E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	147456
Number of I/O	154
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000-pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 – ProASIC3 DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 •	Absolute	Maximum	Ratings
-------------	----------	---------	---------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	-0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	-0.3 to 1.65	V
VCCI	DC I/O output buffer supply voltage	-0.3 to 3.75	V
VMV	DC I/O input buffer supply voltage	-0.3 to 3.75	V
VI	I/O input voltage	–0.3 V to 3.6 V	V
		(when I/O hot insertion mode is enabled)	
		-0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)	
T _{STG} ²	Storage temperature	–65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst Case VCC = 1.425 V, Worst-Case VCCI (per standard)

Standard I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor	t _{bour} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	t _{EoUT} (ns)	t _{zL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	35	-	0.45	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
3.3 V LVCMOS Wide Range ²	100 µA	8 mA	High	35	-	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns
2.5 V LVCMOS	8 mA	8 mA	High	35	_	0.45	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
1.8 V LVCMOS	4 mA	4 mA	High	35	_	0.45	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns
1.5 V LVCMOS	2 mA	2 mA	High	35	-	0.45	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-49 •	Minimum and Maximum DC Input and Output Levels
	Applicable to Standard I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software Default	v	ΊL	v	ΊH	VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μA	Max mA ⁴	Max mA ⁴	µA⁵	µA⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	0.60	14.64	0.04	1.52	0.43	14.64	12.97	3.21	3.15	ns
		-1	0.51	12.45	0.04	1.29	0.36	12.45	11.04	2.73	2.68	ns
		-2	0.45	10.93	0.03	1.13	0.32	10.93	9.69	2.39	2.35	ns
100 µA	4 mA	Std.	0.60	14.64	0.04	1.52	0.43	14.64	12.97	3.21	3.15	ns
		-1	0.51	12.45	0.04	1.29	0.36	12.45	11.04	2.73	2.68	ns
		-2	0.45	10.93	0.03	1.13	0.32	10.93	9.69	2.39	2.35	ns
100 µA	6 mA	Std.	0.60	10.16	0.04	1.52	0.43	10.16	9.08	3.71	3.98	ns
		-1	0.51	8.64	0.04	1.29	0.36	8.64	7.73	3.15	3.39	ns
		-2	0.45	7.58	0.03	1.13	0.32	7.58	6.78	2.77	2.97	ns
100 µA	8 mA	Std.	0.60	10.16	0.04	1.52	0.43	10.16	9.08	3.71	3.98	ns
		-1	0.51	8.64	0.04	1.29	0.36	8.64	7.73	3.15	3.39	ns
		-2	0.45	7.58	0.03	1.13	0.32	7.58	6.78	2.77	2.97	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Figure 2-16 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *Fusion, IGLOO®/e, and ProASIC3/E Macro Library Guide*.

Figure 2-24 • Sample of Combinatorial Cells

Timing Waveforms

Figure 2-32 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

Figure 2-34 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.

Figure 2-35 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.13	0.15	0.17	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{DS}	Input data (WD) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (WD) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	2.16	2.46	2.89	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	0.90	1.02	1.20	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.50	0.43	0.38	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address—Applicable to Opening Edge	0.59	0.50	0.44	ns
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to data out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Table 2-117 • RAM512X18

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3 – Pin Descriptions

Supply Pins

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

GND

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on ProASIC3 devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on ProASIC3 devices.

A3P060 Function GND NC GCB2/IO45RSB0 GND GCB0/IO41RSB0 GCC1/IO38RSB0 GND GBB2/IO30RSB0 VMV0 GBA0/IO26RSB0 GBC1/IO23RSB0 GND IO20RSB0 IO17RSB0 GND IO12RSB0 GAC0/IO09RSB0 GND GAA1/IO06RSB0 GNDQ GAA2/IO02RSB1 IO95RSB1 VCC GFB1/IO87RSB1 GFA0/IO85RSB1 GFA2/IO83RSB1 IO80RSB1 VCCIB1 GEA1/IO73RSB1 GNDQ GEA2/IO71RSB1 IO68RSB1 VCCIB1 NC NC IO60RSB1

