

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	
Total RAM Bits	36864
Number of I/O	100
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p125-1tqg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-34 • I/O Short Currents IOSH/IOSL Applicable to Standard I/O Banks

	Drive Strength	IOSL (mA) ¹	IOSH (mA) ¹
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
3.3 V LVCMOS Wide Range ²	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
1.5 V LVCMOS	2 mA	16	13

Notes:

- 1. $T_{.1} = 100^{\circ}C$
- Applicable to 3.3 V LVCMOS Wide Range. I_{OSL}/I_{OSH} dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-35 • Duration of Short Circuit Event Before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	0.5 years

Table 2-36 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (min)	Input Rise/Fall Time (max)	Reliability
LVTTL/LVCMOS	No requirement	10 ns *	20 years (110°C)
LVDS/B-LVDS/ M-LVDS/LVPECL	No requirement	10 ns *	10 years (100°C)

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

								1						T
Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zнs}	Units
100 µA	2 mA	Std.	0.60	14.97	0.04	1.52	0.43	14.97	12.79	3.52	3.41	18.36	16.18	ns
		-1	0.51	12.73	0.04	1.29	0.36	12.73	10.88	2.99	2.90	15.62	13.77	ns
		-2	0.45	11.18	0.03	1.14	0.32	11.18	9.55	2.63	2.55	13.71	12.08	ns
100 µA	4 mA	Std.	0.60	10.36	0.04	1.52	0.43	10.36	8.93	3.99	4.24	13.75	12.33	ns
		-1	0.51	8.81	0.04	1.29	0.36	8.81	7.60	3.39	3.60	11.70	10.49	ns
		-2	0.45	7.74	0.03	1.14	0.32	7.74	6.67	2.98	3.16	10.27	9.21	ns
100 µA	6 mA	Std.	0.60	10.36	0.04	1.52	0.43	10.36	8.93	3.99	4.24	13.75	12.33	ns
		-1	0.51	8.81	0.04	1.29	0.36	8.81	7.60	3.39	3.60	11.70	10.49	ns
		-2	0.45	7.74	0.03	1.14	0.32	7.74	6.67	2.98	3.16	10.27	9.21	ns
100 µA	8 mA	Std.	0.60	7.81	0.04	1.52	0.43	7.81	6.85	4.32	4.76	11.20	10.24	ns
		-1	0.51	6.64	0.04	1.29	0.36	6.64	5.82	3.67	4.05	9.53	8.71	ns
		-2	0.45	5.83	0.03	1.14	0.32	5.83	5.11	3.22	3.56	8.36	7.65	ns
100 µA	16 mA	Std.	0.60	7.81	0.04	1.52	0.43	7.81	6.85	4.32	4.76	11.20	10.24	ns
		-1	0.51	6.64	0.04	1.29	0.36	6.64	5.82	3.67	4.05	9.53	8.71	ns
		-2	0.45	5.83	0.03	1.14	0.32	5.83	5.11	3.22	3.56	8.36	7.65	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	V	ΊL	v	ΊH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL1	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	124	169	10	10

Table 2-56 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-57 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

2.5 V LVCMOS	v	IL	v	IH	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

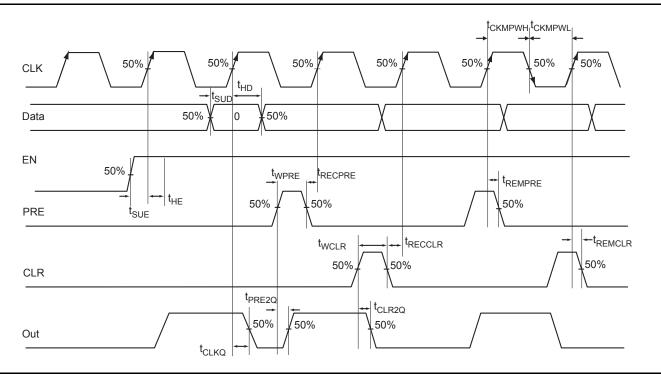
4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Timing Characteristics

