO45RSB1	79	IO21RSB0		
8	IO76RSB1	44	IO44RSB1	80	IO20RSB0		
9	GND	45	IO43RSB1	81	IO19RSB0		
10	IO75RSB1	46	IO42RSB1	82	IO18RSB0		
11	IO74RSB1	47	ТСК	83	IO17RSB0		
12	GEC0/IO73RSB1	48	TDI	84	IO16RSB0		
13	GEA0/IO72RSB1	49	TMS	85	IO15RSB0		
14	GEB0/IO71RSB1	50	NC	86	IO14RSB0		
15	IO70RSB1	51	GND	87	VCCIB0		
16	IO69RSB1	52	VPUMP	88	GND		
17	VCC	53	NC	89	VCC		
18	VCCIB1	54	TDO	90	IO12RSB0		
19	IO68RSB1	55	TRST	91	IO10RSB0		
20	IO67RSB1	56	VJTAG	92	IO08RSB0		
21	IO66RSB1	57	IO41RSB0	93	IO07RSB0		
22	IO65RSB1	58	IO40RSB0	94	IO06RSB0		
23	IO64RSB1	59	IO39RSB0	95	IO05RSB0		
24	IO63RSB1	60	IO38RSB0	96	IO04RSB0		
25	IO62RSB1	61	IO37RSB0	97	IO03RSB0		
26	IO61RSB1	62	IO36RSB0	98	IO02RSB0		
27	IO60RSB1	63	GDB0/IO34RSB0	99	IO01RSB0		
28	IO59RSB1	64	GDA0/IO33RSB0	100	IO00RSB0		
29	IO58RSB1	65	GDC0/IO32RSB0		•		
30	IO57RSB1	66	VCCIB0				
31	IO56RSB1	67	GND				
32	IO55RSB1	68	VCC				
33	IO54RSB1	69	IO31RSB0				
34	IO53RSB1	70	IO30RSB0				
35	IO52RSB1	71	IO29RSB0				
36	IO51RSB1	72	IO28RSB0				

PQ208		F	PQ208	PQ208		
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function	
1	GND	37	IO152PDB3	73	IO120RSB2	
2	GAA2/IO174PDB3	38	IO152NDB3	74	IO119RSB2	
3	IO174NDB3	39	IO150PSB3	75	IO118RSB2	
4	GAB2/IO173PDB3	40	VCCIB3	76	IO117RSB2	
5	IO173NDB3	41	GND	77	IO116RSB2	
6	GAC2/IO172PDB3	42	IO147PDB3	78	IO115RSB2	
7	IO172NDB3	43	IO147NDB3	79	IO114RSB2	
8	IO171PDB3	44	GEC1/IO146PDB3	80	IO112RSB2	
9	IO171NDB3	45	GEC0/IO146NDB3	81	GND	
10	IO170PDB3	46	GEB1/IO145PDB3	82	IO111RSB2	
11	IO170NDB3	47	GEB0/IO145NDB3	83	IO110RSB2	
12	IO169PDB3	48	GEA1/IO144PDB3	84	IO109RSB2	
13	IO169NDB3	49	GEA0/IO144NDB3	85	IO108RSB2	
14	IO168PDB3	50	VMV3	86	IO107RSB2	
15	IO168NDB3	51	GNDQ	87	IO106RSB2	
16	VCC	52	GND	88	VCC	
17	GND	53	VMV2	89	VCCIB2	
18	VCCIB3	54	GEA2/IO143RSB2	90	IO104RSB2	
19	IO166PDB3	55	GEB2/IO142RSB2	91	IO102RSB2	
20	IO166NDB3	56	GEC2/IO141RSB2	92	IO100RSB2	
21	GFC1/IO164PDB3	57	IO140RSB2	93	IO98RSB2	
22	GFC0/IO164NDB3	58	IO139RSB2	94	IO96RSB2	
23	GFB1/IO163PDB3	59	IO138RSB2	95	IO92RSB2	
24	GFB0/IO163NDB3	60	IO137RSB2	96	GDC2/IO91RSB2	
25	VCOMPLF	61	IO136RSB2	97	GND	
26	GFA0/IO162NPB3	62	VCCIB2	98	GDB2/IO90RSB2	
27	VCCPLF	63	IO135RSB2	99	GDA2/IO89RSB2	
28	GFA1/IO162PPB3	64	IO133RSB2	100	GNDQ	
29	GND	65	GND	101	ТСК	
30	GFA2/IO161PDB3	66	IO131RSB2	102	TDI	
31	IO161NDB3	67	IO129RSB2	103	TMS	
32	GFB2/IO160PDB3	68	IO127RSB2	104	VMV2	
33	IO160NDB3	69	IO125RSB2	105	GND	
34	GFC2/IO159PDB3	70	IO123RSB2	106	VPUMP	
35	IO159NDB3	71	VCC	107	GNDQ	
36	VCC	72	VCCIB2	108	TDO	