	QN132		QN132	QN132		
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P0	
A1	GAB2/IO00RSB1	A37	GBB1/IO25RSB0	B25		
A2	IO93RSB1	A38	GBC0/IO22RSB0	B26		
A3	VCCIB1	A39	VCCIB0	B27	GCB	
A4	GFC1/IO89RSB1	A40	IO21RSB0	B28		
A5	GFB0/IO86RSB1	A41	IO18RSB0	B29	GCB	
A6	VCCPLF	A42	IO15RSB0	B30	GCC	
A7	GFA1/IO84RSB1	A43	IO14RSB0	B31		
A8	GFC2/IO81RSB1	A44	IO11RSB0	B32	GBB	
A9	IO78RSB1	A45	GAB1/IO08RSB0	B33		
A10	VCC	A46	NC	B34	GBA	
A11	GEB1/IO75RSB1	A47	GAB0/IO07RSB0	B35	GBC	
A12	GEA0/IO72RSB1	A48	IO04RSB0	B36		
A13	GEC2/IO69RSB1	B1	IO01RSB1	B37	IC	
A14	IO65RSB1	B2	GAC2/IO94RSB1	B38	IC	
A15	VCC	B3	GND	B39		
A16	IO64RSB1	B4	GFC0/IO88RSB1	B40	IC	
A17	IO63RSB1	B5	VCOMPLF	B41	GAC	
A18	IO62RSB1	B6	GND	B42		
A19	IO61RSB1	B7	GFB2/IO82RSB1	B43	GAA	
A20	IO58RSB1	B8	IO79RSB1	B44		
A21	GDB2/IO55RSB1	B9	GND	C1	GAA	
A22	NC	B10	GEB0/IO74RSB1	C2	IC	
A23	GDA2/IO54RSB1	B11	VMV1	C3		
A24	TDI	B12	GEB2/IO70RSB1	C4	GFB	
A25	TRST	B13	IO67RSB1	C5	GFA	
A26	GDC1/IO48RSB0	B14	GND	C6	GFA	
A27	VCC	B15	NC	C7	IC	
A28	IO47RSB0	B16	NC	C8		
A29	GCC2/IO46RSB0	B17	GND	C9	GEA	
A30	GCA2/IO44RSB0	B18	IO59RSB1	C10		
A31	GCA0/IO43RSB0	B19	GDC2/IO56RSB1	C11	GEA	
A32	GCB1/IO40RSB0	B20	GND	C12	IC	
A33	IO36RSB0	B21	GNDQ	C13		
A34	VCC	B22	TMS	C14		
A35	IO31RSB0	B23	TDO	C15		
A36	GBA2/IO28RSB0	B24	GDC0/IO49RSB0	C16	10	

Package Pin Assignments

TQ144		Т	Q144	TQ144			
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function		
1	GAA2/IO51RSB1	37	NC	73	VPUMP		
2	IO52RSB1	38	GEA2/IO71RSB1	74	NC		
3	GAB2/IO53RSB1	39	GEB2/IO70RSB1	75	TDO		
4	IO95RSB1	40	GEC2/IO69RSB1	76	TRST		
5	GAC2/IO94RSB1	41	IO68RSB1	77	VJTAG		
6	IO93RSB1	42	IO67RSB1	78	GDA0/IO50RSB0		
7	IO92RSB1	43	IO66RSB1	79	GDB0/IO48RSB0		
8	IO91RSB1	44	IO65RSB1	80	GDB1/IO47RSB0		
9	VCC	45	VCC	81	VCCIB0		
10	GND	46	GND	82	GND		
11	VCCIB1	47	VCCIB1	83	IO44RSB0		
12	IO90RSB1	48	NC	84	GCC2/IO43RSB0		
13	GFC1/IO89RSB1	49	IO64RSB1	85	GCB2/IO42RSB0		
14	GFC0/IO88RSB1	50	NC	86	GCA2/IO41RSB0		
15	GFB1/IO87RSB1	51	IO63RSB1	87	GCA0/IO40RSB0		
16	GFB0/IO86RSB1	52	NC	88	GCA1/IO39RSB0		
17	VCOMPLF	53	IO62RSB1	89	GCB0/IO38RSB0		
18	GFA0/IO85RSB1	54	NC	90	GCB1/IO37RSB0		
19	VCCPLF	55	IO61RSB1	91	GCC0/IO36RSB0		
20	GFA1/IO84RSB1	56	NC	92	GCC1/IO35RSB0		
21	GFA2/IO83RSB1	57	NC	93	IO34RSB0		
22	GFB2/IO82RSB1	58	IO60RSB1	94	IO33RSB0		
23	GFC2/IO81RSB1	59	IO59RSB1	95	NC		
24	IO80RSB1	60	IO58RSB1	96	NC		
25	IO79RSB1	61	IO57RSB1	97	NC		
26	IO78RSB1	62	NC	98	VCCIB0		
27	GND	63	GND	99	GND		
28	VCCIB1	64	NC	100	VCC		
29	GEC1/IO77RSB1	65	GDC2/IO56RSB1	101	IO30RSB0		
30	GEC0/IO76RSB1	66	GDB2/IO55RSB1	102	GBC2/IO29RSB0		
31	GEB1/IO75RSB1	67	GDA2/IO54RSB1	103	IO28RSB0		
32	GEB0/IO74RSB1	68	GNDQ	104	GBB2/IO27RSB0		
33	GEA1/IO73RSB1	69	ТСК	105	IO26RSB0		
34	GEA0/IO72RSB1	70	TDI	106	GBA2/IO25RSB0		
35	VMV1	71	TMS	107	VMV0		
36	GNDQ	72	VMV1	108	GNDQ		

