

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	97
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p125-2fgg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/Os with Advanced I/O Standards

The ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3 FPGAs support many different I/O standards—single-ended and differential.

The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1).

		I/C	Supported	
I/O Bank Type	Device and Bank Location	LVTTL/ LVCMOS	PCI/PCI-X	LVPECL, LVDS, B-LVDS, M-LVDS
Advanced	East and west Banks of A3P250 and larger devices	\checkmark	\checkmark	\checkmark
Standard Plus	North and south banks of A3P250 and larger devices All banks of A3P060 and A3P125	\checkmark	\checkmark	Not supported
Standard	All banks of A3P015 and A3P030	\checkmark	Not supported	Not supported

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications
- Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications

ProASIC3 banks for the A3P250 device and above support LVPECL, LVDS, B-LVDS and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a poweredup system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support

ProASIC3 devices support JEDEC-defined wide range I/O operation. ProASIC3 supports the JESD8-B specification, covering both 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8).
 - 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High

Microsemi

Power Matters."

Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage. Figure 2-1 • **High-Temperature Data Retention (HTR)**

Table 2-3 •	Flash Programm	ing Limits – Retention	, Storage and Operating	Temperature ¹

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C)	Maximum Operating Junction Temperature $T_J (°C)^2$
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

This is a stress rating only; functional operation at any condition other than those indicated is not implied.
 These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

VCCI and VMV	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

 Table 2-4 • Overshoot and Undershoot Limits 1

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

Figure 2-2 • I/O State as a Function of VCCI and VCC Voltage Levels

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ia} are shown for two air flow rates.

The absolute maximum junction temperature is 100°C. EQ 1 shows a sample calculation of the absolute maximum power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{100°C - 70°C}{20.5°C/W} = 1.463 \text{ W}$$

EQ 1

Table 2-5 • Package Thermal Resistivities

					θ_{ja}		
Package Type	Device	Pin Count	$\theta_{\textbf{jc}}$	Still Air	200 ft/min	500 ft/min	Units
Quad Flat No Lead	A3P030	132	0.4	21.4	16.8	15.3	°C/W
	A3P060	132	0.3	21.2	16.6	15.0	°C/W
	A3P125	132	0.2	21.1	16.5	14.9	°C/W
	A3P250	132	0.1	21.0	16.4	14.8	°C/W
Very Thin Quad Flat Pack (VQFP)	All devices	100	10.0	35.3	29.4	27.1	°C/W
Thin Quad Flat Pack (TQFP)	All devices	144	11.0	33.5	28.0	25.7	°C/W
Plastic Quad Flat Pack (PQFP)	All devices	208	8.0	26.1	22.5	20.8	°C/W
Fine Pitch Ball Grid Array (FBGA)	See note [*]	144	3.8	26.9	22.9	21.5	°C/W
	See note*	256	3.8	26.6	22.8	21.5	°C/W
	See note [*]	484	3.2	20.5	17.0	15.9	°C/W
	A3P1000	144	6.3	31.6	26.2	24.2	°C/W
	A3P1000	256	6.6	28.1	24.4	22.7	°C/W
	A3P1000	484	8.0	23.3	19.0	16.7	°C/W

Note: *This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package thermal information will be available in future revisions of the datasheet.

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 70^{\circ}$ C, VCC = 1.425 V)

Array Voltage VCC	Junction Temperature (°C)									
(V)	–40°C	0°C	25°C	70°C	85°C	100°C				
1.425	0.88	0.93	0.95	1.00	1.02	1.04				
1.500	0.83	0.88	0.90	0.95	0.96	0.98				
1.575	0.80	0.84	0.87	0.91	0.93	0.94				

Figure 2-4 • Input Buffer Timing Model and Delays (Example)

Figure 2-6 • Tristate Output Buffer Timing Model and Delays (Example)

Table 2-20 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks

		Equiv.			VIL	VIH		VOL	VOH		
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min V	Max V	Min V	Max V	Max V	Min V	IOL ¹ mA	IOH ¹ mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
3.3 V LVCMOS Wide Range ³	100 µA	8 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	8 mA	8 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4
1.5 V LVCMOS	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2

Notes:

1. Currents are measured at 85°C junction temperature.

2. 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Table 2-21 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions

	Comn	nercial ¹	Indus	strial ²
	IIL ³	IIH ⁴	IIL ³	IIH ⁴
DC I/O Standards	μA	μA	μΑ	μA
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15
3.3 V LVCMOS Wide Range	10	10	15	15
2.5 V LVCMOS	10	10	15	15
1.8 V LVCMOS	10	10	15	15
1.5 V LVCMOS	10	10	15	15
3.3 V PCI	10	10	15	15
3.3 V PCI-X	10	10	15	15