🌜 Microsemi.

Package Pin Assignments

FG144		F	G144	F	G144
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function
A1	GNDQ	D1	IO91RSB1	G1	GFA1/IO84RSB1
A2	VMV0	D2	IO92RSB1	G2	GND
A3	GAB0/IO04RSB0	D3	IO93RSB1	G3	VCCPLF
A4	GAB1/IO05RSB0	D4	GAA2/IO51RSB1	G4	GFA0/IO85RSB1
A5	IO08RSB0	D5	GAC0/IO06RSB0	G5	GND
A6	GND	D6	GAC1/IO07RSB0	G6	GND
A7	IO11RSB0	D7	GBC0/IO19RSB0	G7	GND
A8	VCC	D8	GBC1/IO20RSB0	G8	GDC1/IO45RSB0
A9	IO16RSB0	D9	GBB2/IO27RSB0	G9	IO32RSB0
A10	GBA0/IO23RSB0	D10	IO18RSB0	G10	GCC2/IO43RSB0
A11	GBA1/IO24RSB0	D11	IO28RSB0	G11	IO31RSB0
A12	GNDQ	D12	GCB1/IO37RSB0	G12	GCB2/IO42RSB0
B1	GAB2/IO53RSB1	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO88RSB1	H2	GFB2/IO82RSB1
B3	GAA0/IO02RSB0	E3	GFC1/IO89RSB1	H3	GFC2/IO81RSB1
B4	GAA1/IO03RSB0	E4	VCCIB1	H4	GEC1/IO77RSB1
B5	IO00RSB0	E5	IO52RSB1	H5	VCC
B6	IO10RSB0	E6	VCCIB0	H6	IO34RSB0
B7	IO12RSB0	E7	VCCIB0	H7	IO44RSB0
B8	IO14RSB0	E8	GCC1/IO35RSB0	H8	GDB2/IO55RSB1
B9	GBB0/IO21RSB0	E9	VCCIB0	H9	GDC0/IO46RSB0
B10	GBB1/IO22RSB0	E10	VCC	H10	VCCIB0
B11	GND	E11	GCA0/IO40RSB0	H11	IO33RSB0
B12	VMV0	E12	IO30RSB0	H12	VCC
C1	IO95RSB1	F1	GFB0/IO86RSB1	J1	GEB1/IO75RSB1
C2	GFA2/IO83RSB1	F2	VCOMPLF	J2	IO78RSB1
C3	GAC2/IO94RSB1	F3	GFB1/IO87RSB1	J3	VCCIB1
C4	VCC	F4	IO90RSB1	J4	GEC0/IO76RSB1
C5	IO01RSB0	F5	GND	J5	IO79RSB1
C6	IO09RSB0	F6	GND	J6	IO80RSB1
C7	IO13RSB0	F7	GND	J7	VCC
C8	IO15RSB0	F8	GCC0/IO36RSB0	J8	ТСК
C9	IO17RSB0	F9	GCB0/IO38RSB0	J9	GDA2/IO54RSB1
C10	GBA2/IO25RSB0	F10	GND	J10	TDO
C11	IO26RSB0	F11	GCA1/IO39RSB0	J11	GDA1/IO49RSB0
C12	GBC2/IO29RSB0	F12	GCA2/IO41RSB0	J12	GDB1/IO47RSB0