FG144							
Pin Number	A3P250 Function						
K1	GEB0/IO99NDB3						
K2	GEA1/IO98PDB3						
K3	GEA0/IO98NDB3						
K4	GEA2/IO97RSB2						
K5	IO90RSB2						
K6	IO84RSB2						
K7	GND						
K8	IO66RSB2						
K9	GDC2/IO63RSB2						
K10	GND						
K11	GDA0/IO60VDB1						
K12	GDB0/IO59VDB1						
L1	GND						
L2	VMV3						
L3	GEB2/IO96RSB2						
L4	IO91RSB2						
L5	VCCIB2						
L6	IO82RSB2						
L7	IO80RSB2						
L8	IO72RSB2						
L9	TMS						
L10	VJTAG						
L11	VMV2						
L12	TRST						
M1	GNDQ						
M2	GEC2/IO95RSB2						
M3	IO92RSB2						
M4	IO89RSB2						
M5	IO87RSB2						
M6	IO85RSB2						
M7	IO78RSB2						
M8	IO76RSB2						
M9	TDI						
M10	VCCIB2						
M11	VPUMP						
M12	GNDQ						

Microsemi

Package Pin Assignments

	FG144		FG144	FG144			
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function		
A1	GNDQ	D1	IO213PDB3	G1	GFA1/IO207PPB3		
A2	VMV0	D2	IO213NDB3	G2	GND		
A3	GAB0/IO02RSB0	D3	IO223NDB3	G3	VCCPLF		
A4	GAB1/IO03RSB0	D4	GAA2/IO225PPB3	G4	GFA0/IO207NPB3		
A5	IO10RSB0	D5	GAC0/IO04RSB0	G5	GND		
A6	GND	D6	GAC1/IO05RSB0	G6	GND		
A7	IO44RSB0	D7	GBC0/IO72RSB0	G7	GND		
A8	VCC	D8	GBC1/IO73RSB0	G8	GDC1/IO111PPB1		
A9	IO69RSB0	D9	GBB2/IO79PDB1	G9	IO96NDB1		
A10	GBA0/IO76RSB0	D10	IO79NDB1	G10	GCC2/IO96PDB1		
A11	GBA1/IO77RSB0	D11	IO80NPB1	G11	IO95NDB1		
A12	GNDQ	D12	GCB1/IO92PPB1	G12	GCB2/IO95PDB1		
B1	GAB2/IO224PDB3	E1	VCC	H1	VCC		
B2	GND	E2	GFC0/IO209NDB3	H2	GFB2/IO205PDB3		
B3	GAA0/IO00RSB0	E3	GFC1/IO209PDB3	H3	GFC2/IO204PSB3		
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO190PDB3		
B5	IO13RSB0	E5	IO225NPB3	H5	VCC		
B6	IO26RSB0	E6	VCCIB0	H6	IO105PDB1		
B7	IO35RSB0	E7	VCCIB0	H7	IO105NDB1		
B8	IO60RSB0	E8	GCC1/IO91PDB1	H8	GDB2/IO115RSB2		
B9	GBB0/IO74RSB0	E9	VCCIB1	H9	GDC0/IO111NPB1		
B10	GBB1/IO75RSB0	E10	VCC	H10	VCCIB1		
B11	GND	E11	GCA0/IO93NDB1	H11	IO101PSB1		
B12	VMV1	E12	IO94NDB1	H12	VCC		
C1	IO224NDB3	F1	GFB0/IO208NPB3	J1	GEB1/IO189PDB3		
C2	GFA2/IO206PPB3	F2	VCOMPLF	J2	IO205NDB3		
C3	GAC2/IO223PDB3	F3	GFB1/IO208PPB3	J3	VCCIB3		
C4	VCC	F4	IO206NPB3	J4	GEC0/IO190NDB3		
C5	IO16RSB0	F5	GND	J5	IO160RSB2		
C6	IO29RSB0	F6	GND	J6	IO157RSB2		
C7	IO32RSB0	F7	GND	J7	VCC		
C8	IO63RSB0	F8	GCC0/IO91NDB1	J8	ТСК		
C9	IO66RSB0	F9	GCB0/IO92NPB1	J9	GDA2/IO114RSB2		
C10	GBA2/IO78PDB1	F10	GND	J10	TDO		
C11	IO78NDB1	F11	GCA1/IO93PDB1	J11	GDA1/IO113PDB1		
C12	GBC2/IO80PPB1	F12	GCA2/IO94PDB1	J12	GDB1/IO112PDB1		

