

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	
Total RAM Bits	36864
Number of I/O	100
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p125-1tq144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/Os with Advanced I/O Standards

The ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3 FPGAs support many different I/O standards—single-ended and differential.

The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1).

		I/O Standards Supported					
I/O Bank Type	Device and Bank Location	LVTTL/ LVCMOS	PCI/PCI-X	LVPECL, LVDS, B-LVDS, M-LVDS			
Advanced	East and west Banks of A3P250 and larger devices	\checkmark	\checkmark	\checkmark			
Standard Plus	North and south banks of A3P250 and larger devices All banks of A3P060 and A3P125	\checkmark	\checkmark	Not supported			
Standard	All banks of A3P015 and A3P030	\checkmark	Not supported	Not supported			

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications
- Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications

ProASIC3 banks for the A3P250 device and above support LVPECL, LVDS, B-LVDS and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a poweredup system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support

ProASIC3 devices support JEDEC-defined wide range I/O operation. ProASIC3 supports the JESD8-B specification, covering both 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8).
 - 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-13. The input and output buffer delays are available in the LVDS section in Table 2-92.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

I/O Register Specifications

Figure 2-15 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OSUE}	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OESUE}	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Table 2-97 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-16 on page 2-71 for more information.

Table 2-111 • A3P250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.80	1.01	0.91	1.15	1.07	1.36	ns
t _{RCKH}	Input High Delay for Global Clock	0.78	1.04	0.89	1.18	1.04	1.39	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-112 • A3P400 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-113 • A3P600 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.425 V

		-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Microse

Power Matters.

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-114 • A3P1000 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.94	1.16	1.07	1.32	1.26	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	0.93	1.19	1.06	1.35	1.24	1.59	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.35	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Note: Peak-to-peak jitter measurements are defined by $T_{peak-to-peak} = T_{period_max} - T_{period_min}$

Figure 2-29 • Peak-to-Peak Jitter Definition

Timing Characteristics

Table 2-116 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	2.36	2.68	3.15	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	1.79	2.03	2.39	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge	0.33	0.28	0.25	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on DOUT (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

QN68 – Bottom View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

QN132							
Pin Number	A3P250 Function						
C17	IO74RSB2						
C18	VCCIB2						
C19	ТСК						
C20	VMV2						
C21	VPUMP						
C22	VJTAG						
C23	VCCIB1						
C24	IO53NSB1						
C25	IO51NPB1						
C26	GCA1/IO50PPB1						
C27	GCC0/IO48NDB1						
C28	VCCIB1						
C29	IO42NDB1						
C30	GNDQ						
C31	GBA1/IO40RSB0						
C32	GBB0/IO37RSB0						
C33	VCC						
C34	IO24RSB0						
C35	IO19RSB0						
C36	IO16RSB0						
C37	IO10RSB0						
C38	VCCIB0						
C39	GAB1/IO03RSB0						
C40	VMV0						
D1	GND						
D2	GND						
D3	GND						
D4	GND						

