Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Active | | Number of LABs/CLBs | - | | Number of Logic Elements/Cells | - | | Total RAM Bits | 36864 | | Number of I/O | 71 | | Number of Gates | 125000 | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 100-TQFP | | Supplier Device Package | 100-VQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/a3p125-1vqg100 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # ProASIC3 Device Family Overview ProASIC3 DC and Switching Characteristics Pin Descriptions Package Pin Assignments QN68 – Bottom View4-3 **Datasheet Information** Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3 device provides the best available security for programmable logic designs. ### Single Chip Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3 FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability. #### Instant On Flash-based ProASIC3 devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based ProASIC3 devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3 device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3 devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time. #### Firm Errors Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3 flash-based FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3 FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric. #### Low Power Flash-based ProASIC3 devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3 devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs. ProASIC3 devices also have low dynamic power consumption to further maximize power savings. Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices | | Definition | Device Specific Static Power (mW) | | | | | | | |-----------|--|---|--|--|--|--|--------|--------| | Parameter | | A3P1000 A3P600 A3P400 A3P250 A3P125 A3P060 | | | | | A3P030 | A3P015 | | PDC1 | Array static power in Active mode | See Table 2-7 on page 2-7. | | | | | | | | PDC2 | I/O input pin static power (standard-dependent) | | See Table 2-8 on page 2-7 through
Table 2-10 on page 2-8. | | | | | | | PDC3 | I/O output pin static power (standard-dependent) | See Table 2-11 on page 2-9 through Table 2-13 on page 2-10. | | | | | | | | PDC4 | Static PLL contribution | 2.55 mW | | | | | | | | PDC5 | Bank quiescent power (VCCI-dependent) | See Table 2-7 on page 2-7. | | | | | | | Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power spreadsheet calculator or SmartPower tool in Libero SoC software. ## **Power Calculation Methodology** This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software. The power calculation methodology described below uses the following variables: - · The number of PLLs as well as the number and the frequency of each output clock generated - · The number of combinatorial and sequential cells used in the design - · The internal clock frequencies - · The number and the standard of I/O pins used in the design - · The number of RAM blocks used in the design - Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-16 on page 2-14. - Enable rates of output buffers—guidelines are provided for typical applications in Table 2-17 on page 2-14. - Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-17 on page 2-14. The calculation should be repeated for each clock domain defined in the design. ## Methodology #### Total Power Consumption—PTOTAL $P_{TOTAL} = P_{STAT} + P_{DYN}$ $P_{\mbox{\scriptsize STAT}}$ is the total static power consumption. P_{DYN} is the total dynamic power consumption. #### Total Static Power Consumption—P_{STAT} P_{STAT} = P_{DC1} + N_{INPUTS}* P_{DC2} + N_{OUTPUTS}* P_{DC3} N_{INPLITS} is the number of I/O input buffers used in the design. N_{OUTPUTS} is the number of I/O