1		-	
F	FG484		FG484
Pin Number	A3P400 Function	Pin Number	A3P400 Function
R17	GDB1/IO78UPB1	U9	IO122RSB2
R18	GDC1/IO77UDB1	U10	IO115RSB2
R19	IO75NDB1	U11	IO110RSB2
R20	VCC	U12	IO98RSB2
R21	NC	U13	IO95RSB2
R22	NC	U14	IO88RSB2
T1	NC	U15	IO84RSB2
T2	NC	U16	ТСК
Т3	NC	U17	VPUMP
T4	IO140NDB3	U18	TRST
T5	IO138PPB3	U19	GDA0/IO79VDB1
T6	GEC1/IO137PPB3	U20	NC
T7	IO131RSB2	U21	NC
Т8	GNDQ	U22	NC
Т9	GEA2/IO134RSB2	V1	NC
T10	IO117RSB2	V2	NC
T11	IO111RSB2	V3	GND
T12	IO99RSB2	V4	GEA1/IO135PDB3
T13	IO94RSB2	V5	GEA0/IO135NDB3
T14	IO87RSB2	V6	IO127RSB2
T15	GNDQ	V7	GEC2/IO132RSB2
T16	IO93RSB2	V8	IO123RSB2
T17	VJTAG	V9	IO118RSB2
T18	GDC0/IO77VDB1	V10	IO112RSB2
T19	GDA1/IO79UDB1	V11	IO106RSB2
T20	NC	V12	IO100RSB2
T21	NC	V13	IO96RSB2
T22	NC	V14	IO89RSB2
U1	NC	V15	IO85RSB2
U2	NC	V16	GDB2/IO81RSB2
U3	NC	V17	TDI
U4	GEB1/IO136PDB3	V18	NC
U5	GEB0/IO136NDB3	V19	TDO
U6	VMV2	V20	GND
U7	IO129RSB2	V21	NC
U8	IO128RSB2	V22	NC

FG484					
Pin Number	A3P400 Function				
W1	NC				
W2	NC				
W3	NC				
W4	GND				
W5	IO126RSB2				
W6	GEB2/IO133RSB2				
W7	IO124RSB2				
W8	IO116RSB2				
W9	IO113RSB2				
W10	IO107RSB2				
W11	IO105RSB2				
W12	IO102RSB2				
W13	IO97RSB2				
W14	IO92RSB2				
W15	GDC2/IO82RSB2				
W16	IO86RSB2				
W17	GDA2/IO80RSB2				
W18	TMS				
W19	GND				
W20	NC				
W21	NC				
W22	NC				
Y1	VCCIB3				
Y2	NC				
Y3	NC				
Y4	NC				
Y5	GND				
Y6	NC				
Y7	NC				
Y8	VCC				
Y9	VCC				
Y10	NC				
Y11	NC				
Y12	NC				
Y13	NC				
Y14	VCC				

Microsemi

Package Pin Assignments

FG484					
Pin Number	A3P400 Function				
Y15	VCC				
Y16	NC				
Y17	NC				
Y18	GND				
Y19	NC				
Y20	NC				
Y21	NC				
Y22	VCCIB1				
AA1	GND				
AA2	VCCIB3				
AA3	NC				
AA4	NC				
AA5	NC				
AA6	NC				
AA7	NC				
AA8	NC				
AA9	NC				
AA10	NC				
AA11	NC				
AA12	NC				
AA13	NC				
AA14	NC				
AA15	NC				
AA16	NC				
AA17	NC				
AA18	NC				
AA19	NC				
AA20	NC				
AA21	VCCIB1				
AA22	GND				
AB1	GND				
AB2	GND				
AB3	VCCIB2				
AB4	NC				
AB5	NC				
AB6	IO121RSB2				

FG484						
Pin Number	A3P400 Function					
AB7	IO119RSB2					
AB8	IO114RSB2					
AB9	IO109RSB2					
AB10	NC					
AB11	NC					
AB12	IO104RSB2					
AB13	IO103RSB2					
AB14	NC					
AB15	NC					
AB16	IO91RSB2					
AB17	IO90RSB2					
AB18	NC					
AB19	NC					
AB20	VCCIB2					
AB21	GND					
AB22	GND					