	FG144
Pin Number	A3P1000 Function
K1	GEB0/IO189NDB3
K2	GEA1/IO188PDB3
K3	GEA0/IO188NDB3
K4	GEA2/IO187RSB2
K5	IO169RSB2
K6	IO152RSB2
K7	GND
K8	IO117RSB2
K9	GDC2/IO116RSB2
K10	GND
K11	GDA0/IO113NDB1
K12	GDB0/IO112NDB1
L1	GND
L2	VMV3
L3	GEB2/IO186RSB2
L4	IO172RSB2
L5	VCCIB2
L6	IO153RSB2
L7	IO144RSB2
L8	IO140RSB2
L9	TMS
L10	VJTAG
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO185RSB2
M3	IO173RSB2
M4	IO168RSB2
M5	IO161RSB2
M6	IO156RSB2
M7	IO145RSB2
M8	IO141RSB2
M9	TDI
M10	VCCIB2
M11	VPUMP
M12	GNDQ

	FG256		FG256		FG256
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
G13	GCC1/IO67PPB1	K1	GFC2/IO142PDB3	M5	VMV3
G14	IO64NPB1	K2	IO144NPB3	M6	VCCIB2
G15	IO73PDB1	K3	IO141PPB3	M7	VCCIB2
G16	IO73NDB1	K4	IO120RSB2	M8	IO108RSB2
H1	GFB0/IO146NPB3	K5	VCCIB3	M9	IO101RSB2
H2	GFA0/IO145NDB3	K6	VCC	M10	VCCIB2
H3	GFB1/IO146PPB3	K7	GND	M11	VCCIB2
H4	VCOMPLF	K8	GND	M12	VMV2
H5	GFC0/IO147NPB3	K9	GND	M13	IO83RSB2
H6	VCC	K10	GND	M14	GDB1/IO78UPB1
H7	GND	K11	VCC	M15	GDC1/IO77UDB1
H8	GND	K12	VCCIB1	M16	IO75NDB1
H9	GND	K13	IO71NPB1	N1	IO140NDB3
H10	GND	K14	IO74RSB1	N2	IO138PPB3
H11	VCC	K15	IO72NPB1	N3	GEC1/IO137PPB3
H12	GCC0/IO67NPB1	K16	IO70NDB1	N4	IO131RSB2
H13	GCB1/IO68PPB1	L1	IO142NDB3	N5	GNDQ
H14	GCA0/IO69NPB1	L2	IO141NPB3	N6	GEA2/IO134RSB2
H15	NC	L3	IO125RSB2	N7	IO117RSB2
H16	GCB0/IO68NPB1	L4	IO139RSB3	N8	IO111RSB2
J1	GFA2/IO144PPB3	L5	VCCIB3	N9	IO99RSB2
J2	GFA1/IO145PDB3	L6	GND	N10	IO94RSB2
J3	VCCPLF	L7	VCC	N11	IO87RSB2
J4	IO143NDB3	L8	VCC	N12	GNDQ
J5	GFB2/IO143PDB3	L9	VCC	N13	IO93RSB2
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO77VDB1
J8	GND	L12	VCCIB1	N16	GDA1/IO79UDB1
J9	GND	L13	GDB0/IO78VPB1	P1	GEB1/IO136PDB3
J10	GND	L14	IO76VDB1	P2	GEB0/IO136NDB3
J11	VCC	L15	IO76UDB1	P3	VMV2
J12	GCB2/IO71PPB1	L16	IO75PDB1	P4	IO129RSB2
J13	GCA1/IO69PPB1	M1	IO140PDB3	P5	IO128RSB2
J14	GCC2/IO72PPB1	M2	IO130RSB2	P6	IO122RSB2
J15	NC	M3	IO138NPB3	P7	IO115RSB2
J16	GCA2/IO70PDB1	M4	GEC0/IO137NPB3	P8	IO110RSB2