output buffers used in the design. #### Total Dynamic Power Consumption—P_{DYN} PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL ## Global Clock Contribution—P_{CLOCK} P_{CLOCK} = (P_{AC1} + N_{SPINE}*P_{AC2} + N_{ROW}*P_{AC3} + N_{S-CELL}* P_{AC4}) * F_{CLK} N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3 FPGA Fabric User's Guide*. N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3 FPGA Fabric User's Guide*. Table 2-33 • I/O Short Currents IOSH/IOSL Applicable to Standard Plus I/O Banks | | Drive Strength | IOSL (mA) ¹ | IOSH (mA) ¹ | |--------------------------------------|-----------------------------|---------------------------------|---------------------------------| | 3.3 V LVTTL / 3.3 V LVCMOS | 2 mA | 27 | 25 | | | 4 mA | 27 | 25 | | | 6 mA | 54 | 51 | | | 8 mA | 54 | 51 | | | 12 mA | 109 | 103 | | | 16 mA | 109 | 103 | | 3.3 V LVCMOS Wide Range ² | 100 μΑ | Same as regular
3.3 V LVCMOS | Same as regular 3.3 V
LVCMOS | | 2.5 V LVCMOS | 2 mA | 18 | 16 | | | 4 mA | 18 | 16 | | | 6 mA | 37 | 32 | | | 8 mA | 37 | 32 | | | 12 mA | 74 | 65 | | 1.8 V LVCMOS | 2 mA | 11 | 9 | | | 4 mA | 22 | 17 | | | 6 mA | 44 | 35 | | | 8 mA | 44 | 35 | | 1.5 V LVCMOS | 2 mA | 16 | 13 | | | 4 mA | 33 | 25 | | 3.3 V PCI/PCI-X | Per PCI/PCI-X specification | 109 | 103 | #### Notes: ^{1.} $T_J = 100^{\circ}C$ ^{2.} Applicable to 3.3 V LVCMOS Wide Range. IOSL/IOSH dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels | DC Parameter | Description | Min. | Тур. | Max. | Units | |--------------------|-----------------------------|-------|-------|-------|-------| | VCCI | Supply Voltage | 2.375 | 2.5 | 2.625 | V | | VOL | Output Low Voltage | 0.9 | 1.075 | 1.25 | V | | VOH | Output High Voltage | 1.25 | 1.425 | 1.6 | V | | IOL ¹ | Output Lower Current | 0.65 | 0.91 | 1.16 | mA | | IOH ¹ | Output High Current | 0.65 | 0.91 | 1.16 | mA | | VI | Input Voltage | 0 | | 2.925 | V | | IIH ^{2,3} | Input High Leakage Current | | | 10 | μΑ | | IIL ^{2,4} | Input Low Leakage Current | | | 10 | μΑ | | VODIFF | Differential Output Voltage | 250 | 350 | 450 | mV | | VOCM | Output Common Mode Voltage | 1.125 | 1.25 | 1.375 | V | | VICM | Input Common Mode Voltage | 0.05 | 1.25 | 2.35 | V | | VIDIFF | Input Differential Voltage | 100 | 350 | | mV | #### Notes: - 1. IOL/IOH defined by VODIFF/(Resistor Network) - 2. Currents are measured at 85°C junction temperature. - 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <VCCI. Input current is larger when operating outside recommended ranges. - 4. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN <VIL. Table 2-91 • AC Waveforms, Measuring Points, and Capacitive Loads | Input Low (V) | Input High (V) | Measuring Point* (V) | |---------------|----------------|----------------------| | 1.075 | 1.325 | Cross point | Note: *Measuring point = V_{trip.} See Table 2-22 on page 2-22 for a complete table of trip points. ### **Timing Characteristics** Table 2-92 • LVDS Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | Units | |-------------|-------------------|-----------------|------------------|-----------------|-------| | Std. | 0.66 | 1.83 | 0.04 | 1.60 | ns | | -1 | 0.56 | 1.56 | 0.04 | 1.36 | ns | | -2 | 0.49 | 1.37 | 0.03 | 1.20 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Figure 2-23 • Output DDR Timing Diagram ## **Timing Characteristics** Table 2-104 • Output DDR Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V | Parameter | Description | -2 | -1 | Std. | Units | |-------------------------|---|------|------|------|-------| | t _{DDROCLKQ} | Clock-to-Out of DDR for Output DDR | 0.70 | 0.80 | 0.94 | ns | | t _{DDROSUD1} | Data_F Data Setup for Output DDR | 0.38 | 0.43 | 0.51 | ns | | t _{DDROSUD2} | Data_R Data Setup for Output DDR | 0.38 | 0.43 | 0.51 | ns | | t _{DDROHD1} | Data_F Data Hold for Output DDR | 0.00 | 0.00 | 0.00 | ns | | t _{DDROHD2} | Data_R Data Hold for Output DDR | 0.00 | 0.00 | 0.00 | ns | | t _{DDROCLR2Q} | Asynchronous Clear-to-Out for Output DDR | 0.80 | 0.91 | 1.07 | ns | | t _{DDROREMCLR} | Asynchronous Clear Removal Time for Output DDR | 0.00 | 0.00 | 0.00 | ns | | t _{DDRORECCLR} | Asynchronous Clear Recovery Time for Output DDR | 0.22 | 0.25 | 0.30 | ns | | t _{DDROWCLR1} | Asynchronous Clear Minimum Pulse Width for Output DDR | 0.22 | 0.25 | 0.30 | ns | | t _{DDROCKMPWH} | Clock Minimum Pulse Width High for the Output DDR | 0.36 | 0.41 | 0.48 | ns | | t _{DDROCKMPWL} | Clock Minimum Pulse Width Low for the Output DDR | 0.32 | 0.37 | 0.43 | ns | | F _{DDOMAX} | Maximum Frequency for the Output DDR | 350 | 309 | 263 | MHz | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. # **Embedded SRAM and FIFO Characteristics** ## **SRAM** Figure 2-30 • RAM Models # **Timing Characteristics** Table 2-116 • RAM4K9 Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V | Parameter | Description | -2 | -1 | Std. | Units | |----------------------------------|---|------|------|------|-------| | t _{AS} | Address setup time | 0.25 | 0.28 | 0.33 | ns | | t _{AH} | Address hold time | 0.00 | 0.00 | 0.00 | ns | | t _{ENS} | REN, WEN setup time | 0.14 | 0.16 | 0.19 | ns | | t _{ENH} | REN, WEN hold time | 0.10 | 0.11 | 0.13 | ns | | t _{BKS} | BLK setup time | 0.23 | 0.27 | 0.31 | ns | | t _{BKH} | BLK hold time | 0.02 | 0.02 | 0.02 | ns | | t _{DS} | Input data (DIN) setup time | 0.18 | 0.21 | 0.25 | ns | | t _{DH} | Input data (DIN) hold time | 0.00 | 0.00 | 0.00 | ns | | t _{CKQ1} | Clock High to new data valid on DOUT (output retained, WMODE = 0) | 2.36 | 2.68 | 3.15 | ns | | | Clock High to new data valid on DOUT (flow-through, WMODE = 1) | 1.79 | 2.03 | 2.39 | ns | | t _{CKQ2} | Clock High to new data valid on DOUT (pipelined) | 0.89 | 1.02 | 1.20 | ns | | t _{C2CWWL} 1 | Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Closing Edge | 0.33 | 0.28 | 0.25 | ns | | t _{C2CWWH} ¹ | Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge | 0.30 | 0.26 | 0.23 | ns | | t _{C2CRWH} 1 | Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge | 0.45 | 0.38 | 0.34 | ns | | t _{C2CWRH} 1 | Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge | 0.49 | 0.42 | 0.37 | ns | | t _{RSTBQ} | RESET Low to data out Low on DOUT (flow-through) | 0.92 | 1.05 | 1.23 | ns | | | RESET Low to Data Out Low on DOUT (pipelined) | 0.92 | 1.05 | 1.23 | ns | | t _{REMRSTB} | RESET removal | 0.29 | 0.33 | 0.38 | ns | | t _{RECRSTB} | RESET recovery | 1.50 | 1.71 | 2.01 | ns | | t _{MPWRSTB} | RESET minimum pulse width | 0.21 | 0.24 | 0.29 | ns | | t _{CYC} | Clock cycle time | 3.23 | 3.68 | 4.32 | ns | | F _{MAX} | Maximum frequency | 310 | 272 | 231 | MHz | #### Notes: For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs. ^{2.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. ## **FIFO** Figure 2-36 • FIFO Model Table 2-119 • FIFO (for A3P250 only, aspect-ratio-dependent) Worst Commercial-Case Conditions: $T_J = 70^{\circ}$ C, VCC = 1.425 V | Parameter | Description | -2 | –1 | Std. | Units | |----------------------|---|------|-----------|------|-------| | t _{ENS} | REN, WEN Setup Time | 3.26 | 3.71 | 4.36 | ns | | t _{ENH} | REN, WEN Hold Time | 0.00 | 0.00 | 0.00 | ns | | t _{BKS} | BLK Setup Time | 0.19 | 0.22 | 0.26 | ns | | t _{BKH} | BLK Hold Time | 0.00 | 0.00 | 0.00 | ns | | t _{DS} | Input Data (WD) Setup Time | 0.18 | 0.21 | 0.25 | ns | | t _{DH} | Input Data (WD) Hold Time | 0.00 | 0.00 | 0.00 | ns | | t _{CKQ1} | Clock