Package Pin Assignments

FG484		FG484		FG484		
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function	
R17	GDB1/IO87PPB1	U9	IO131RSB2	W1	NC	
R18	GDC1/IO86PDB1	U10	IO124RSB2	W2	IO148PDB3	
R19	IO84NDB1	U11	IO119RSB2	W3	NC	
R20	VCC	U12	IO107RSB2	W4	GND	
R21	IO81NDB1	U13	IO104RSB2	W5	IO137RSB2	
R22	IO82PDB1	U14	IO97RSB2	W6	GEB2/IO142RSB2	
T1	IO152PDB3	U15	VMV1	W7	IO134RSB2	
T2	IO152NDB3	U16	тск	W8	IO125RSB2	
Т3	NC	U17	VPUMP	W9	IO123RSB2	
T4	IO150NDB3	U18	TRST	W10	IO118RSB2	
T5	IO147PPB3	U19	GDA0/IO88NDB1	W11	IO115RSB2	
T6	GEC1/IO146PPB3	U20	NC	W12	IO111RSB2	
T7	IO140RSB2	U21	IO83NDB1	W13	IO106RSB2	
Т8	GNDQ	U22	NC	W14	IO102RSB2	
Т9	GEA2/IO143RSB2	V1	NC	W15	GDC2/IO91RSB2	
T10	IO126RSB2	V2	NC	W16	IO93RSB2	
T11	IO120RSB2	V3	GND	W17	GDA2/IO89RSB2	
T12	IO108RSB2	V4	GEA1/IO144PDB3	W18	TMS	
T13	IO103RSB2	V5	GEA0/IO144NDB3	W19	GND	
T14	IO99RSB2	V6	IO139RSB2	W20	NC	
T15	GNDQ	V7	GEC2/IO141RSB2	W21	NC	
T16	IO92RSB2	V8	IO132RSB2	W22	NC	
T17	VJTAG	V9	IO127RSB2	Y1	VCCIB3	
T18	GDC0/IO86NDB1	V10	IO121RSB2	Y2	Y2 IO148NDB3	
T19	GDA1/IO88PDB1	V11	IO114RSB2	Y3	NC	
T20	NC	V12	IO109RSB2	Y4	NC	
T21	IO83PDB1	V13	IO105RSB2	Y5	GND	
T22	IO82NDB1	V14	IO98RSB2	Y6	NC	
U1	IO149PDB3	V15	IO96RSB2	Y7	NC	
U2	IO149NDB3	V16	GDB2/IO90RSB2	Y8	VCC	
U3	NC	V17	TDI	Y9	VCC	
U4	GEB1/IO145PDB3	V18	GNDQ	Y10	NC	
U5	GEB0/IO145NDB3	V19	TDO	Y11	NC	
U6	VMV2	V20	GND	Y12	NC	
U7	IO138RSB2	V21	NC	Y13	NC	
U8	IO136RSB2	V22	NC	Y14	VCC	

FG484		FG484		FG484		
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	
R17	GDB1/IO112PPB1	U9	IO165RSB2	W1	NC	
R18	GDC1/IO111PDB1	U10	IO159RSB2	W2	IO191PDB3	
R19	IO107NDB1	U11	IO151RSB2	W3	NC	
R20	VCC	U12	IO137RSB2	W4	GND	
R21	IO104NDB1	U13	IO134RSB2	W5	IO183RSB2	
R22	IO105PDB1	U14	IO128RSB2	W6	GEB2/IO186RSB2	
T1	IO198PDB3	U15	VMV1	W7	IO172RSB2	
T2	IO198NDB3	U16	тск	W8	IO170RSB2	
Т3	NC	U17	VPUMP	W9	IO164RSB2	
T4	IO194PPB3	U18	TRST	W10	IO158RSB2	
T5	IO192PPB3	U19	GDA0/IO113NDB1	W11	IO153RSB2	
T6	GEC1/IO190PPB3	U20	NC	W12	IO142RSB2	
T7	IO192NPB3	U21	IO108NDB1	W13	IO135RSB2	
Т8	GNDQ	U22	IO109PDB1	W14	IO130RSB2	
Т9	GEA2/IO187RSB2	V1	NC	W15	GDC2/IO116RSB2	
T10	IO161RSB2	V2	NC	W16	IO120RSB2	
T11	IO155RSB2	V3	GND	W17	GDA2/IO114RSB2	
T12	IO141RSB2	V4	GEA1/IO188PDB3	W18	TMS	
T13	IO129RSB2	V5	GEA0/IO188NDB3	W19	GND	
T14	IO124RSB2	V6	IO184RSB2	W20	NC	
T15	GNDQ	V7	GEC2/IO185RSB2	W21	NC	
T16	IO110PDB1	V8	IO168RSB2	W22	NC	
T17	VJTAG	V9	IO163RSB2	Y1	VCCIB3	
T18	GDC0/IO111NDB1	V10	IO157RSB2	Y2	IO191NDB3	
T19	GDA1/IO113PDB1	V11	IO149RSB2	Y3	NC	
T20	NC	V12	IO143RSB2	Y4	IO182RSB2	
T21	IO108PDB1	V13	IO138RSB2	Y5	GND	
T22	IO105NDB1	V14	IO131RSB2	Y6	IO177RSB2	
U1	IO195PDB3	V15	IO125RSB2	Y7	IO174RSB2	
U2	IO195NDB3	V16	GDB2/IO115RSB2	Y8	VCC	
U3	IO194NPB3	V17	TDI	Y9	VCC	
U4	GEB1/IO189PDB3	V18	GNDQ	Y10	IO154RSB2	
U5	GEB0/IO189NDB3	V19	TDO	Y11	IO148RSB2	
U6	VMV2	V20	GND	Y12	IO140RSB2	
U7	IO179RSB2	V21	NC	Y13	NC	
U8	IO171RSB2	V22	IO109NDB1	Y14	VCC	