Table 2-80 • 1.5 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks


Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	8.36	0.04	1.44	0.43	6.82	8.36	3.39	2.77	9.06	10.60	ns
	-1	0.56	7.11	0.04	1.22	0.36	5.80	7.11	2.88	2.35	7.71	9.02	ns
	-2	0.49	6.24	0.03	1.07	0.32	5.10	6.24	2.53	2.06	6.76	7.91	ns
4 mA	Std.	0.66	5.31	0.04	1.44	0.43	4.85	5.31	3.74	3.40	7.09	7.55	ns
	-1	0.56	4.52	0.04	1.22	0.36	4.13	4.52	3.18	2.89	6.03	6.42	ns
	-2	0.49	3.97	0.03	1.07	0.32	3.62	3.97	2.79	2.54	5.29	5.64	ns
6 mA	Std.	0.66	4.67	0.04	1.44	0.43	4.55	4.67	3.82	3.56	6.78	6.90	ns
	-1	0.56	3.97	0.04	1.22	0.36	3.87	3.97	3.25	3.03	5.77	5.87	ns
	-2	0.49	3.49	0.03	1.07	0.32	3.40	3.49	2.85	2.66	5.07	5.16	ns
8 mA	Std.	0.66	4.08	0.04	1.44	0.43	4.15	3.58	3.94	4.20	6.39	5.81	ns
	-1	0.56	3.47	0.04	1.22	0.36	3.53	3.04	3.36	3.58	5.44	4.95	ns
	-2	0.49	3.05	0.03	1.07	0.32	3.10	2.67	2.95	3.14	4.77	4.34	ns
12 mA	Std.	0.66	4.08	0.04	1.44	0.43	4.15	3.58	3.94	4.20	6.39	5.81	ns
	-1	0.56	3.47	0.04	1.22	0.36	3.53	3.04	3.36	3.58	5.44	4.95	ns
	-2	0.49	3.05	0.03	1.07	0.32	3.10	2.67	2.95	3.14	4.77	4.34	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Figure 2-27 • Timing Model and Waveforms

Timing Characteristics

Table 2-106 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.55	0.63	0.74	ns
t _{SUD}	Data Setup Time for the Core Register	0.43	0.49	0.57	ns
t _{HD}	Data Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.45	0.52	0.61	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.32	0.37	0.43	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.36	0.41	0.48	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-111 • A3P250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2		-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.80	1.01	0.91	1.15	1.07	1.36	ns
t _{RCKH}	Input High Delay for Global Clock	0.78	1.04	0.89	1.18	1.04	1.39	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

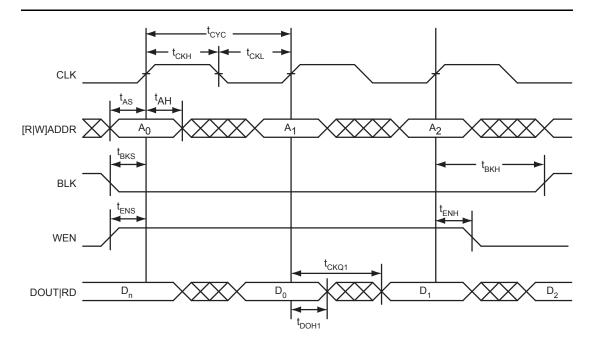
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-112 • A3P400 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

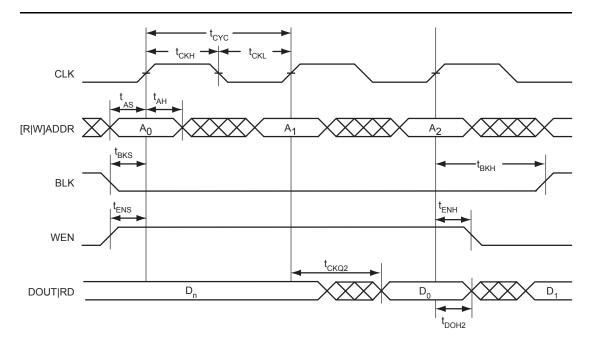
Notes:

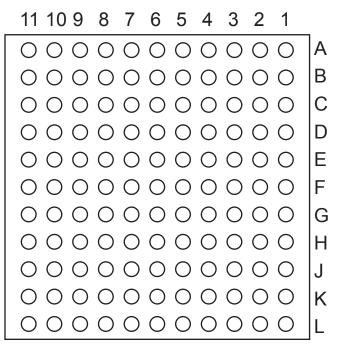

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Waveforms




Figure 2-32 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

G	N48
Pin Number	A3P030 Function
1	IO82RSB1
2	GEC0/IO73RSB1
3	GEA0/IO72RSB1
4	GEB0/IO71RSB1
5	GND
6	VCCIB1
7	IO68RSB1
8	IO67RSB1
9	IO66RSB1
10	IO65RSB1
11	IO64RSB1
12	IO62RSB1
13	IO61RSB1
14	IO60RSB1
15	IO57RSB1
16	IO55RSB1
17	IO53RSB1
18	VCC
19	VCCIB1
20	IO46RSB1
21	IO42RSB1
22	ТСК
23	TDI
24	TMS
25	VPUMP
26	TDO
27	TRST
28	VJTAG
29	IO38RSB0
30	GDB0/IO34RSB0
31	GDA0/IO33RSB0
32	GDC0/IO32RSB0
33	VCCIB0
34	GND
35	VCC
36	IO25RSB0

0	QN48				
Pin Number	A3P030 Function				
37	IO24RSB0				
38	IO22RSB0				
39	IO20RSB0				
40	IO18RSB0				
41	IO16RSB0				
42	IO14RSB0				
43	IO10RSB0				
44	IO08RSB0				
45	IO06RSB0				
46	IO04RSB0				
47	IO02RSB0				
48	IO00RSB0				

CS121 – Bottom View

Note: The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

V	Q100	V	Q100	VQ100	
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function
1	GND	37	VCC	73	GBA2/IO25RSB0
2	GAA2/IO51RSB1	38	GND	74	VMV0
3	IO52RSB1	39	VCCIB1	75	GNDQ
4	GAB2/IO53RSB1	40	IO60RSB1	76	GBA1/IO24RSB0
5	IO95RSB1	41	IO59RSB1	77	GBA0/IO23RSB0
6	GAC2/IO94RSB1	42	IO58RSB1	78	GBB1/IO22RSB0
7	IO93RSB1	43	IO57RSB1	79	GBB0/IO21RSB0
8	IO92RSB1	44	GDC2/IO56RSB1	80	GBC1/IO20RSB0
9	GND	45	GDB2/IO55RSB1	81	GBC0/IO19RSB0
10	GFB1/IO87RSB1	46	GDA2/IO54RSB1	82	IO18RSB0
11	GFB0/IO86RSB1	47	ТСК	83	IO17RSB0
12	VCOMPLF	48	TDI	84	IO15RSB0
13	GFA0/IO85RSB1	49	TMS	85	IO13RSB0
14	VCCPLF	50	VMV1	86	IO11RSB0
15	GFA1/IO84RSB1	51	GND	87	VCCIB0
16	GFA2/IO83RSB1	52	VPUMP	88	GND
17	VCC	53	NC	89	VCC
18	VCCIB1	54	TDO	90	IO10RSB0
19	GEC1/IO77RSB1	55	TRST	91	IO09RSB0
20	GEB1/IO75RSB1	56	VJTAG	92	IO08RSB0
21	GEB0/IO74RSB1	57	GDA1/IO49RSB0	93	GAC1/IO07RSB0
22	GEA1/IO73RSB1	58	GDC0/IO46RSB0	94	GAC0/IO06RSB0
23	GEA0/IO72RSB1	59	GDC1/IO45RSB0	95	GAB1/IO05RSB0
24	VMV1	60	GCC2/IO43RSB0	96	GAB0/IO04RSB0
25	GNDQ	61	GCB2/IO42RSB0	97	GAA1/IO03RSB0
26	GEA2/IO71RSB1	62	GCA0/IO40RSB0	98	GAA0/IO02RSB0
27	GEB2/IO70RSB1	63	GCA1/IO39RSB0	99	IO01RSB0
28	GEC2/IO69RSB1	64	GCC0/IO36RSB0	100	IO00RSB0
29	IO68RSB1	65	GCC1/IO35RSB0		-
30	IO67RSB1	66	VCCIB0		
31	IO66RSB1	67	GND		
32	IO65RSB1	68	VCC		
33	IO64RSB1	69	IO31RSB0		
34	IO63RSB1	70	GBC2/IO29RSB0		
35	IO62RSB1	71	GBB2/IO27RSB0		
36	IO61RSB1	72	IO26RSB0		

