




Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                                    |
|--------------------------------|---------------------------------------------------------------------------|
| Number of LABs/CLBs            | -                                                                         |
| Number of Logic Elements/Cells | -                                                                         |
| Total RAM Bits                 | 36864                                                                     |
| Number of I/O                  | 97                                                                        |
| Number of Gates                | 125000                                                                    |
| Voltage - Supply               | 1.425V ~ 1.575V                                                           |
| Mounting Type                  | Surface Mount                                                             |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                                        |
| Package / Case                 | 144-LBGA                                                                  |
| Supplier Device Package        | 144-FPBGA (13x13)                                                         |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/a3p125-2fgg144i |
|                                |                                                                           |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



The CCC block has these key features:

- Wide input frequency range (f<sub>IN CCC</sub>) = 1.5 MHz to 350 MHz
- Output frequency range (f<sub>OUT CCC</sub>) = 0.75 MHz to 350 MHz
- Clock delay adjustment via programmable and fixed delays from -7.56 ns to +11.12 ns
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis (for PLL only)

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only).
- Output duty cycle = 50% ± 1.5% or better (for PLL only)
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only)
- Maximum acquisition time = 300 µs (for PLL only)
- Low power consumption of 5 mW
- Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns (for PLL only)
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × (350 MHz / f<sub>OUT\_CCC</sub>) (for PLL only)

### **Global Clocking**

ProASIC3 devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high fanout nets.



#### Table 2-11 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings<sup>1</sup> Applicable to Advanced I/O Banks

|                                      | C <sub>LOAD</sub> (pF) | VCCI (V) | Static Power<br>PDC3 (mW) <sup>2</sup> | Dynamic Power<br>PAC10 (µW/MHz) <sup>3</sup> |
|--------------------------------------|------------------------|----------|----------------------------------------|----------------------------------------------|
| Single-Ended                         |                        |          |                                        |                                              |
| 3.3 V LVTTL / 3.3 V LVCMOS           | 35                     | 3.3      | -                                      | 468.67                                       |
| 3.3 V LVCMOS Wide Range <sup>4</sup> | 35                     | 3.3      | -                                      | 468.67                                       |
| 2.5 V LVCMOS                         | 35                     | 2.5      | -                                      | 267.48                                       |
| 1.8 V LVCMOS                         | 35                     | 1.8      | -                                      | 149.46                                       |
| 1.5 V LVCMOS<br>(JESD8-11)           | 35                     | 1.5      | -                                      | 103.12                                       |
| 3.3 V PCI                            | 10                     | 3.3      | -                                      | 201.02                                       |
| 3.3 V PCI-X                          | 10                     | 3.3      | -                                      | 201.02                                       |
| Differential                         |                        |          |                                        |                                              |
| LVDS                                 | _                      | 2.5      | 7.74                                   | 88.92                                        |
| LVPECL                               | _                      | 3.3      | 19.54                                  | 166.52                                       |

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

### Table 2-12 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings<sup>1</sup> Applicable to Standard Plus I/O Banks

|                                      | C <sub>LOAD</sub> (pF) | VCCI (V) | Static Power<br>PDC3 (mW) <sup>2</sup> | Dynamic Power<br>PAC10 (µW/MHz) <sup>3</sup> |
|--------------------------------------|------------------------|----------|----------------------------------------|----------------------------------------------|
| Single-Ended                         |                        |          |                                        |                                              |
| 3.3 V LVTTL / 3.3 V LVCMOS           | 35                     | 3.3      | -                                      | 452.67                                       |
| 3.3 V LVCMOS Wide Range <sup>4</sup> | 35                     | 3.3      | -                                      | 452.67                                       |
| 2.5 V LVCMOS                         | 35                     | 2.5      | -                                      | 258.32                                       |
| 1.8 V LVCMOS                         | 35                     | 1.8      | -                                      | 133.59                                       |
| 1.5 V LVCMOS (JESD8-11)              | 35                     | 1.5      | -                                      | 92.84                                        |
| 3.3 V PCI                            | 10                     | 3.3      | -                                      | 184.92                                       |
| 3.3 V PCI-X                          | 10                     | 3.3      | -                                      | 184.92                                       |

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2.  $P_{DC3}$  is the static power (where applicable) measured on VMV.