Datasheet Information

Revision	Changes	Page			
Revision 5 (Aug 2008) DC and Switching Characteristics v1.3	TJ, Maximum Junction Temperature, was changed to 100° from 110° in the "Thermal Characteristics" section and EQ 1. The calculated result of Maximum Power Allowed has thus changed to 1.463 W from 1.951 W.	2-6			
	Values for the A3P015 device were added to Table 2-7 • Quiescent Supply Current Characteristics.				
	Values for the A3P015 device were added to Table 2-14 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices. P _{AC14} was removed. Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices is new.				
	The "PLL Contribution—PPLL" section was updated to change the P _{PLL} formula from $P_{AC13} + P_{AC14} * F_{CLKOUT}$ to $P_{DC4} + P_{AC13} * F_{CLKOUT}$.				
	Both fall and rise values were included for $t_{\mbox{DDRISUD}}$ and $t_{\mbox{DDRIHD}}$ in Table 2-102 \bullet Input DDR Propagation Delays.	2-78			
	Table 2-107 • A3P015 Global Resource is new.	2-86			
	The typical value for Delay Increments in Programmable Delay Blocks was changed from 160 to 200 in Table 2-115 • ProASIC3 CCC/PLL Specification.	2-90			
Revision 4 (Jun 2008) DC and Switching Characteristics v1.2	Table note references were added to Table 2-2 • Recommended Operating Conditions 1, and the order of the table notes was changed.	2-2			
	The title for Table 2-4 • Overshoot and Undershoot Limits 1 was modified to remove "as measured on quiet I/Os." Table note 1 was revised to remove "estimated SSO density over cycles." Table note 2 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching I/Os."	2-3			
	The "Power per I/O Pin" section was updated to include 3 additional tables pertaining to input buffer power and output buffer power.	2-7			
	Table 2-29 • I/O Output Buffer Maximum Resistances 1 was revised to include values for 3.3 V PCI/PCI-X.	2-27			
	Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels was updated.	2-66			
Revision 3 (Jun 2008) Packaging v1.3	Pin numbers were added to the "QN68 – Bottom View" package diagram. Note 2 was added below the diagram.	4-3			
	The "QN132 – Bottom View" package diagram was updated to include D1 to D4. In addition, note 1 was changed from top view to bottom view, and note 2 is new.	4-6			
Revision 2 (Feb 2008) Product Brief v1.0	This document was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview.	N/A			
	This document was updated to include A3P015 device information. QN68 is a new package that was added because it is offered in the A3P015. The following sections were updated:	N/A			
	"Features and Benefits"				
	"ProASIC3 Ordering Information"				
	"Temperature Grade Offerings"				
	"ProASIC3 Flash Family FPGAs"				
	"A3P015 and A3P030" note				
	Introduction and Overview (NA)				

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.