	VQ100	,	VQ100	VQ100	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
1	GND	37	VCC	73	GBA2/IO41PDB1
2	GAA2/IO118UDB3	38	GND	74	VMV1
3	IO118VDB3	39	VCCIB2	75	GNDQ
4	GAB2/IO117UDB3	40	IO77RSB2	76	GBA1/IO40RSB0
5	IO117VDB3	41	IO74RSB2	77	GBA0/IO39RSB0
6	GAC2/IO116UDB3	42	IO71RSB2	78	GBB1/IO38RSB0
7	IO116VDB3	43	GDC2/IO63RSB2	79	GBB0/IO37RSB0
8	IO112PSB3	44	GDB2/IO62RSB2	80	GBC1/IO36RSB0
9	GND	45	GDA2/IO61RSB2	81	GBC0/IO35RSB0
10	GFB1/IO109PDB3	46	GNDQ	82	IO29RSB0
11	GFB0/IO109NDB3	47	ТСК	83	IO27RSB0
12	VCOMPLF	48	TDI	84	IO25RSB0
13	GFA0/IO108NPB3	49	TMS	85	IO23RSB0
14	VCCPLF	50	VMV2	86	IO21RSB0
15	GFA1/IO108PPB3	51	GND	87	VCCIB0
16	GFA2/IO107PSB3	52	VPUMP	88	GND
17	VCC	53	NC	89	VCC
18	VCCIB3	54	TDO	90	IO15RSB0
19	GFC2/IO105PSB3	55	TRST	91	IO13RSB0
20	GEC1/IO100PDB3	56	VJTAG	92	IO11RSB0
21	GEC0/IO100NDB3	57	GDA1/IO60USB1	93	GAC1/IO05RSB0
22	GEA1/IO98PDB3	58	GDC0/IO58VDB1	94	GAC0/IO04RSB0
23	GEA0/IO98NDB3	59	GDC1/IO58UDB1	95	GAB1/IO03RSB0
24	VMV3	60	IO52NDB1	96	GAB0/IO02RSB0
25	GNDQ	61	GCB2/IO52PDB1	97	GAA1/IO01RSB0
26	GEA2/IO97RSB2	62	GCA1/IO50PDB1	98	GAA0/IO00RSB0
27	GEB2/IO96RSB2	63	GCA0/IO50NDB1	99	GNDQ
28	GEC2/IO95RSB2	64	GCC0/IO48NDB1	100	VMV0
29	IO93RSB2	65	GCC1/IO48PDB1		
30	IO92RSB2	66	VCCIB1		
31	IO91RSB2	67	GND		
32	IO90RSB2	68	VCC		
33	IO88RSB2	69	IO43NDB1		
34	IO86RSB2	70	GBC2/IO43PDB1		
35	IO85RSB2	71	GBB2/IO42PSB1		
36	IO84RSB2	72	IO41NDB1		