3. P<sub>AC10</sub> is the total dynamic power measured on VCC and VMV.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.



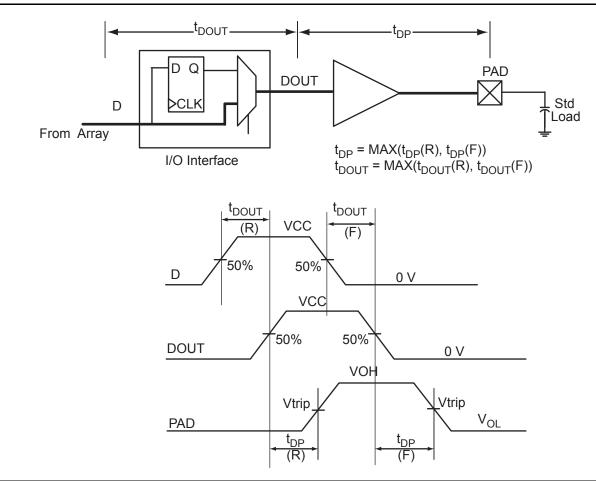


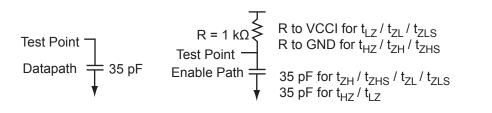

Figure 2-5 • Output Buffer Model and Delays (Example)



#### Table 2-58 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

| 2.5 V LVCMOS   | v         | ΊL         | v         | IH        | VOL       | VOH       | IOL | IOH | IOSL                    | IOSH                    | IIL <sup>1</sup> | IIH <sup>2</sup> |
|----------------|-----------|------------|-----------|-----------|-----------|-----------|-----|-----|-------------------------|-------------------------|------------------|------------------|
| Drive Strength | Min.<br>V | Max.,<br>V | Min.<br>V | Max.<br>V | Max.<br>V | Min.<br>V | mA  | mA  | Max.<br>mA <sup>3</sup> | Max.<br>mA <sup>3</sup> | μA <sup>4</sup>  | μA <sup>4</sup>  |
| 2 mA           | -0.3      | 0.7        | 1.7       | 3.6       | 0.7       | 1.7       | 2   | 2   | 16                      | 18                      | 10               | 10               |
| 4 mA           | -0.3      | 0.7        | 1.7       | 3.6       | 0.7       | 1.7       | 4   | 4   | 16                      | 18                      | 10               | 10               |
| 6 mA           | -0.3      | 0.7        | 1.7       | 3.6       | 0.7       | 1.7       | 6   | 6   | 32                      | 37                      | 10               | 10               |
| 8 mA           | -0.3      | 0.7        | 1.7       | 3.6       | 0.7       | 1.7       | 8   | 8   | 32                      | 37                      | 10               | 10               |

Notes:


1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.



### Figure 2-8 • AC Loading

### Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | C <sub>LOAD</sub> (pF) |
|---------------|----------------|----------------------|------------------------|
| 0             | 2.5            | 1.2                  | 35                     |

Note: \*Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.