CS121 – Bottom View

Note: The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

	PQ208		PQ208	PQ208	
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
1	GND	37	IO116RSB1	73	IO92RSB1
2	GAA2/IO67RSB1	38	IO115RSB1	74	IO91RSB1
3	IO68RSB1	39	NC	75	IO90RSB1
4	GAB2/IO69RSB1	40	VCCIB1	76	IO89RSB1
5	IO132RSB1	41	GND	77	IO88RSB1
6	GAC2/IO131RSB1	42	IO114RSB1	78	IO87RSB1
7	NC	43	IO113RSB1	79	IO86RSB1
8	NC	44	GEC1/IO112RSB1	80	IO85RSB1
9	IO130RSB1	45	GEC0/IO111RSB1	81	GND
10	IO129RSB1	46	GEB1/IO110RSB1	82	IO84RSB1
11	NC	47	GEB0/IO109RSB1	83	IO83RSB1
12	IO128RSB1	48	GEA1/IO108RSB1	84	IO82RSB1
13	NC	49	GEA0/IO107RSB1	85	IO81RSB1
14	NC	50	VMV1	86	IO80RSB1
15	NC	51	GNDQ	87	IO79RSB1
16	VCC	52	GND	88	VCC
17	GND	53	NC	89	VCCIB1
18	VCCIB1	54	NC	90	IO78RSB1
19	IO127RSB1	55	GEA2/IO106RSB1	91	IO77RSB1
20	NC	56	GEB2/IO105RSB1	92	IO76RSB1
21	GFC1/IO126RSB1	57	GEC2/IO104RSB1	93	IO75RSB1
22	GFC0/IO125RSB1	58	IO103RSB1	94	IO74RSB1
23	GFB1/IO124RSB1	59	IO102RSB1	95	IO73RSB1
24	GFB0/IO123RSB1	60	IO101RSB1	96	GDC2/IO72RSB1
25	VCOMPLF	61	IO100RSB1	97	GND
26	GFA0/IO122RSB1	62	VCCIB1	98	GDB2/IO71RSB1
27	VCCPLF	63	IO99RSB1	99	GDA2/IO70RSB1
28	GFA1/IO121RSB1	64	IO98RSB1	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO120RSB1	66	IO97RSB1	102	TDI
31	NC	67	IO96RSB1	103	TMS
32	GFB2/IO119RSB1	68	IO95RSB1	104	VMV1
33	NC	69	IO94RSB1	105	GND
34	GFC2/IO118RSB1	70	IO93RSB1	106	VPUMP
35	IO117RSB1	71	VCC	107	NC
36	NC	72	VCCIB1	108	TDO

FG484			FG484	FG484			
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function		
E21	NC	G13	IO40RSB0	J5	IO149NPB3		
E22	NC	G14	IO46RSB0	J6	IO09RSB0		
F1	NC	G15	GNDQ	J7	IO152UDB3		
F2	NC	G16	IO47RSB0	J8	VCCIB3		
F3	NC	G17	GBB2/IO61PPB1	J9	GND		
F4	IO154VDB3	G18	IO53RSB0	J10	VCC		
F5	IO155VDB3	G19	IO63NDB1	J11	VCC		
F6	IO11RSB0	G20	NC	J12	VCC		
F7	IO07RSB0	G21	NC	J13	VCC		
F8	GAC0/IO04RSB0	G22	NC	J14	GND		
F9	GAC1/IO05RSB0	H1	NC	J15	VCCIB1		
F10	IO20RSB0	H2	NC	J16	IO62NDB1		
F11	IO24RSB0	H3	VCC	J17	IO49RSB0		
F12	IO33RSB0	H4	IO150PDB3	J18	IO64PPB1		
F13	IO39RSB0	H5	IO08RSB0	J19	IO66NDB1		
F14	IO45RSB0	H6	IO153VDB3	J20	NC		
F15	GBC0/IO54RSB0	H7	IO152VDB3	J21	NC		
F16	IO48RSB0	H8	VMV0	J22	NC		
F17	VMV0	H9	VCCIB0	K1	NC		
F18	IO61NPB1	H10	VCCIB0	K2	NC		
F19	IO63PDB1	H11	IO25RSB0	K3	NC		
F20	NC	H12	IO31RSB0	K4	IO148NDB3		
F21	NC	H13	VCCIB0	K5	IO148PDB3		
F22	NC	H14	VCCIB0	K6	IO149PPB3		
G1	NC	H15	VMV1	K7	GFC1/IO147PPB3		
G2	NC	H16	GBC2/IO62PDB1	K8	VCCIB3		
G3	NC	H17	IO65RSB1	K9	VCC		
G4	IO151VDB3	H18	IO52RSB0	K10	GND		
G5	IO151UDB3	H19	IO66PDB1	K11	GND		
G6	GAC2/IO153UDB3	H20	VCC	K12	GND		
G7	IO06RSB0	H21	NC	K13	GND		
G8	GNDQ	H22	NC	K14	VCC		
G9	IO10RSB0	J1	NC	K15	VCCIB1		
G10	IO19RSB0	J2	NC	K16	GCC1/IO67PPB1		
G11	IO26RSB0	J3	NC	K17	IO64NPB1		
G12	IO30RSB0	J4	IO150NDB3	K18	IO73PDB1		