P	Q208	P	Q208	PQ208	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
1	GND	37	IO141PSB3	73	IO112RSB2
2	GAA2/IO155UDB3	38	IO140PDB3	74	IO111RSB2
3	IO155VDB3	39	IO140NDB3	75	IO110RSB2
4	GAB2/IO154UDB3	40	VCCIB3	76	IO109RSB2
5	IO154VDB3	41	GND	77	IO108RSB2
6	GAC2/IO153UDB3	42	IO138PDB3	78	IO107RSB2
7	IO153VDB3	43	IO138NDB3	79	IO106RSB2
8	IO152UDB3	44	GEC1/IO137PDB3	80	IO104RSB2
9	IO152VDB3	45	GEC0/IO137NDB3	81	GND
10	IO151UDB3	46	GEB1/IO136PDB3	82	IO102RSB2
11	IO151VDB3	47	GEB0/IO136NDB3	83	IO101RSB2
12	IO150PDB3	48	GEA1/IO135PDB3	84	IO100RSB2
13	IO150NDB3	49	GEA0/IO135NDB3	85	IO99RSB2
14	IO149PDB3	50	VMV3	86	IO98RSB2
15	IO149NDB3	51	GNDQ	87	IO97RSB2
16	VCC	52	GND	88	VCC
17	GND	53	VMV2	89	VCCIB2
18	VCCIB3	54	NC	90	IO94RSB2
19	IO148PDB3	55	GEA2/IO134RSB2	91	IO92RSB2
20	IO148NDB3	56	GEB2/IO133RSB2	92	IO90RSB2
21	GFC1/IO147PDB3	57	GEC2/IO132RSB2	93	IO88RSB2
22	GFC0/IO147NDB3	58	IO131RSB2	94	IO86RSB2
23	GFB1/IO146PDB3	59	IO130RSB2	95	IO84RSB2
24	GFB0/IO146NDB3	60	IO129RSB2	96	GDC2/IO82RSB2
25	VCOMPLF	61	IO128RSB2	97	GND
26	GFA0/IO145NPB3	62	VCCIB2	98	GDB2/IO81RSB2
27	VCCPLF	63	IO125RSB2	99	GDA2/IO80RSB2
28	GFA1/IO145PPB3	64	IO123RSB2	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO144PDB3	66	IO121RSB2	102	TDI
31	IO144NDB3	67	IO119RSB2	103	TMS
32	GFB2/IO143PDB3	68	IO117RSB2	104	VMV2
33	IO143NDB3	69	IO115RSB2	105	GND
34	GFC2/IO142PDB3	70	IO113RSB2	106	VPUMP
35	IO142NDB3	71	VCC	107	NC
36	NC	72	VCCIB2	108	TDO

🌜 Microsemi.

	PQ208		PQ208		PQ208
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
109	TRST	145	IO84PDB1	181	IO33RSB0
110	VJTAG	146	IO82NDB1	182	IO31RSB0
111	GDA0/IO113NDB1	147	IO82PDB1	183	IO29RSB0
112	GDA1/IO113PDB1	148	IO80NDB1	184	IO27RSB0
113	GDB0/IO112NDB1	149	GBC2/IO80PDB1	185	IO25RSB0
114	GDB1/IO112PDB1	150	IO79NDB1	186	VCCIB0
115	GDC0/IO111NDB1	151	GBB2/IO79PDB1	187	VCC
116	GDC1/IO111PDB1	152	IO78NDB1	188	IO22RSB0
117	IO109NDB1	153	GBA2/IO78PDB1	189	IO20RSB0
118	IO109PDB1	154	VMV1	190	IO18RSB0
119	IO106NDB1	155	GNDQ	191	IO16RSB0
120	IO106PDB1	156	GND	192	IO15RSB0
121	IO104PSB1	157	VMV0	193	IO14RSB0
122	GND	158	GBA1/IO77RSB0	194	IO13RSB0
123	VCCIB1	159	GBA0/IO76RSB0	195	GND
124	IO99NDB1	160	GBB1/IO75RSB0	196	IO12RSB0
125	IO99PDB1	161	GBB0/IO74RSB0	197	IO11RSB0
126	NC	162	GND	198	IO10RSB0
127	IO96NDB1	163	GBC1/IO73RSB0	199	IO09RSB0
128	GCC2/IO96PDB1	164	GBC0/IO72RSB0	200	VCCIB0
129	GCB2/IO95PSB1	165	IO70RSB0	201	GAC1/IO05RSB0
130	GND	166	IO67RSB0	202	GAC0/IO04RSB0
131	GCA2/IO94PSB1	167	IO63RSB0	203	GAB1/IO03RSB0
132	GCA1/IO93PDB1	168	IO60RSB0	204	GAB0/IO02RSB0
133	GCA0/IO93NDB1	169	IO57RSB0	205	GAA1/IO01RSB0
134	GCB0/IO92NDB1	170	VCCIB0	206	GAA0/IO00RSB0
135	GCB1/IO92PDB1	171	VCC	207	GNDQ
136	GCC0/IO91NDB1	172	IO54RSB0	208	VMV0
137	GCC1/IO91PDB1	173	IO51RSB0		
138	IO88NDB1	174	IO48RSB0		
139	IO88PDB1	175	IO45RSB0		
140	VCCIB1	176	IO42RSB0		
141	GND	177	IO40RSB0		
142	VCC	178	GND		
143	IO86PSB1	179	IO38RSB0		
144	IO84NDB1	180	IO35RSB0		