Notes:

1. Commercial range ($0^{\circ}C < T_A < 70^{\circ}C$)

2. Industrial range $(-40^{\circ}C < T_A < 85^{\circ}C)$

- 3. IIL is the input leakage current per I/O pin over recommended operation conditions where $-0.3V < V_{IN} < V_{IL}$.
- 4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

	Applica	Die to St	anuaru			.9							
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
4 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
6 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
8 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
12 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns
16 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns

Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	–1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
4 4	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
4 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	–1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
6 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	–1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
8 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	-1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns

Table 2-58 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

2.5 V LVCMOS	v	ΊL	V	ΊH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max., V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	32	37	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-8 • AC Loading

Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	2.5	1.2	35

Note: *Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.

Table 2-68 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4	17	22	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-9 • AC Loading

Table 2-69 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.8	0.9	35

Note: *Measuring point = Vtrip_See Table 2-22 on page 2-22 for a complete table of trip points.

Output Register

Timing Characteristics

Table 2-99 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.59	0.67	0.79	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.31	0.36	0.42	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.44	0.50	0.59	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OCKMPWH}	Clock Minimum Pulse Width High for the Output Data Register	0.36	0.41	0.48	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Figure 2-23 •	Output DDR	Timing Diagram
---------------	------------	-----------------------

Timing Characteristics

Table 2-104 • Output DDR Propagation Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.70	0.80	0.94	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	0.80	0.91	1.07	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	0.00	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.22	0.25	0.30	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.22	0.25	0.30	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.36	0.41	0.48	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.32	0.37	0.43	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	350	309	263	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Figure 2-35 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.

static Microsemi.

Package Pin Assignments

QN132 – Bottom View

Notes:

- 1. The die attach paddle center of the package is tied to ground (GND).
- 2. Option corner pads come with this device and package combination. It is optional to tie them to ground or leave them floating.
- 3. The QN132 package is discontinued and is not available for ProASIC3 devices.
- 4. For more information on package drawings, see PD3068: Package Mechanical Drawings.

CS121					
Pin Number	A3P060 Function				
K10	VPUMP				
K11	GDB1/IO47RSB0				
L1	VMV1				
L2	GNDQ				
L3	IO65RSB1				
L4	IO63RSB1				
L5	IO61RSB1				
L6	IO58RSB1				
L7	IO57RSB1				
L8	IO55RSB1				
L9	GNDQ				
L10	GDA0/IO50RSB0				
L11	VMV1				

🌜 Microsemi.

Package Pin Assignments

PQ208			PQ208	PQ208			
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function		
109	TRST	145	IO84PDB1	181	IO33RSB0		
110	VJTAG	146	IO82NDB1	182	IO31RSB0		
111	GDA0/IO113NDB1	147	IO82PDB1	183	IO29RSB0		
112	GDA1/IO113PDB1	148	IO80NDB1	184	IO27RSB0		
113	GDB0/IO112NDB1	149	GBC2/IO80PDB1	185	IO25RSB0		
114	GDB1/IO112PDB1	150	IO79NDB1	186	VCCIB0		
115	GDC0/IO111NDB1	151	GBB2/IO79PDB1	187	VCC		
116	GDC1/IO111PDB1	152	IO78NDB1	188	IO22RSB0		
117	IO109NDB1	153	GBA2/IO78PDB1	189	IO20RSB0		
118	IO109PDB1	154	VMV1	190	IO18RSB0		
119	IO106NDB1	155	GNDQ	191	IO16RSB0		
120	IO106PDB1	156	GND	192	IO15RSB0		
121	IO104PSB1	157	VMV0	193	IO14RSB0		
122	GND	158	GBA1/IO77RSB0	194	IO13RSB0		
123	VCCIB1	159	GBA0/IO76RSB0	195	GND		
124	IO99NDB1	160	GBB1/IO75RSB0	196	IO12RSB0		
125	IO99PDB1	161	GBB0/IO74RSB0	197	IO11RSB0		
126	NC	162	GND	198	IO10RSB0		
127	IO96NDB1	163	GBC1/IO73RSB0	199	IO09RSB0		
128	GCC2/IO96PDB1	164	GBC0/IO72RSB0	200	VCCIB0		
129	GCB2/IO95PSB1	165	IO70RSB0	201	GAC1/IO05RSB0		
130	GND	166	IO67RSB0	202	GAC0/IO04RSB0		
131	GCA2/IO94PSB1	167	IO63RSB0	203	GAB1/IO03RSB0		
132	GCA1/IO93PDB1	168	IO60RSB0	204	GAB0/IO02RSB0		
133	GCA0/IO93NDB1	169	IO57RSB0	205	GAA1/IO01RSB0		
134	GCB0/IO92NDB1	170	VCCIB0	206	GAA0/IO00RSB0		
135	GCB1/IO92PDB1	171	VCC	207	GNDQ		
136	GCC0/IO91NDB1	172	IO54RSB0	208	VMV0		
137	GCC1/IO91PDB1	173	IO51RSB0				
138	IO88NDB1	174	IO48RSB0				
139	IO88PDB1	175	IO45RSB0				
140	VCCIB1	176	IO42RSB0				
141	GND	177	IO40RSB0				
142	VCC	178	GND				
143	IO86PSB1	179	IO38RSB0				
144	IO84NDB1	180	IO35RSB0				