FG484		FG484		FG484	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
E21	NC	G13	IO52RSB0	J5	IO218NDB3
E22	IO84PDB1	G14	IO60RSB0	J6	IO216PDB3
F1	NC	G15	GNDQ	J7	IO216NDB3
F2	IO215PDB3	G16	IO80NDB1	J8	VCCIB3
F3	IO215NDB3	G17	GBB2/IO79PDB1	J9	GND
F4	IO224NDB3	G18	IO79NDB1	J10	VCC
F5	IO225NDB3	G19	IO82NPB1	J11	VCC
F6	VMV3	G20	IO85PDB1	J12	VCC
F7	IO11RSB0	G21	IO85NDB1	J13	VCC
F8	GAC0/IO04RSB0	G22	NC	J14	GND
F9	GAC1/IO05RSB0	H1	NC	J15	VCCIB1
F10	IO25RSB0	H2	NC	J16	IO83NPB1
F11	IO36RSB0	H3	VCC	J17	IO86NPB1
F12	IO42RSB0	H4	IO217PDB3	J18	IO90PPB1
F13	IO49RSB0	H5	IO218PDB3	J19	IO87NDB1
F14	IO56RSB0	H6	IO221NDB3	J20	NC
F15	GBC0/IO72RSB0	H7	IO221PDB3	J21	IO89PDB1
F16	IO62RSB0	H8	VMV0	J22	IO89NDB1
F17	VMV0	H9	VCCIB0	K1	IO211PDB3
F18	IO78NDB1	H10	VCCIB0	K2	IO211NDB3
F19	IO81NDB1	H11	IO38RSB0	K3	NC
F20	IO82PPB1	H12	IO47RSB0	K4	IO210PPB3
F21	NC	H13	VCCIB0	K5	IO213NDB3
F22	IO84NDB1	H14	VCCIB0	K6	IO213PDB3
G1	IO214NDB3	H15	VMV1	K7	GFC1/IO209PPB3
G2	IO214PDB3	H16	GBC2/IO80PDB1	K8	VCCIB3
G3	NC	H17	IO83PPB1	K9	VCC
G4	IO222NDB3	H18	IO86PPB1	K10	GND
G5	IO222PDB3	H19	IO87PDB1	K11	GND
G6	GAC2/IO223PDB3	H20	VCC	K12	GND
G7	IO223NDB3	H21	NC	K13	GND
G8	GNDQ	H22	NC	K14	VCC
G9	IO23RSB0	J1	IO212NDB3	K15	VCCIB1
G10	IO29RSB0	J2	IO212PDB3	K16	GCC1/IO91PPB1
G11	IO33RSB0	J3	NC	K17	IO90NPB1
G12	IO46RSB0	J4	IO217NDB3	K18	IO88PDB1