FG144				
Pin Number	A3P250 Function			
K1	GEB0/IO99NDB3			
K2	GEA1/IO98PDB3			
K3	GEA0/IO98NDB3			
K4	GEA2/IO97RSB2			
K5	IO90RSB2			
K6	IO84RSB2			
K7	GND			
K8	IO66RSB2			
K9	GDC2/IO63RSB2			
K10	GND			
K11	GDA0/IO60VDB1			
K12	GDB0/IO59VDB1			
L1	GND			
L2	VMV3			
L3	GEB2/IO96RSB2			
L4	IO91RSB2			
L5	VCCIB2			
L6	IO82RSB2			
L7	IO80RSB2			
L8	IO72RSB2			
L9	TMS			
L10	VJTAG			
L11	VMV2			
L12	TRST			
M1	GNDQ			
M2	GEC2/IO95RSB2			
M3	IO92RSB2			
M4	IO89RSB2			
M5	IO87RSB2			
M6	IO85RSB2			
M7	IO78RSB2			
M8	IO76RSB2			
M9	TDI			
M10	VCCIB2			
M11	VPUMP			
M12	GNDQ			

🌜 Microsemi.

	FG144		FG144		FG144
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
A1	GNDQ	D1	IO149NDB3	G1	GFA1/IO145PPB3
A2	VMV0	D2	IO149PDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO153VDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO155UPB3	G4	GFA0/IO145NPB3
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO30RSB0	D7	GBC0/IO54RSB0	G7	GND
A8	VCC	D8	GBC1/IO55RSB0	G8	GDC1/IO77UPB1
A9	IO34RSB0	D9	GBB2/IO61PDB1	G9	IO72NDB1
A10	GBA0/IO58RSB0	D10	IO61NDB1	G10	GCC2/IO72PDB1
A11	GBA1/IO59RSB0	D11	IO62NPB1	G11	IO71NDB1
A12	GNDQ	D12	GCB1/IO68PPB1	G12	GCB2/IO71PDB1
B1	GAB2/IO154UDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO147NDB3	H2	GFB2/IO143PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO147PDB3	H3	GFC2/IO142PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO137PDB3
B5	IO14RSB0	E5	IO155VPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO75PDB1
B7	IO23RSB0	E7	VCCIB0	H7	IO75NDB1
B8	IO31RSB0	E8	GCC1/IO67PDB1	H8	GDB2/IO81RSB2
B9	GBB0/IO56RSB0	E9	VCCIB1	H9	GDC0/IO77VPB1
B10	GBB1/IO57RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO69NDB1	H11	IO73PSB1
B12	VMV1	E12	IO70NDB1	H12	VCC
C1	IO154VDB3	F1	GFB0/IO146NPB3	J1	GEB1/IO136PDB3
C2	GFA2/IO144PPB3	F2	VCOMPLF	J2	IO143NDB3
C3	GAC2/IO153UDB3	F3	GFB1/IO146PPB3	J3	VCCIB3
C4	VCC	F4	IO144NPB3	J4	GEC0/IO137NDB3
C5	IO12RSB0	F5	GND	J5	IO125RSB2
C6	IO17RSB0	F6	GND	J6	IO116RSB2
C7	IO25RSB0	F7	GND	J7	VCC
C8	IO32RSB0	F8	GCC0/IO67NDB1	J8	ТСК
C9	IO53RSB0	F9	GCB0/IO68NPB1	J9	GDA2/IO80RSB2
C10	GBA2/IO60PDB1	F10	GND	J10	TDO
C11	IO60NDB1	F11	GCA1/IO69PDB1	J11	GDA1/IO79UDB1
C12	GBC2/IO62PPB1	F12	GCA2/IO70PDB1	J12	GDB1/IO78UDB1