Package Pin Assignments

	FG484		FG484		FG484	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function	
R17	GDB1/IO87PPB1	U9	IO131RSB2	W1	NC	
R18	GDC1/IO86PDB1	U10	IO124RSB2	W2	IO148PDB3	
R19	IO84NDB1	U11	IO119RSB2	W3	NC	
R20	VCC	U12	IO107RSB2	W4	GND	
R21	IO81NDB1	U13	IO104RSB2	W5	IO137RSB2	
R22	IO82PDB1	U14	IO97RSB2	W6	GEB2/IO142RSB2	
T1	IO152PDB3	U15	VMV1	W7	IO134RSB2	
T2	IO152NDB3	U16	ТСК	W8	IO125RSB2	
Т3	NC	U17	VPUMP	W9	IO123RSB2	
T4	IO150NDB3	U18	TRST	W10	IO118RSB2	
T5	IO147PPB3	U19	GDA0/IO88NDB1	W11	IO115RSB2	
Т6	GEC1/IO146PPB3	U20	NC	W12	IO111RSB2	
Τ7	IO140RSB2	U21	IO83NDB1	W13	IO106RSB2	
Т8	GNDQ	U22	NC	W14	IO102RSB2	
Т9	GEA2/IO143RSB2	V1	NC	W15	GDC2/IO91RSB2	
T10	IO126RSB2	V2	NC	W16	IO93RSB2	
T11	IO120RSB2	V3	GND	W17	GDA2/IO89RSB2	
T12	IO108RSB2	V4	GEA1/IO144PDB3	W18	TMS	
T13	IO103RSB2	V5	GEA0/IO144NDB3	W19	GND	
T14	IO99RSB2	V6	IO139RSB2	W20	NC	
T15	GNDQ	V7	GEC2/IO141RSB2	W21	NC	
T16	IO92RSB2	V8	IO132RSB2	W22	NC	
T17	VJTAG	V9	IO127RSB2	Y1	VCCIB3	
T18	GDC0/IO86NDB1	V10	IO121RSB2	Y2	IO148NDB3	
T19	GDA1/IO88PDB1	V11	IO114RSB2	Y3	NC	
T20	NC	V12	IO109RSB2	Y4	NC	
T21	IO83PDB1	V13	IO105RSB2	Y5	GND	
T22	IO82NDB1	V14	IO98RSB2	Y6	NC	
U1	IO149PDB3	V15	IO96RSB2	Y7	NC	
U2	IO149NDB3	V16	GDB2/IO90RSB2	Y8	VCC	
U3	NC	V17	TDI	Y9	VCC	
U4	GEB1/IO145PDB3	V18	GNDQ	Y10	NC	
U5	GEB0/IO145NDB3	V19	TDO	Y11	NC	
U6	VMV2	V20	GND	Y12	NC	
U7	IO138RSB2	V21	NC	Y13	NC	
U8	IO136RSB2	V22	NC	Y14	VCC	