High to New Data Valid on RD (flow-through) | 2.17 | 2.47 | 2.90 | ns | | t _{CKQ2} | Clock High to New Data Valid on RD (pipelined) | 0.94 | 1.07 | 1.26 | ns | | t _{RCKEF} | RCLK High to Empty Flag Valid | 1.72 | 1.96 | 2.30 | ns | | t _{WCKFF} | WCLK High to Full Flag Valid | 1.63 | 1.86 | 2.18 | ns | | t _{CKAF} | Clock High to Almost Empty/Full Flag Valid | 6.19 | 7.05 | 8.29 | ns | | t _{RSTFG} | RESET Low to Empty/Full Flag Valid | 1.69 | 1.93 | 2.27 | ns | | t _{RSTAF} | RESET Low to Almost Empty/Full Flag Valid | 6.13 | 6.98 | 8.20 | ns | | t _{RSTBQ} | RESET Low to Data Out Low on RD (flow-through) | 0.92 | 1.05 | 1.23 | ns | | | RESET Low to Data Out Low on RD (pipelined) | 0.92 | 1.05 | 1.23 | ns | | t _{REMRSTB} | RESET Removal | 0.29 | 0.33 | 0.38 | ns | | t _{RECRSTB} | RESET Recovery | 1.50 | 1.71 | 2.01 | ns | | t _{MPWRSTB} | RESET Minimum Pulse Width | 0.21 | 0.24 | 0.29 | ns | | t _{CYC} | Clock Cycle Time | 3.23 | 3.68 | 4.32 | ns | | F _{MAX} | Maximum Frequency for FIFO | 310 | 272 | 231 | MHz | 2-103 Revision 18 Table 2-120 • A3P250 FIFO 512×8 Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V | Parameter | Description | -2 | -1 | Std. | Units | |----------------------|---|------|------|------|-------| | t _{ENS} | REN, WEN Setup Time | 3.75 | 4.27 | 5.02 | ns | | t _{ENH} | REN, WEN Hold Time | 0.00 | 0.00 | 0.00 | ns | | t _{BKS} | BLK Setup Time | 0.19 | 0.22 | 0.26 | ns | | t _{BKH} | BLK Hold Time | 0.00 | 0.00 | 0.00 | ns | | t _{DS} | Input Data (WD) Setup Time | 0.18 | 0.21 | 0.25 | ns | | t _{DH} | Input Data (WD) Hold Time | 0.00 | 0.00 | 0.00 | ns | | t _{CKQ1} | Clock High to New Data Valid on RD (flow-through) | 2.17 | 2.47 | 2.90 | ns | | t _{CKQ2} | Clock High to New Data Valid on RD (pipelined) | 0.94 | 1.07 | 1.26 | ns | | t _{RCKEF} | RCLK High to Empty Flag Valid | 1.72 | 1.96 | 2.30 | ns | | t _{WCKFF} | WCLK High to Full Flag Valid | 1.63 | 1.86 | 2.18 | ns | | t _{CKAF} | Clock High to Almost Empty/Full Flag Valid | 6.19 | 7.05 | 8.29 | ns | | t _{RSTFG} | RESET Low to Empty/Full Flag Valid | 1.69 | 1.93 | 2.27 | ns | | t _{RSTAF} | RESET Low to Almost Empty/Full Flag Valid | 6.13 | 6.98 | 8.20 | ns | | t _{RSTBQ} | RESET Low to Data Out Low on RD (flow-through) | 0.92 | 1.05 | 1.23 | ns | | | RESET Low to Data Out Low on RD (pipelined) | 0.92 | 1.05 | 1.23 | ns | | t _{REMRSTB} | RESET Removal | 0.29 | 0.33 | 0.38 | ns | | t _{RECRSTB} | RESET Recovery | 1.50 | 1.71 | 2.01 | ns | | t _{MPWRSTB} | RESET Minimum Pulse Width | 0.21 | 0.24 | 0.29 | ns | | t _{CYC} | Clock Cycle Time | 3.23 | 3.68 | 4.32 | ns | | F _{MAX} | Maximum Frequency for FIFO | 310 | 272 | 231 | MHz | Table 2-123 • A3P250 FIFO 4k×1 (continued) Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V | Parameter | Description | -2 | -1 | Std. | Units | |----------------------|--|------|-----------|------|-------| | t _{RSTAF} | RESET Low to Almost Empty/Full Flag Valid | 6.13 | 6.98 | 8.20 | ns | | t _{RSTBQ} | RESET Low to Data Out Low on DO (pass-through) | 0.92 | 1.05 | 1.23 | ns | | | RESET Low to Data Out Low on DO (pipelined) | 0.92 | 1.05 | 1.23 | ns | | t _{REMRSTB} | RESET Removal | 0.29 | 0.33 | 0.38 | ns | | t _{RECRSTB} | RESET Recovery | 1.50 | 1.71 | 2.01 | ns | | t _{MPWRSTB} | RESET Minimum Pulse Width | 0.21 | 0.24 | 0.29 | ns | | t _{CYC} | Clock Cycle Time | 3.23 | 3.68 | 4.32 | ns | | F _{MAX} | Maximum Frequency | 310 | 272 | 231 | MHz | # **Embedded FlashROM Characteristics** Figure 2-44 • Timing Diagram # **Timing Characteristics** Table 2-124 • Embedded FlashROM Access Time | Parameter | Description | -2 | -1 | Std. | Units | |-------------------|-------------------------|-------|-------|-------|-------| | t _{SU} | Address Setup Time | 0.53 | 0.61 | 0.71 | ns | | t _{HOLD} | Address Hold Time | 0.00 | 0.00 | 0.00 | ns | | t _{CK2Q} | Clock to Out | 21.42 | 24.40 | 28.68 | ns | | F _{MAX} | Maximum Clock Frequency | 15 | 15 | 15 | MHz | 2-107 Revision 18 ## Package Pin Assignments | PQ208 | | |------------|-----------------| | Pin Number | A3P600 Function | | 109 | TRST | | 110 | VJTAG | | 111 | GDA0/IO88NDB1 | | 112 | GDA1/IO88PDB1 | | 113 | GDB0/IO87NDB1 | | 114 | GDB1/IO87PDB1 | | 115 | GDC0/IO86NDB1 | | 116 | GDC1/IO86PDB1 | | 117 | IO84NDB1 | | 118 | IO84PDB1 | | 119 | IO82NDB1 | | 120 | IO82PDB1 | | 121 | IO81PSB1 | | 122 | GND | | 123 | VCCIB1 | | 124 | IO77NDB1 | | 125 | IO77PDB1 | | 126 | NC | | 127 | IO74NDB1 | | 128 | GCC2/IO74PDB1 | | 129 | GCB2/IO73PSB1 | | 130 | GND | | 131 | GCA2/IO72PSB1 | | 132 | GCA1/IO71PDB1 | | 133 | GCA0/IO71NDB1 | | 134 | GCB0/IO70NDB1 | | 135 | GCB1/IO70PDB1 | | 136 | GCC0/IO69NDB1 | | 137 | GCC1/IO69PDB1 | | 138 | IO67NDB1 | | 139 | IO67PDB1 | | 140 | VCCIB1 | | 141 | GND | | 142 | VCC | | 143 | IO65PSB1 | | 144 | IO64NDB1 | | PQ208 | | |------------|-----------------| | Pin Number | A3P600 Function | | 145 | IO64PDB1 | | 146 | IO63NDB1 | | 147 | IO63PDB1 | | 148 | IO62NDB1 | | 149 | GBC2/IO62PDB1 | | 150 | IO61NDB1 | | 151 | GBB2/IO61PDB1 | | 152 | IO60NDB1 | | 153 | GBA2/IO60PDB1 | | 154 | VMV1 | | 155 | GNDQ | | 156 | GND | | 157 | VMV0 | | 158 | GBA1/IO59RSB0 | | 159 | GBA0/IO58RSB0 | | 160 | GBB1/IO57RSB0 | | 161 | GBB0/IO56RSB0 | | 162 | GND | | 163 | GBC1/IO55RSB0 | | 164 | GBC0/IO54RSB0 | | 165 | IO52RSB0 | | 166 | IO50RSB0 | | 167 | IO48RSB0 | | 168 | IO46RSB0 | | 169 | IO44RSB0 | | 170 | VCCIB0 | | 171 | VCC | | 172 | IO36RSB0 | | 173 | IO35RSB0 | | 174 | IO34RSB0 | | 175 | IO33RSB0 | | 176 | IO32RSB0 | | 177 | IO31RSB0 | | 178 | GND | | 179 | IO29RSB0 | | 180 | IO28RSB0 | | PQ208 | | |------------|-----------------| | Pin Number | A3P600 Function | | 181 | IO27RSB0 | | 182 | IO26RSB0 | | 183 | IO25RSB0 | | 184 | IO24RSB0 | | 185 | IO23RSB0 | | 186 | VCCIB0 | | 187 | VCC | | 188 | IO20RSB0 | | 189 | IO19RSB0 | | 190 | IO18RSB0 | | 191 | IO17RSB0 | | 192 | IO16RSB0 | | 193 | IO14RSB0 | | 194 | IO12RSB0 | | 195 | GND | | 196 | IO10RSB0 | | 197 | IO09RSB0 | | 198 | IO08RSB0 | | 199 | IO07RSB0 | | 200 | VCCIB0 | | 201 | GAC1/IO05RSB0 | | 202 | GAC0/IO04RSB0 | | 203 | GAB1/IO03RSB0 | | 204 | GAB0/IO02RSB0 | | 205 | GAA1/IO01RSB0 | | 206 | GAA0/IO00RSB0 | | 207 | GNDQ | | 208 | VMV0 | 4-36 Revision 18 ## Package Pin Assignments | FG144 | | |------------|-----------------| | Pin Number | A3P250 Function | | A1 | GNDQ | | A2 | VMV0 | | A3 | GAB0/IO02RSB0 | | A4 | GAB1/IO03RSB0 | | A5 | IO16RSB0 | | A6 | GND | | A7 | IO29RSB0 | | A8 | VCC | | A9 | IO33RSB0 | | A10 | GBA0/IO39RSB0 | | A11 | GBA1/IO40RSB0 | | A12 | GNDQ | | B1 | GAB2/IO117UDB3 | | B2 | GND | | В3 | GAA0/IO00RSB0 | | B4 | GAA1/IO01RSB0 | | B5 | IO14RSB0 | | В6 | IO19RSB0 | | В7 | IO22RSB0 | | B8 | IO30RSB0 | | В9 | GBB0/IO37RSB0 | | B10 | GBB1/IO38RSB0 | | B11 | GND | | B12 | VMV1 | | C1 | IO117VDB3 | | C2 | GFA2/IO107PPB3 | | C3 | GAC2/IO116UDB3 | | C4 | VCC | | C5 | IO12RSB0 | | C6 | IO17RSB0 | | C7 | IO24RSB0 | | C8 | IO31RSB0 | | C9 | IO34RSB0 | | C10 | GBA2/IO41PDB1 | | C11 | IO41NDB1 | | C12 | GBC2/IO43PPB1 | | FG144 | | |------------|-----------------| | Pin Number | A3P250 Function | | D1 | IO112NDB3 | | D2 | IO112PDB3 | | D3 | IO116VDB3 | | D4 | GAA2/IO118UPB3 | | D5 | GAC0/IO04RSB0 | | D6 | GAC1/IO05RSB0 | | D7 | GBC0/IO35RSB0 | | D8 | GBC1/IO36RSB0 | | D9 | GBB2/IO42PDB1 | | D10 | IO42NDB1 | | D11 | IO43NPB1 | | D12 | GCB1/IO49PPB1 | | E1 | VCC | | E2 | GFC0/IO110NDB3 | | E3 | GFC1/IO110PDB3 | | E4 | VCCIB3 | | E5 | IO118VPB3 | | E6 | VCCIB0 | | E7 | VCCIB0 | | E8 | GCC1/IO48PDB1 | | E9 | VCCIB1 | | E10 | VCC | | E11 | GCA0/IO50NDB1 | | E12 | IO51NDB1 | | F1 | GFB0/IO109NPB3 | | F2 | VCOMPLF | | F3 | GFB1/IO109PPB3 | | F4 | IO107NPB3 | | F5 | GND | | F6 | GND | | F7 | GND | | F8 | GCC0/IO48NDB1 | | F9 | GCB0/IO49NPB1 | | F10 | GND | | F11 | GCA1/IO50PDB1 | | F12 | GCA2/IO51PDB1 | | F0444 | | |------------|-----------------| | FG144 | | | Pin Number | A3P250 Function | | G1 | GFA1/IO108PPB3 | | G2 | GND | | G3 | VCCPLF | | G4 | GFA0/IO108NPB3 | | G5 | GND | | G6 | GND | | G7 | GND | | G8 | GDC1/IO58UPB1 | | G9 | IO53NDB1 | | G10 | GCC2/IO53PDB1 | | G11 | IO52NDB1 | | G12 | GCB2/IO52PDB1 | | H1 | VCC | | H2 | GFB2/IO106PDB3 | | H3 | GFC2/IO105PSB3 | | H4 | GEC1/IO100PDB3 | | H5 | VCC | | H6 | IO79RSB2 | | H7 | IO65RSB2 | | H8 | GDB2/IO62RSB2 | | H9 | GDC0/IO58VPB1 | | H10 | VCCIB1 | | H11 | IO54PSB1 | | H12 | VCC | | J1 | GEB1/IO99PDB3 | | J2 | IO106NDB3 | | J3 | VCCIB3 | | J4 | GEC0/IO100NDB3 | | J5 | IO88RSB2 | | J6 | IO81RSB2 | | J7 | VCC | | J8 | TCK | | J9 | GDA2/IO61RSB2 | | J10 | TDO | | J11 | GDA1/IO60UDB1 | | J12 | GDB1/IO59UDB1 | 4-44 Revision 18 | FG256 | | |------------|------------------| | Pin Number | A3P1000 Function | | H3 | GFB1/IO208PPB3 | | H4 | VCOMPLF | | H5 | GFC0/IO209NPB3 | | H6 | VCC | | H7 | GND | | H8 | GND | | H9 | GND | | H10 | GND | | H11 | VCC | | H12 | GCC0/IO91NPB1 | | H13 | GCB1/IO92PPB1 | | H14 | GCA0/IO93NPB1 | | H15 | IO96NPB1 | | H16 | GCB0/IO92NPB1 | | J1 | GFA2/IO206PSB3 | | J2 | GFA1/IO207PDB3 | | J3 | VCCPLF | | J4 | IO205NDB3 | | J5 | GFB2/IO205PDB3 | | J6 | VCC | | J7 | GND | | J8 | GND | | J9 | GND | | J10 | GND | | J11 | VCC | | J12 | GCB2/IO95PPB1 | | J13 | GCA1/IO93PPB1 | | J14 | GCC2/IO96PPB1 | | J15 | IO100PPB1 | | J16 | GCA2/IO94PSB1 | | K1 | GFC2/IO204PDB3 | | K2 | IO204NDB3 | | K3 | IO203NDB3 | | K4 | IO203PDB3 | | K5 | VCCIB3 | | K6 | VCC | | K7 | GND | | K8 | GND | | | | | FG256 | | |------------|------------------| | Pin Number | A3P1000 Function | | K9 | GND | | K10 | GND | | K11 | VCC | | K12 | VCCIB1 | | K12 | IO95NPB1 | | K14 | IO100NPB1 | | K15 | IO102NDB1 | | K16 | IO102PDB1 | | L1 | IO202NDB3 | | L2 | IO202PDB3 | | L2
L3 | | | | IO196PPB3 | | L4 | IO193PPB3 | | L5 | VCCIB3 | | L6 | GND | | L7 | VCC | | L8 | VCC | | L9 | VCC | | L10 | VCC | | L11 | GND | | L12 | VCCIB1 | | L13 | GDB0/IO112NPB1 | | L14 | IO106NDB1 | | L15 | IO106PDB1 | | L16 | IO107PDB1 | | M1 | IO197NSB3 | | M2 | IO196NPB3 | | M3 | IO193NPB3 | | M4 | GEC0/IO190NPB3 | | M5 | VMV3 | | M6 | VCCIB2 | | M7 | VCCIB2 | | M8 | IO147RSB2 | | M9 | IO136RSB2 | | M10 | VCCIB2 | | M11 | VCCIB2 | | M12 | VMV2 | | M13 | IO110NDB1 | | M14 | GDB1/IO112PPB1 | | | | | FG256 | | |-------------------------------|----------------| | Pin Number A3P1000 Function | | | M15 | GDC1/IO111PDB1 | | M16 | IO107NDB1 | | N1 | IO194PSB3 | | N2 | IO192PPB3 | | N3 | GEC1/IO190PPB3 | | N4 | IO192NPB3 | | N5 | GNDQ | | N6 | GEA2/IO187RSB2 | | N7 | IO161RSB2 | | | | | N8 | IO155RSB2 | | N9 | IO141RSB2 | | N10 | IO129RSB2 | | N11 | IO124RSB2 | | N12 | GNDQ | | N13 | IO110PDB1 | | N14 | VJTAG | | N15 | GDC0/IO111NDB1 | | N16 | GDA1/IO113PDB1 | | P1 | GEB1/IO189PDB3 | | P2 | GEB0/IO189NDB3 | | P3 | VMV2 | | P4 | IO179RSB2 | | P5 | IO171RSB2 | | P6 | IO165RSB2 | | P7 | IO159RSB2 | | P8 | IO151RSB2 | | P9 | IO137RSB2 | | P10 | IO134RSB2 | | P11 | IO128RSB2 | | P12 | VMV1 | | P13 | TCK | | P14 | VPUMP | | P15 | TRST | | P16 | GDA0/IO113NDB1 | | R1 | GEA1/IO188PDB3 | | R2 | GEA0/IO188NDB3 | | R3 | IO184RSB2 | | R4 | GEC2/IO185RSB2 | | FG484 | | |------------|-----------------| | Pin Number | A3P600 Function | | K19 | IO75NDB1 | | K20 | NC | | K21 | IO76NDB1 | | K22 | IO76PDB1 | | L1 | NC | | L2 | IO155PDB3 | | L3 | NC | | L4 | GFB0/IO163NPB3 | | L5 | GFA0/IO162NDB3 | | L6 | GFB1/IO163PPB3 | | L7 | VCOMPLF | | L8 | GFC0/IO164NPB3 | | L9 | VCC | | L10 | GND | | L11 | GND | | L12 | GND | | L13 | GND | | L14 | VCC | | L15 | GCC0/IO69NPB1 | | L16 | GCB1/IO70PPB1 | | L17 | GCA0/IO71NPB1 | | L18 | IO67NPB1 | | L19 | GCB0/IO70NPB1 | | L20 | IO77PDB1 | | L21 | IO77NDB1 | | L22 | IO78NPB1 | | M1 | NC | | M2 | IO155NDB3 | | M3 | IO158NPB3 | | M4 | GFA2/IO161PPB3 | | M5 | GFA1/IO162PDB3 | | M6 | VCCPLF | | M7 | IO160NDB3 | | M8 | GFB2/IO160PDB3 | | M9 | VCC | | M10 | GND | | FG484 | | |------------|-----------------| | Pin Number | A3P600 Function | | M11 | GND | | M12 | GND | | M13 | GND | | M14 | VCC | | M15 | GCB2/IO73PPB1 | | M16 | GCA1/IO71PPB1 | | M17 | GCC2/IO74PPB1 | | M18 | IO80PPB1 | | M19 | GCA2/IO72PDB1 | | M20 | IO79PPB1 | | M21 | IO78PPB1 | | M22 | NC | | N1 | IO154NDB3 | | N2 | IO154PDB3 | | N3 | NC | | N4 | GFC2/IO159PDB3 | | N5 | IO161NPB3 | | N6 | IO156PPB3 | | N7 | IO129RSB2 | | N8 | VCCIB3 | | N9 | VCC | | N10 | GND | | N11 | GND | | N12 | GND | | N13 | GND | | N14 | VCC | | N15 | VCCIB1 | | N16 | IO73NPB1 | | N17 | IO80NPB1 | | N18 | IO74NPB1 | | N19 | IO72NDB1 | | N20 | NC | | N21 | IO79NPB1 | | N22 | NC | | P1 | NC | | P2 | IO153PDB3 | | -0.01 | | | |------------|-----------------|--| | | FG484 | | | Pin Number | A3P600 Function | | | P3 | IO153NDB3 | | | P4 | IO159NDB3 | | | P5 | IO156NPB3 | | | P6 | IO151PPB3 | | | P7 | IO158PPB3 | | | P8 | VCCIB3 | | | P9 | GND | | | P10 | VCC | | | P11 | VCC | | | P12 | VCC | | | P13 | VCC | | | P14 | GND | | | P15 | VCCIB1 | | | P16 | GDB0/IO87NPB1 | | | P17 | IO85NDB1 | | | P18 | IO85PDB1 | | | P19 | IO84PDB1 | | | P20 | NC | | | P21 | IO81PDB1 | | | P22 | NC | | | R1 | NC | | | R2 | NC | | | R3 | VCC | | | R4 | IO150PDB3 | | | R5 | IO151NPB3 | | | R6 | IO147NPB3 | | | R7 | GEC0/IO146NPB3 | | | R8 | VMV3 | | | R9 | VCCIB2 | | | R10 | VCCIB2 | | | R11 | IO117RSB2 | | | R12 | IO110RSB2 | | | R13 | VCCIB2 | | | R14 | VCCIB2 | | | R15 | VMV2 | | | R16 | IO94RSB2 | | | | FG484 | |------------|-----------------| | Pin Number | A3P600 Function | | Y15 | VCC | | Y16 | NC | | Y17 | NC | | Y18 | GND | | Y19 | NC | | Y20 | NC | | Y21 | NC | | Y22 | VCCIB1 | | AA1 | GND | | AA2 | VCCIB3 | | AA3 | NC | | AA4 | NC | | AA5 | NC | | AA6 | IO135RSB2 | | AA7 | IO133RSB2 | | AA8 | NC | | AA9 | NC | | AA10 | NC | | AA11 | NC | | AA12 | NC | | AA13 | NC | | AA14 | NC | | AA15 | NC | | AA16 | IO101RSB2 | | AA17 | NC | | AA18 | NC | | AA19 | NC | | AA20 | NC | | AA21 | VCCIB1 | | AA22 | GND | | AB1 | GND | | AB2 | GND | | AB3 | VCCIB2 | | AB4 | NC | | AB5 | NC | | AB6 | IO130RSB2 | | FG484 | | | |------------|-----------------|--| | Pin Number | A3P600 Function | | | AB7 | IO128RSB2 | | | AB8 | IO122RSB2 | | | AB9 | IO116RSB2 | | | AB10 | NC | | | AB11 | NC | | | AB12 | IO113RSB2 | | | AB13 | IO112RSB2 | | | AB14 | NC | | | AB15 | NC | | | AB16 | IO100RSB2 | | | AB17 | IO95RSB2 | | | AB18 | NC | | | AB19 | NC | | | AB20 | VCCIB2 | | | AB21 | GND | | | AB22 | GND | | # 5 - Datasheet Information # **List of Changes** The following table lists critical changes that were made in each version of the ProASIC3 datasheet. | Revision | Changes | Page | |--|---|---------------------------| | | Updated 3.3 V DC supply voltage's maximum Commercial and Industrial values from 3.3 V to 3.6 V in Table 2-2 (SAR 72693). | 2-2 | | | Added reference of Package Mechanical Drawings document in all package pin assignment notes (76833). | NA | | Revision 17 | Removed PQFP embedded heat spreader info. from Table 2-5 (SAR 52320). | 2-6 | | (June 2015) | Updated "VCCIBx I/O Supply Voltage" (SAR 43323). | 3-1 | | Revision 16