|                   | Ah        |             | anuaru Fius I |           | .5          |             |     |    |                         |                         |                 |                  |
|-------------------|-----------|-------------|---------------|-----------|-------------|-------------|-----|----|-------------------------|-------------------------|-----------------|------------------|
| 1.5 V<br>LVCMOS   |           | VIL         | VIH           |           | VOL         | VOH         | IOL | юн | IOSL                    | IOSH                    | IIL¹            | IIH <sup>2</sup> |
| Drive<br>Strength | Min.<br>V | Max.<br>V   | Min.<br>V     | Max.<br>V | Max.<br>V   | Min.<br>V   | mA  | mA | Max.<br>mA <sup>3</sup> | Max.<br>mA <sup>3</sup> | μA <sup>4</sup> | μA <sup>4</sup>  |
| 2 mA              | -0.3      | 0.35 * VCCI | 0.65 * VCCI   | 1.575     | 0.25 * VCCI | 0.75 * VCCI | 2   | 2  | 16                      | 13                      | 10              | 10               |
| 4 mA              | -0.3      | 0.35 * VCCI | 0.65 * VCCI   | 1.575     | 0.25 * VCCI | 0.75 * VCCI | 4   | 4  | 33                      | 25                      | 10              | 10               |
| Mataai            |           |             |               |           |             |             |     |    |                         |                         |                 |                  |

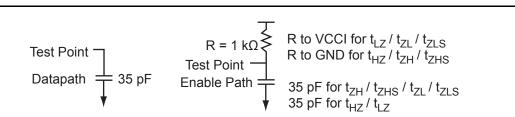
### Table 2-77 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

#### Table 2-78 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

| 1.5 V<br>LVCMOS   |           | VIL         | VIH         |           | VOL         | VOH         | IOL | юн | IOSL                    | IOSH                    | IIL¹            | IIH <sup>2</sup> |
|-------------------|-----------|-------------|-------------|-----------|-------------|-------------|-----|----|-------------------------|-------------------------|-----------------|------------------|
| Drive<br>Strength | Min.<br>V | Max.<br>V   | Min.<br>V   | Max.<br>V | Max.<br>V   | Min.<br>V   | mA  | mA | Max.<br>mA <sup>3</sup> | Max.<br>mA <sup>3</sup> | μA <sup>4</sup> | μA <sup>4</sup>  |
| 2 mA              | -0.3      | 0.35 * VCCI | 0.65 * VCCI | 3.6       | 0.25 * VCCI | 0.75 * VCCI | 2   | 2  | 13                      | 16                      | 10              | 10               |


Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.



#### Figure 2-10 • AC Loading

### Table 2-79 • AC Waveforms, Measuring Points, and Capacitive Loads

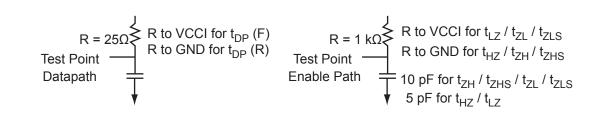
| Input Low (V) | Input High (V) | Measuring Point* (V) | C <sub>LOAD</sub> (pF) |
|---------------|----------------|----------------------|------------------------|
| 0             | 1.5            | 0.75                 | 35                     |

Note: \*Measuring point =  $V_{trip}$ . See Table 2-22 on page 2-22 for a complete table of trip points.



### 3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.


| 3.3 V PCI/PCI-X       | V         | ΊL        | V         | IH        | VOL        | VOH       | IOL | ЮН | IOSL                    | IOSH                    | IIL | IIH |
|-----------------------|-----------|-----------|-----------|-----------|------------|-----------|-----|----|-------------------------|-------------------------|-----|-----|
| Drive Strength        | Min.<br>V | Max.<br>V | Min.<br>V | Max.<br>V | Max,.<br>V | Min.<br>V | mA  | mA | Max.<br>mA <sup>1</sup> | Max.<br>mA <sup>1</sup> | μA² | μA² |
| Per PCI specification |           |           |           |           | Per PCI    | curves    |     |    |                         |                         | 10  | 10  |

Notes:

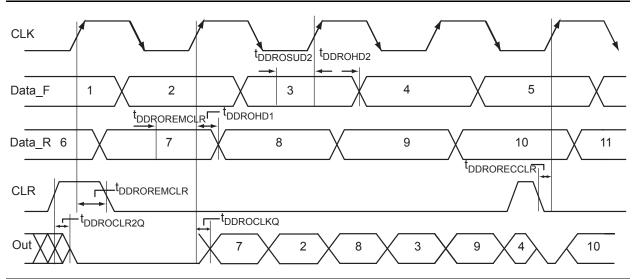
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-11.