FG484		FG484		FG484	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
R17	GDB1/IO112PPB1	U9	IO165RSB2	W1	NC
R18	GDC1/IO111PDB1	U10	IO159RSB2	W2	IO191PDB3
R19	IO107NDB1	U11	IO151RSB2	W3	NC
R20	VCC	U12	IO137RSB2	W4	GND
R21	IO104NDB1	U13	IO134RSB2	W5	IO183RSB2
R22	IO105PDB1	U14	IO128RSB2	W6	GEB2/IO186RSB2
T1	IO198PDB3	U15	VMV1	W7	IO172RSB2
T2	IO198NDB3	U16	ТСК	W8	IO170RSB2
Т3	NC	U17	VPUMP	W9	IO164RSB2
T4	IO194PPB3	U18	TRST	W10	IO158RSB2
T5	IO192PPB3	U19	GDA0/IO113NDB1	W11	IO153RSB2
T6	GEC1/IO190PPB3	U20	NC	W12	IO142RSB2
T7	IO192NPB3	U21	IO108NDB1	W13	IO135RSB2
Т8	GNDQ	U22	IO109PDB1	W14	IO130RSB2
Т9	GEA2/IO187RSB2	V1	NC	W15	GDC2/IO116RSB2
T10	IO161RSB2	V2	NC	W16	IO120RSB2
T11	IO155RSB2	V3	GND	W17	GDA2/IO114RSB2
T12	IO141RSB2	V4	GEA1/IO188PDB3	W18	TMS
T13	IO129RSB2	V5	GEA0/IO188NDB3	W19	GND
T14	IO124RSB2	V6	IO184RSB2	W20	NC
T15	GNDQ	V7	GEC2/IO185RSB2	W21	NC
T16	IO110PDB1	V8	IO168RSB2	W22	NC
T17	VJTAG	V9	IO163RSB2	Y1	VCCIB3
T18	GDC0/IO111NDB1	V10	IO157RSB2	Y2	IO191NDB3
T19	GDA1/IO113PDB1	V11	IO149RSB2	Y3	NC
T20	NC	V12	IO143RSB2	Y4	IO182RSB2
T21	IO108PDB1	V13	IO138RSB2	Y5	GND
T22	IO105NDB1	V14	IO131RSB2	Y6	IO177RSB2
U1	IO195PDB3	V15	IO125RSB2	Y7	IO174RSB2
U2	IO195NDB3	V16	GDB2/IO115RSB2	Y8	VCC
U3	IO194NPB3	V17	TDI	Y9	VCC
U4	GEB1/IO189PDB3	V18	GNDQ	Y10	IO154RSB2
U5	GEB0/IO189NDB3	V19	TDO	Y11	IO148RSB2
U6	VMV2	V20	GND	Y12	IO140RSB2
U7	IO179RSB2	V21	NC	Y13	NC
U8	IO171RSB2	V22	IO109NDB1	Y14	VCC

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the ProASIC3 datasheet.

Revision	Changes	Page
Revision 18 (March 2016)	Updated 3.3 V DC supply voltage's maximum Commercial and Industrial values from 3.3 V to 3.6 V in Table 2-2 (SAR 72693).	2-2
	Added reference of Package Mechanical Drawings document in all package pin assignment notes (76833).	NA
Revision 17	Removed PQFP embedded heat spreader info. from Table 2-5 (SAR 52320).	2-6
(June 2015)	Updated "VCCIBx I/O Supply Voltage" (SAR 43323).	3-1
Revision 16 (December 2014)	Updated "ProASIC3 Ordering Information". Interchanged the positions of Y- Security Feature and I- Application (Temperature Range) (SAR 61079). Added Note "Only devices with package size greater than or equal to 5x5 are supported".	1-IV
	Updated Table Note (2) in Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature so that the Table Note is not applicable for Maximum Storage Temperature T_{STG} (SAR 54297).	2-3
	Added values for Drive strength 2 mA in Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew, Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, and Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew (SAR 57184).	2-34, 2-35, 2-36, 2-37
	Added Figure 2-1 • High-Temperature Data Retention (HTR) (SAR 45466).	2-3
	Updates made to maintain the style and consistency of the document.	NA
Revision 15 (July 2014)	Added corner pad table note (3) to "QN132 – Bottom View" (SAR 47442).	4-6
	Ambient temperature removed in Table 2-2, table notes and "ProASIC3 Ordering Information" figure were modified (SAR 48343).	2-2 1-IV
	Other updates were made to maintain the style and consistency of the datasheet.	NA
Revision 14 (April 2014)	Note added for the discontinuance of QN132 package to the following tables and section: "ProASIC3 Devices", "I/Os Per Package 1", "ProASIC3 FPGAs Package Sizes Dimensions" and "QN132 – Bottom View" section (SAR 55118).	I, III, 4-6

Datasheet Information

Revision	Changes	Page
Revision 11 (March 2012)	Note indicating that A3P015 is not recommended for new designs has been added. The "Devices Not Recommended For New Designs" section is new (SAR 36760).	I to IV
	The following sentence was removed from the Advanced Architecture section: "In addition, extensive on-chip programming circuitry allows for rapid, single- voltage (3.3 V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR 34687).	NA
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>ProASIC3 FPGA Fabric User's Guide</i> (SAR 34734).	2-12
	Figure 2-4 • Input Buffer Timing Model and Delays (Example) has been modified for the DIN waveform; the Rise and Fall time label has been changed to tDIN (35430).	2-16
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34883).	2-32
	Added values for minimum pulse width and removed the FRMAX row from Table 2-107 through Table 2-114 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SARs 37279, 29269).	2-85