Datasheet Information

 Maximum Junction Temperature, was changed to 100° from 110° in the hermal Characteristics" section and EQ 1. The calculated result of Maximum wer Allowed has thus changed to 1.463 W from 1.951 W. Iues for the A3P015 device were added to Table 2-7 • Quiescent Supply rrent Characteristics. Iues for the A3P015 device were added to Table 2-14 • Different Components ontributing to Dynamic Power Consumption in ProASIC3 Devices. P_{AC14} was noved. Table 2-15 • Different Components Contributing to the Static Power insumption in ProASIC3 Devices is new. e "PLL Contribution—PPLL" section was updated to change the P_{PLL} formula m P_{AC13} + P_{AC14} * F_{CLKOUT} to P_{DC4} + P_{AC13} * F_{CLKOUT}. th fall and rise values were included for t_{DDRISUD} and t_{DDRIHD} in Table 2-102 • but DDR Propagation Delays. e typical value for Delay Increments in Programmable Delay Blocks was 	2-6 2-7 2-11, 2-12 2-14 2-78 2-86
lues for the A3P015 device were added to Table 2-7 • Quiescent Supply irrent Characteristics. lues for the A3P015 device were added to Table 2-14 • Different Components intributing to Dynamic Power Consumption in ProASIC3 Devices. P_{AC14} was noved. Table 2-15 • Different Components Contributing to the Static Power insumption in ProASIC3 Devices is new. e "PLL Contribution—PPLL" section was updated to change the P_{PLL} formula m $P_{AC13} + P_{AC14} * F_{CLKOUT}$ to $P_{DC4} + P_{AC13} * F_{CLKOUT}$. th fall and rise values were included for $t_{DDRISUD}$ and t_{DDRIHD} in Table 2-102 • but DDR Propagation Delays. ble 2-107 • A3P015 Global Resource is new.	2-7 2-11, 2-12 2-14 2-78 2-86
lues for the A3P015 device were added to Table 2-14 • Different Components intributing to Dynamic Power Consumption in ProASIC3 Devices. P_{AC14} was moved. Table 2-15 • Different Components Contributing to the Static Power insumption in ProASIC3 Devices is new. e "PLL Contribution—PPLL" section was updated to change the P_{PLL} formula m $P_{AC13} + P_{AC14} * F_{CLKOUT}$ to $P_{DC4} + P_{AC13} * F_{CLKOUT}$. th fall and rise values were included for $t_{DDRISUD}$ and t_{DDRIHD} in Table 2-102 • but DDR Propagation Delays. ble 2-107 • A3P015 Global Resource is new. e typical value for Delay Increments in Programmable Delay Blocks was	2-11, 2-12 2-14 2-78 2-86
e "PLL Contribution—PPLL" section was updated to change the P _{PLL} formula m P _{AC13} + P _{AC14} * F _{CLKOUT} to P _{DC4} + P _{AC13} * F _{CLKOUT} . th fall and rise values were included for t _{DDRISUD} and t _{DDRIHD} in Table 2-102 • but DDR Propagation Delays. ble 2-107 • A3P015 Global Resource is new. e typical value for Delay Increments in Programmable Delay Blocks was	2-14 2-78 2-86
th fall and rise values were included for t _{DDRISUD} and t _{DDRIHD} in Table 2-102 • out DDR Propagation Delays. ble 2-107 • A3P015 Global Resource is new. e typical value for Delay Increments in Programmable Delay Blocks was	2-78 2-86
ble 2-107 • A3P015 Global Resource is new. e typical value for Delay Increments in Programmable Delay Blocks was	2-86
e typical value for Delay Increments in Programmable Delay Blocks was	
anged from 160 to 200 in Table 2-115 • ProASIC3 CCC/PLL Specification.	2-90
ble note references were added to Table 2-2 • Recommended Operating inditions 1, and the order of the table notes was changed.	2-2
e title for Table 2-4 • Overshoot and Undershoot Limits 1 was modified to nove "as measured on quiet I/Os." Table note 1 was revised to remove stimated SSO density over cycles." Table note 2 was revised to remove "refers ly to overshoot/undershoot limits for simultaneous switching I/Os."	2-3
e "Power per I/O Pin" section was updated to include 3 additional tables rtaining to input buffer power and output buffer power.	2-7
ble 2-29 • I/O Output Buffer Maximum Resistances 1 was revised to include lues for 3.3 V PCI/PCI-X.	2-27
ble 2-90 • LVDS Minimum and Maximum DC Input and Output Levels was dated.	2-66
n numbers were added to the "QN68 – Bottom View" package diagram. Note 2 is added below the diagram.	4-3
e "QN132 – Bottom View" package diagram was updated to include D1 to D4. addition, note 1 was changed from top view to bottom view, and note 2 is new.	4-6
is document was divided into two sections and given a version number, starting v1.0. The first section of the document includes features, benefits, ordering ormation, and temperature and speed grade offerings. The second section is a vice family overview.	N/A
is document was updated to include A3P015 device information. QN68 is a w package that was added because it is offered in the A3P015. The following ctions were updated: eatures and Benefits" roASIC3 Ordering Information" emperature Grade Offerings" roASIC3 Flash Family FPGAs" 3P015 and A3P030" note	N/A
ar blom end till end tit end till end till end till end till end till end till end t	typical value for Delay Increments in Programmable Delay Blocks was ged from 160 to 200 in Table 2-115 • ProASIC3 CCC/PLL Specification. e note references were added to Table 2-2 • Recommended Operating ditions 1, and the order of the table notes was changed. title for Table 2-4 • Overshoot and Undershoot Limits 1 was modified to by a measured on quiet I/Os." Table note 1 was revised to remove mated SSO density over cycles." Table note 1 was revised to remove "refers to overshoot/undershoot limits for simultaneous switching I/Os." "Power per I/O Pin" section was updated to include 3 additional tables aining to input buffer power and output buffer power. e 2-29 • I/O Output Buffer Maximum Resistances 1 was revised to include es for 3.3 V PCI/PCI-X. e 2-90 • LVDS Minimum and Maximum DC Input and Output Levels was ated. numbers were added to the "QN68 – Bottom View" package diagram. Note 2 added below the diagram. "QN132 – Bottom View" package diagram was updated to include D1 to D4. diction, note 1 was changed from top view to bottom view, and note 2 is new. document was divided into two sections and given a version number, starting 1.0. The first section of the document includes features, benefits, ordering mation, and temperature and speed grade offerings. The second section is a ce family overview. document was updated to include A3P015 device information. QN68 is a package that was added because it is offered in the A3P015. The following ions were updated: atures and Benefits" ASIC3 Flash Family FPGAs" P015 and A3P030" note duction and Overview (NA)