### Figure 2-11 • AC Loading


AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-87.

### Table 2-87 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V)                | C <sub>LOAD</sub> (pF) |
|---------------|----------------|-------------------------------------|------------------------|
| 0             | 3.3            | 0.285 * VCCI for t <sub>DP(R)</sub> | 10                     |
|               |                | 0.615 * VCCI for t <sub>DP(F)</sub> |                        |

Note: \*Measuring point = V<sub>trip.</sub> See Table 2-22 on page 2-22 for a complete table of trip points.





| Figure 2-23 • | Output D | DR Timing Diagram |
|---------------|----------|-------------------|
|---------------|----------|-------------------|

### **Timing Characteristics**

### Table 2-104 • Output DDR Propagation Delays

Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V

| Parameter               | Description                                           | -2   | -1   | Std. | Units |
|-------------------------|-------------------------------------------------------|------|------|------|-------|
| t <sub>DDROCLKQ</sub>   | Clock-to-Out of DDR for Output DDR                    | 0.70 | 0.80 | 0.94 | ns    |
| t <sub>DDROSUD1</sub>   | Data_F Data Setup for Output DDR                      | 0.38 | 0.43 | 0.51 | ns    |
| t <sub>DDROSUD2</sub>   | Data_R Data Setup for Output DDR                      | 0.38 | 0.43 | 0.51 | ns    |
| t <sub>DDROHD1</sub>    | Data_F Data Hold for Output DDR                       | 0.00 | 0.00 | 0.00 | ns    |
| t <sub>DDROHD2</sub>    | Data_R Data Hold for Output DDR                       | 0.00 | 0.00 | 0.00 | ns    |
| t <sub>DDROCLR2Q</sub>  | Asynchronous Clear-to-Out for Output DDR              | 0.80 | 0.91 | 1.07 | ns    |
| t <sub>DDROREMCLR</sub> | Asynchronous Clear Removal Time for Output DDR        | 0.00 | 0.00 | 0.00 | ns    |
| t <sub>DDRORECCLR</sub> | Asynchronous Clear Recovery Time for Output DDR       | 0.22 | 0.25 | 0.30 | ns    |
| t <sub>DDROWCLR1</sub>  | Asynchronous Clear Minimum Pulse Width for Output DDR | 0.22 | 0.25 | 0.30 | ns    |
| t <sub>DDROCKMPWH</sub> | Clock Minimum Pulse Width High for the Output DDR     | 0.36 | 0.41 | 0.48 | ns    |
| t <sub>DDROCKMPWL</sub> | Clock Minimum Pulse Width Low for the Output DDR      | 0.32 | 0.37 | 0.43 | ns    |
| F <sub>DDOMAX</sub>     | Maximum Frequency for the Output DDR                  | 350  | 309  | 263  | MHz   |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

### **Timing Characteristics**

| Combinatorial Cell | Equation                  | Parameter       | -2   | -1   | Std. | Units |
|--------------------|---------------------------|-----------------|------|------|------|-------|
| INV                | Y = !A                    | t <sub>PD</sub> | 0.40 | 0.46 | 0.54 | ns    |
| AND2               | $Y = A \cdot B$           | t <sub>PD</sub> | 0.47 | 0.54 | 0.63 | ns    |
| NAND2              | Y = !(A · B)              | t <sub>PD</sub> | 0.47 | 0.54 | 0.63 | ns    |
| OR2                | Y = A + B                 | t <sub>PD</sub> | 0.49 | 0.55 | 0.65 | ns    |
| NOR2               | Y = !(A + B)              | t <sub>PD</sub> | 0.49 | 0.55 | 0.65 | ns    |
| XOR2               | Y = A ⊕ B                 | t <sub>PD</sub> | 0.74 | 0.84 | 0.99 | ns    |
| MAJ3               | Y = MAJ(A, B, C)          | t <sub>PD</sub> | 0.70 | 0.79 | 0.93 | ns    |
| XOR3               | $Y = A \oplus B \oplus C$ | t <sub>PD</sub> | 0.87 | 1.00 | 1.17 | ns    |
| MUX2               | Y = A !S + B S            | t <sub>PD</sub> | 0.51 | 0.58 | 0.68 | ns    |
| AND3               | $Y = A \cdot B \cdot C$   | t <sub>PD</sub> | 0.56 | 0.64 | 0.75 | ns    |