FG144						
Pin Number	A3P600 Function					
K1	GEB0/IO145NDB3					
K2	GEA1/IO144PDB3					
K3	GEA0/IO144NDB3					
K4	GEA2/IO143RSB2					
K5	IO119RSB2					
K6	IO111RSB2					
K7	GND					
K8	IO94RSB2					
K9	GDC2/IO91RSB2					
K10	GND					
K11	GDA0/IO88NDB1					
K12	GDB0/IO87NDB1					
L1	GND					
L2	VMV3					
L3	GEB2/IO142RSB2					
L4	IO136RSB2					
L5	VCCIB2					
L6	IO115RSB2					
L7	IO103RSB2					
L8	IO97RSB2					
L9	TMS					
L10	VJTAG					
L11	VMV2					
L12	TRST					
M1	GNDQ					
M2	GEC2/IO141RSB2					
M3	IO138RSB2					
M4	IO123RSB2					
M5	IO126RSB2					
M6	IO134RSB2					
M7	IO108RSB2					
M8	IO99RSB2					
M9	TDI					
M10	VCCIB2					
M11	VPUMP					
M12	GNDQ					

Microsemi

Package Pin Assignments

FG144			FG144	FG144			
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function		
A1	GNDQ	D1	IO213PDB3	G1	GFA1/IO207PPB3		
A2	VMV0	D2	IO213NDB3	G2	GND		
A3	GAB0/IO02RSB0	D3	IO223NDB3	G3	VCCPLF		
A4	GAB1/IO03RSB0	D4	GAA2/IO225PPB3	G4	GFA0/IO207NPB3		
A5	IO10RSB0	D5	GAC0/IO04RSB0	G5	GND		
A6	GND	D6	GAC1/IO05RSB0	G6	GND		
A7	IO44RSB0	D7	GBC0/IO72RSB0	G7	GND		
A8	VCC	D8	GBC1/IO73RSB0	G8	GDC1/IO111PPB1		
A9	IO69RSB0	D9	GBB2/IO79PDB1	G9	IO96NDB1		
A10	GBA0/IO76RSB0	D10	IO79NDB1	G10	GCC2/IO96PDB1		
A11	GBA1/IO77RSB0	D11	IO80NPB1	G11	IO95NDB1		
A12	GNDQ	D12	GCB1/IO92PPB1	G12	GCB2/IO95PDB1		
B1	GAB2/IO224PDB3	E1	VCC	H1	VCC		
B2	GND	E2	GFC0/IO209NDB3	H2	GFB2/IO205PDB3		
B3	GAA0/IO00RSB0	E3	GFC1/IO209PDB3	H3	GFC2/IO204PSB3		
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO190PDB3		
B5	IO13RSB0	E5	IO225NPB3	H5	VCC		
B6	IO26RSB0	E6	VCCIB0	H6	IO105PDB1		
B7	IO35RSB0	E7	VCCIB0	H7	IO105NDB1		
B8	IO60RSB0	E8	GCC1/IO91PDB1	H8	GDB2/IO115RSB2		
B9	GBB0/IO74RSB0	E9	VCCIB1	H9	GDC0/IO111NPB1		
B10	GBB1/IO75RSB0	E10	VCC	H10	VCCIB1		
B11	GND	E11	GCA0/IO93NDB1	H11	IO101PSB1		
B12	VMV1	E12	IO94NDB1	H12	VCC		
C1	IO224NDB3	F1	GFB0/IO208NPB3	J1	GEB1/IO189PDB3		
C2	GFA2/IO206PPB3	F2	VCOMPLF	J2	IO205NDB3		
C3	GAC2/IO223PDB3	F3	GFB1/IO208PPB3	J3	VCCIB3		
C4	VCC	F4	IO206NPB3	J4	GEC0/IO190NDB3		
C5	IO16RSB0	F5	GND	J5	IO160RSB2		
C6	IO29RSB0	F6	GND	J6	IO157RSB2		
C7	IO32RSB0	F7	GND	J7	VCC		
C8	IO63RSB0	F8	GCC0/IO91NDB1	J8	ТСК		
C9	IO66RSB0	F9	GCB0/IO92NPB1	J9	GDA2/IO114RSB2		
C10	GBA2/IO78PDB1	F10	GND	J10	TDO		
C11	IO78NDB1	F11	GCA1/IO93PDB1	J11	GDA1/IO113PDB1		
C12	GBC2/IO80PPB1	F12	GCA2/IO94PDB1	J12	GDB1/IO112PDB1		

🌜 Microsemi.