Datasheet Information

Revision	Changes	Page
Advance v0.3	The "PLL Macro" section was updated. EXTFB information was removed from this section.	2-15
	The CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} was updated in Table 2- 11 • ProASIC3 CCC/PLL Specification	2-29
	EXTFB was removed from Figure 2-27 • CCC/PLL Macro.	2-28
	Table 2-13 • ProASIC3 I/O Features was updated.	2-30
	The "Hot-Swap Support" section was updated.	2-33
	The "Cold-Sparing Support" section was updated.	2-34
	"Electrostatic Discharge (ESD) Protection" section was updated.	2-35
	The LVPECL specification in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.	2-64
	In the Bank 1 area of Figure 2-72, VMV2 was changed to VMV1 and VCCIB2 was changed to VCC ₁ B1.	2-97
	The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.	2-50
	The "JTAG Pins" section was updated.	2-51
	"128-Bit AES Decryption" section was updated to include M7 device information.	2-53
	Table 3-6 was updated.	3-6
	Table 3-7 was updated.	3-6
	In Table 3-11, PAC4 was updated.	3-93-8
	Table 3-20 was updated.	3-20
	The note in Table 3-32 was updated.	3-27
	All Timing Characteristics tables were updated from LVTTL to Register Delays	3-31 to 3- 73
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-85 to 3-90
	F _{TCKMAX} was updated in Table 3-110.	3-97
Advance v0.2	Figure 2-11 was updated.	2-9
	The "Clock Resources (VersaNets)" section was updated.	2-9
	The "VersaNet Global Networks and Spine Access" section was updated.	2-9
	The "PLL Macro" section was updated.	2-15
	Figure 2-27 was updated.	2-28
	Figure 2-20 was updated.	2-19
	Table 2-5 was updated.	2-25
	Table 2-6 was updated.	2-25
	The "FIFO Flag Usage Considerations" section was updated.	2-27
	Table 2-13 was updated.	2-30
	Figure 2-24 was updated.	2-31
	The "Cold-Sparing Support" section is new.	2-34