Datasheet Information

Revision	Changes	Page
Advance v0.6	The "RESET" section was updated.	
(continued)	The "WCLK and RCLK" section was updated.	2-25
	The "RESET" section was updated.	2-25
	The "RESET" section was updated.	2-27
	The "Introduction" of the "Advanced I/Os" section was updated.	2-28
	The "I/O Banks" section is new. This section explains the following types of I/Os: Advanced Standard+ Standard	2-29
	Table 2-12 • Automotive ProASIC3 Bank Types Definition and Differences isnew. This table describes the standards listed above.	
	PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 11 • VCCI Voltages and Compatible Standards	2-29
	Table 2-13 • ProASIC3 I/O Features was updated.	2-30
	The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature.	2-32
	The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information.	2-35
	Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices.	2-64
	The notes in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices were updated.	2-64
	The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new.	2-41
	A footnote was added to Table 2-14 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in Automotive ProASIC3 Devices (maximum drive strength and high slew selected).	2-30
	Table 2-18 • Automotive ProASIC3 I/O Attributes vs. I/O Standard Applications	2-45
	Table 2-50 • ProASIC3 Output Drive (OUT_DRIVE) for Standard I/O Bank Type (A3P030 device)	2-83
	Table 2-51 ProASIC3 Output Drive for Standard+ I/O Bank Type was updated.	2-84
	Table 2-54 ProASIC3 Output Drive for Advanced I/O Bank Type was updated.	2-84
	The "x" was updated in the "User I/O Naming Convention" section.	2-48
	The "VCC Core Supply Voltage" pin description was updated.	2-50
	The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected.	2-50
	The "VJTAG JTAG Supply Voltage" pin description was updated.	2-50
	The "VPUMP Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground.	2-50
	The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused.	2-50
	The "JTAG Pins" section was updated to include information on what happens when the pin is unused.	2-51

Revision	Changes	Page
Advance v0.6 (continued)	The "Programming" section was updated to include information concerning serialization.	2-53
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.	2-54
	"DC and Switching Characteristics" chapter was updated with new information.	3-1
	The A3P060 "100-Pin VQFP" pin table was updated.	4-13
	The A3P125 "100-Pin VQFP" pin table was updated.	4-13
	The A3P060 "144-Pin TQFP" pin table was updated.	4-16
	The A3P125 "144-Pin TQFP" pin table was updated.	4-18
	The A3P125 "208-Pin PQFP" pin table was updated.	4-21
	The A3P400 "208-Pin PQFP" pin table was updated.	4-25
	The A3P060 "144-Pin FBGA" pin table was updated.	4-32
	The A3P125 "144-Pin FBGA" pin table is new.	4-34
	The A3P400 "144-Pin FBGA" is new.	4-38
	The A3P400 "256-Pin FBGA" was updated.	4-48
	The A3P1000 "256-Pin FBGA" was updated.	4-54
	The A3P400 "484-Pin FBGA" was updated.	4-58
	The A3P1000 "484-Pin FBGA" was updated.	4-68
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68
Advance v0.5 (November 2005)	The "I/Os Per Package" table was updated for the following devices and packages:	ii
	Device Package A3P250/M7ACP250 VQ100 A3P250/M7ACP250 FG144 A3P1000 FG256	
Advance v0.4	M7 device information is new.	N/A
	The I/O counts in the "I/Os Per Package" table were updated.	ii
Advance v0.3	The "I/Os Per Package" table was updated.	ii
	M7 device information is new.	N/A
	Table 2-4 • ProASIC3 Globals/Spines/Rows by Device was updated to include the number or rows in each top or bottom spine.	2-16
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3 Device Status" table on page IV, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Unmarked (production)

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.