(December 2014) | in the second control of | | | | Updated Table Note (2) in Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature so that the Table Note is not applicable for Maximum Storage Temperature T _{STG} (SAR 54297). | 2-3 | | | Added values for Drive strength 2 mA in Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew, Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, and Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew (SAR 57184). | 2-34, 2-35,
2-36, 2-37 | | | Added Figure 2-1 • High-Temperature Data Retention (HTR) (SAR 45466). | 2-3 | | | Updates made to maintain the style and consistency of the document. | NA | | (July 2014) Ambient temperature removed in Table 2-2, table notes and Ordering Information" figure were modified (SAR 48343). | Added corner pad table note (3) to "QN132 – Bottom View" (SAR 47442). | 4-6 | | | Ambient temperature removed in Table 2-2, table notes and "ProASIC3 Ordering Information" figure were modified (SAR 48343). | 2-2
1-IV | | | Other updates were made to maintain the style and consistency of the datasheet. | NA | | Revision 14
(April 2014) | Note added for the discontinuance of QN132 package to the following tables and section: "ProASIC3 Devices", "I/Os Per Package 1", "ProASIC3 FPGAs Package Sizes Dimensions" and "QN132 – Bottom View" section (SAR 55118). | I, III, 4-6 | | Revision | Changes | Page | |--------------------------------|---|-----------------| | v2.0
(continued) | | 3-20 to
3-20 | | | | 3-9 | | | | 3-22 to
3-22 | | | | 3-18 | | | Table 3-28 • I/O Short Currents IOSH/IOSL (Advanced) and Table 3-29 • I/O Short Currents IOSH/IOSL (Standard Plus) were updated. | 3-24 to
3-26 | | | The note in Table 3-32 • I/O Input Rise Time, Fall Time, and Related I/O Reliability was updated. | 3-27 | | | Figure 3-33 • Write Access After Write onto Same Address, Figure 3-34 • Read Access After Write onto Same Address, and Figure 3-35 • Write Access After Read onto Same Address are new. | 3-82 to
3-84 | | | Figure 3-43 • Timing Diagram was updated. | 3-96 | | | Ambient was deleted from the "Speed Grade and Temperature Grade Matrix". | iv | | | Notes were added to the package diagrams identifying if they were top or bottom view. | N/A | | | The A3P030 "132-Pin QFN" table is new. | 4-2 | | | The A3P060 "132-Pin QFN" table is new. | 4-4 | | | The A3P125 "132-Pin QFN" table is new. | 4-6 | | | The A3P250 "132-Pin QFN" table is new. | 4-8 | | | The A3P030 "100-Pin VQFP" table is new. | 4-11 | | Advance v0.7
(January 2007) | In the "I/Os Per Package" table, the I/O numbers were added for A3P060, A3P125, and A3P250. The A3P030-VQ100 I/O was changed from 79 to 77. | ii | | Advance v0.6
(April 2006) | | N/A | | | Table 1 was updated to include the QN132. | ii | | | The "I/Os Per Package" table was updated with the QN132. The footnotes were also updated. The A3P400-FG144 I/O count was updated. | ii | | | "Automotive ProASIC3 Ordering Information" was updated with the QN132. | iii | | | "Temperature Grade Offerings" was updated with the QN132. | iii | | | B-LVDS and M-LDVS are new I/O standards added to the datasheet. | N/A | | | The term flow-through was changed to pass-through. | N/A | | | Figure 2-7 • Efficient Long-Line Resources was updated. | 2-7 | | | The footnotes in Figure 2-15 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT were updated. | 2-16 | | | The Delay Increments in the Programmable Delay Blocks specification in Figure 2-24 • ProASIC3E CCC Options. | 2-24 | | | The "SRAM and FIFO" section was updated. | 2-21 | Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 E-mail: sales.support@microsemi.com © 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.