### Table 2-105 • Combinatorial Cell Propagation Delays

Commercial-Case Conditions: T<sub>1</sub> = 70°C, Worst-Case VCC = 1.425 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

### VersaTile Specifications as a Sequential Module

The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide*.

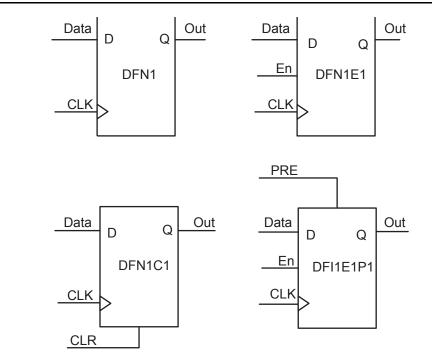
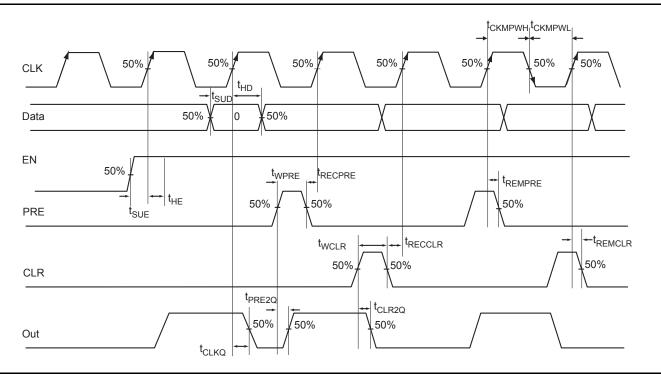



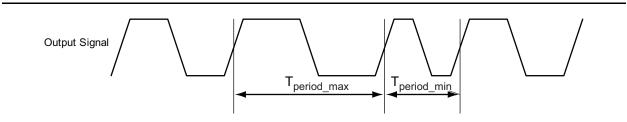

Figure 2-26 • Sample of Sequential Cells





### Figure 2-27 • Timing Model and Waveforms

### **Timing Characteristics**


### Table 2-106 • Register Delays

### Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V

| Parameter           | Description                                                   | -2   | -1   | Std. | Units |
|---------------------|---------------------------------------------------------------|------|------|------|-------|
| t <sub>CLKQ</sub>   | Clock-to-Q of the Core Register                               | 0.55 | 0.63 | 0.74 | ns    |
| t <sub>SUD</sub>    | Data Setup Time for the Core Register                         | 0.43 | 0.49 | 0.57 | ns    |
| t <sub>HD</sub>     | Data Hold Time for the Core Register                          | 0.00 | 0.00 | 0.00 | ns    |
| t <sub>SUE</sub>    | Enable Setup Time for the Core Register                       | 0.45 | 0.52 | 0.61 | ns    |
| t <sub>HE</sub>     | Enable Hold Time for the Core Register                        | 0.00 | 0.00 | 0.00 | ns    |
| t <sub>CLR2Q</sub>  | Asynchronous Clear-to-Q of the Core Register                  | 0.40 | 0.45 | 0.53 | ns    |
| t <sub>PRE2Q</sub>  | Asynchronous Preset-to-Q of the Core Register                 | 0.40 | 0.45 | 0.53 | ns    |
| t <sub>REMCLR</sub> | Asynchronous Clear Removal Time for the Core Register         | 0.00 | 0.00 | 0.00 | ns    |
| t <sub>RECCLR</sub> | Asynchronous Clear Recovery Time for the Core Register        | 0.22 | 0.25 | 0.30 | ns    |
| t <sub>REMPRE</sub> | Asynchronous Preset Removal Time for the Core Register        | 0.00 | 0.00 | 0.00 | ns    |
| t <sub>RECPRE</sub> | Asynchronous Preset Recovery Time for the Core Register       | 0.22 | 0.25 | 0.30 | ns    |
| t <sub>WCLR</sub>   | Asynchronous Clear Minimum Pulse Width for the Core Register  | 0.22 | 0.25 | 0.30 | ns    |
| t <sub>WPRE</sub>   | Asynchronous Preset Minimum Pulse Width for the Core Register | 0.22 | 0.25 | 0.30 | ns    |
| t <sub>CKMPWH</sub> | Clock Minimum Pulse Width High for the Core Register          | 0.32 | 0.37 | 0.43 | ns    |
| t <sub>CKMPWL</sub> | Clock Minimum Pulse Width Low for the Core Register           | 0.36 | 0.41 | 0.48 | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.