Package Pin Assignments

FG484			FG484	FG484			
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function		
K19	IO88NDB1	M11	GND	P3	IO199NDB3		
K20	IO94NPB1	M12	GND	P4	IO202NDB3		
K21	IO98NDB1	M13	GND	P5	IO202PDB3		
K22	IO98PDB1	M14	VCC	P6	IO196PPB3		
L1	NC	M15	GCB2/IO95PPB1	P7	IO193PPB3		
L2	IO200PDB3	M16	GCA1/IO93PPB1	P8	VCCIB3		
L3	IO210NPB3	M17	GCC2/IO96PPB1	P9	GND		
L4	GFB0/IO208NPB3	M18	IO100PPB1	P10	VCC		
L5	GFA0/IO207NDB3	M19	GCA2/IO94PPB1	P11	VCC		
L6	GFB1/IO208PPB3	M20	IO101PPB1	P12	VCC		
L7	VCOMPLF	M21	IO99PPB1	P13	VCC		
L8	GFC0/IO209NPB3	M22	NC	P14	GND		
L9	VCC	N1	IO201NDB3	P15	VCCIB1		
L10	GND	N2	IO201PDB3	P16	GDB0/IO112NPB1		
L11	GND	N3	NC	P17	IO106NDB1		
L12	GND	N4	GFC2/IO204PDB3	P18	IO106PDB1		
L13	GND	N5	IO204NDB3	P19	IO107PDB1		
L14	VCC	N6	IO203NDB3	P20	NC		
L15	GCC0/IO91NPB1	N7	IO203PDB3	P21	IO104PDB1		
L16	GCB1/IO92PPB1	N8	VCCIB3	P22	IO103NDB1		
L17	GCA0/IO93NPB1	N9	VCC	R1	NC		
L18	IO96NPB1	N10	GND	R2	IO197PPB3		
L19	GCB0/IO92NPB1	N11	GND	R3	VCC		
L20	IO97PDB1	N12	GND	R4	IO197NPB3		
L21	IO97NDB1	N13	GND	R5	IO196NPB3		
L22	IO99NPB1	N14	VCC	R6	IO193NPB3		
M1	NC	N15	VCCIB1	R7	GEC0/IO190NPB3		
M2	IO200NDB3	N16	IO95NPB1	R8	VMV3		
M3	IO206NDB3	N17	IO100NPB1	R9	VCCIB2		
M4	GFA2/IO206PDB3	N18	IO102NDB1	R10	VCCIB2		
M5	GFA1/IO207PDB3	N19	IO102PDB1	R11	IO147RSB2		
M6	VCCPLF	N20	NC	R12	IO136RSB2		
M7	IO205NDB3	N21	IO101NPB1	R13	VCCIB2		
M8	GFB2/IO205PDB3	N22	IO103PDB1	R14	VCCIB2		
M9	VCC	P1	NC	R15	VMV2		
M10	GND	P2	IO199PDB3	R16	IO110NDB1		

Datasheet Information

Revision	Changes	Page
v2.0 (April 2007)	In the "Packaging Tables", Ambient was deleted.	ii
	The timing characteristics tables were updated.	N/A
	The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.	2-15
	The "PLL Macro" section was updated to include power-up information.	2-15
	Table 2-11 • ProASIC3 CCC/PLL Specification was updated.	2-29
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21
	The "RESET" section was updated with read and write information.	2-25
	The "RESET" section was updated with read and write information.	2-25
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28
	PCI-X 3.3 V was added to Table 2-11 • VCCI Voltages and Compatible Standards.	2-29
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	2-34
	Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.	2-64
	Notes 3, 4, and 5 were added to Table 2-17 \cdot Comparison Table for 5 V–Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.	2-40
	The "VCCPLF PLL Supply Voltage" section was updated.	2-50
	The "VPUMP Programming Supply Voltage" section was updated.	2-50
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51
	V _{JTAG} was deleted from the "TCK Test Clock" section.	2-51
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os)1.	3-2
	In EQ 3-2, 150 was changed to 110 and the result changed from 3.9 to 1.951.	3-5
	Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	3-6
	Table 3-5 • Package Thermal Resistivities was updated.	3-5
	Table 3-14 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings (Advanced) and Table 3-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions (Standard Plus) were updated.	3-17 to 3- 17