	FG256		FG256		FG256
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
G13	GCC1/IO69PPB1	K1	GFC2/IO159PDB3	M5	VMV3
G14	IO65NPB1	K2	IO161NPB3	M6	VCCIB2
G15	IO75PDB1	K3	IO156PPB3	M7	VCCIB2
G16	IO75NDB1	K4	IO129RSB2	M8	IO117RSB2
H1	GFB0/IO163NPB3	K5	VCCIB3	M9	IO110RSB2
H2	GFA0/IO162NDB3	K6	VCC	M10	VCCIB2
H3	GFB1/IO163PPB3	K7	GND	M11	VCCIB2
H4	VCOMPLF	K8	GND	M12	VMV2
H5	GFC0/IO164NPB3	K9	GND	M13	IO94RSB2
H6	VCC	K10	GND	M14	GDB1/IO87PPB1
H7	GND	K11	VCC	M15	GDC1/IO86PDB1
H8	GND	K12	VCCIB1	M16	IO84NDB1
H9	GND	K13	IO73NPB1	N1	IO150NDB3
H10	GND	K14	IO80NPB1	N2	IO147PPB3
H11	VCC	K15	IO74NPB1	N3	GEC1/IO146PPB3
H12	GCC0/IO69NPB1	K16	IO72NDB1	N4	IO140RSB2
H13	GCB1/IO70PPB1	L1	IO159NDB3	N5	GNDQ
H14	GCA0/IO71NPB1	L2	IO156NPB3	N6	GEA2/IO143RSB2
H15	IO67NPB1	L3	IO151PPB3	N7	IO126RSB2
H16	GCB0/IO70NPB1	L4	IO158PSB3	N8	IO120RSB2
J1	GFA2/IO161PPB3	L5	VCCIB3	N9	IO108RSB2
J2	GFA1/IO162PDB3	L6	GND	N10	IO103RSB2
J3	VCCPLF	L7	VCC	N11	IO99RSB2
J4	IO160NDB3	L8	VCC	N12	GNDQ
J5	GFB2/IO160PDB3	L9	VCC	N13	IO92RSB2
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO86NDB1
J8	GND	L12	VCCIB1	N16	GDA1/IO88PDB1
J9	GND	L13	GDB0/IO87NPB1	P1	GEB1/IO145PDB3
J10	GND	L14	IO85NDB1	P2	GEB0/IO145NDB3
J11	VCC	L15	IO85PDB1	P3	VMV2
J12	GCB2/IO73PPB1	L16	IO84PDB1	P4	IO138RSB2
J13	GCA1/IO71PPB1	M1	IO150PDB3	P5	IO136RSB2
J14	GCC2/IO74PPB1	M2	IO151NPB3	P6	IO131RSB2
J15	IO80PPB1	M3	IO147NPB3	P7	IO124RSB2
J16	GCA2/IO72PDB1	M4	GEC0/IO146NPB3	P8	IO119RSB2

Revision	Changes	Page
Revision 13 (January 2013)	The "ProASIC3 Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43104).	1-IV
	Added a note to Table 2-2 • Recommended Operating Conditions 1 (SAR 43644): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	2-2
	The note in Table 2-115 • ProASIC3 CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42569).	2-90
	Libero Integrated Design Environment (IDE) was changed to Libero System-on- Chip (SoC) throughout the document (SAR 40284). Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 12 (September 2012)	The Security section was modified to clarify that Microsemi does not support read-back of programmed data.	1-1
	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information" to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions 1 (SAR 38321).	2-1 2-2
	Table 2-35 • Duration of Short Circuit Event Before Failure was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37933).	2-31
	In Table 2-93 • Minimum and Maximum DC Input and Output Levels, VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 28549).	2-68
	Figure 2-37 • FIFO Read and Figure 2-38 • FIFO Write are new (SAR 28371).	2-99
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38321). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Revision	Changes	Page
Revision 9 (Oct 2009) Product Brief v1.3	The CS121 package was added to table under "Features and Benefits" section, the "I/Os Per Package 1" table, Table 1 • ProASIC3 FPGAs Package Sizes Dimensions, "ProASIC3 Ordering Information", and the "Temperature Grade Offerings" table.	I – IV
	"ProASIC3 Ordering Information" was revised to include the fact that some RoHS compliant packages are halogen-free.	IV
Packaging v1.5	The "CS121 – Bottom View" figure and pin table for A3P060 are new.	4-15
Revision 8 (Aug 2009) Product Brief v1.2	All references to M7 devices (CoreMP7) and speed grade –F were removed from this document.	N/A
	Table 1-1 I/O Standards supported is new.	1-7
	The I/Os with Advanced I/O Standards section was revised to add definitions of hot-swap and cold-sparing.	1-7
DC and Switching Characteristics v1.4	$3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS data.	N/A
	$\rm I_{\rm IL}$ and $\rm I_{\rm IH}$ input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A
	-F was removed from the datasheet. The speed grade is no longer supported.	N/A
	The notes in Table 2-2 • Recommended Operating Conditions 1 were updated.	2-2
	Table 2-4 • Overshoot and Undershoot Limits 1 was updated.	2-3
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	2-6
	In Table 2-116 • RAM4K9, the following specifications were removed: t _{WRO} t _{CCKH}	2-96
	In Table 2-117 • RAM512X18, the following specifications were removed: t _{WRO} t _{CCKH}	2-97
	In the title of Table 2-74 • 1.8 V LVCMOS High Slew, VCCI had a typo. It was changed from 3.0 V to 1.7 V.	2-58
Revision 7 (Feb 2009) Product Brief v1.1	The "Advanced I/O" section was revised to add a bullet regarding wide range power supply voltage support.	I
	The table under "Features and Benefits" section, was updated to include a value for typical equivalent macrocells for A3P250.	I
	The QN48 package was added to the following tables: the table under "Features and Benefits" section, "I/Os Per Package 1" "ProASIC3 FPGAs Package Sizes Dimensions", and "Temperature Grade Offerings".	N/A
	The number of singled-ended I/Os for QN68 was added to the "I/Os Per Package 1" table.	
	The Wide Range I/O Support section is new.	1-7
Revision 6 (Dec 2008)	The "QN48 – Bottom View" section is new.	4-1
Packaging v1.4	The "QN68" pin table for A3P030 is new.	4-5

Datasheet Information

Revision	Changes	Page
Advance v0.3	The "PLL Macro" section was updated. EXTFB information was removed from this section.	2-15
	The CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} was updated in Table 2- 11 • ProASIC3 CCC/PLL Specification	2-29
	EXTFB was removed from Figure 2-27 • CCC/PLL Macro.	2-28
	Table 2-13 • ProASIC3 I/O Features was updated.	2-30
	The "Hot-Swap Support" section was updated.	2-33
	The "Cold-Sparing Support" section was updated.	2-34
	"Electrostatic Discharge (ESD) Protection" section was updated.	2-35
	The LVPECL specification in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.	2-64
	In the Bank 1 area of Figure 2-72, VMV2 was changed to VMV1 and VCCIB2 was changed to VCC_IB1.	2-97
	The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.	2-50
	The "JTAG Pins" section was updated.	2-51
	"128-Bit AES Decryption" section was updated to include M7 device information.	2-53
	Table 3-6 was updated.	3-6
	Table 3-7 was updated.	3-6
	In Table 3-11, PAC4 was updated.	3-93-8
	Table 3-20 was updated.	3-20
	The note in Table 3-32 was updated.	3-27
	All Timing Characteristics tables were updated from LVTTL to Register Delays	3-31 to 3- 73
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-85 to 3-90
	F _{TCKMAX} was updated in Table 3-110.	3-97
Advance v0.2	Figure 2-11 was updated.	2-9
	The "Clock Resources (VersaNets)" section was updated.	2-9
	The "VersaNet Global Networks and Spine Access" section was updated.	2-9
	The "PLL Macro" section was updated.	2-15
	Figure 2-27 was updated.	2-28
	Figure 2-20 was updated.	2-19
	Table 2-5 was updated.	2-25
	Table 2-6 was updated.	2-25
	The "FIFO Flag Usage Considerations" section was updated.	2-27
	Table 2-13 was updated.	2-30
	Figure 2-24 was updated.	2-31
	The "Cold-Sparing Support" section is new.	2-34

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3 Device Status" table on page IV, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Unmarked (production)

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.