Note: Peak-to-peak jitter measurements are defined by  $T_{peak-to-peak} = T_{period_max} - T_{period_min}$ 

Figure 2-29 • Peak-to-Peak Jitter Definition



| Table 2-123 • A3P250 FIFO 4k×1 (continued)                     |         |
|----------------------------------------------------------------|---------|
| Worst Commercial-Case Conditions: T <sub>1</sub> = 70°C, VCC = | 1.425 V |

| Parameter            | Description                                    | -2   | -1   | Std. | Units |
|----------------------|------------------------------------------------|------|------|------|-------|
| t <sub>RSTAF</sub>   | RESET Low to Almost Empty/Full Flag Valid      | 6.13 | 6.98 | 8.20 | ns    |
| t <sub>RSTBQ</sub>   | RESET Low to Data Out Low on DO (pass-through) | 0.92 | 1.05 | 1.23 | ns    |
|                      | RESET Low to Data Out Low on DO (pipelined)    | 0.92 | 1.05 | 1.23 | ns    |
| t <sub>REMRSTB</sub> | RESET Removal                                  | 0.29 | 0.33 | 0.38 | ns    |
| t <sub>RECRSTB</sub> | RESET Recovery                                 | 1.50 | 1.71 | 2.01 | ns    |
| t <sub>MPWRSTB</sub> | RESET Minimum Pulse Width                      | 0.21 | 0.24 | 0.29 | ns    |
| t <sub>CYC</sub>     | Clock Cycle Time                               | 3.23 | 3.68 | 4.32 | ns    |
| F <sub>MAX</sub>     | Maximum Frequency                              | 310  | 272  | 231  | MHz   |

# **Embedded FlashROM Characteristics**

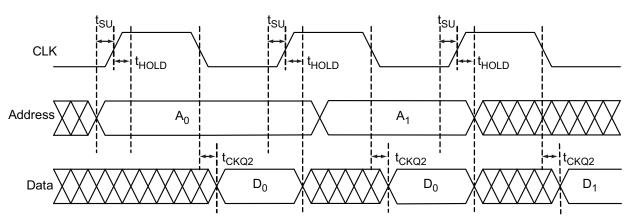



Figure 2-44 • Timing Diagram

### **Timing Characteristics**

### Table 2-124 • Embedded FlashROM Access Time

| Parameter         | Description             | -2    | -1    | Std.  | Units |
|-------------------|-------------------------|-------|-------|-------|-------|
| t <sub>SU</sub>   | Address Setup Time      | 0.53  | 0.61  | 0.71  | ns    |
| t <sub>HOLD</sub> | Address Hold Time       | 0.00  | 0.00  | 0.00  | ns    |
| t <sub>CK2Q</sub> | Clock to Out            | 21.42 | 24.40 | 28.68 | ns    |
| F <sub>MAX</sub>  | Maximum Clock Frequency | 15    | 15    | 15    | MHz   |

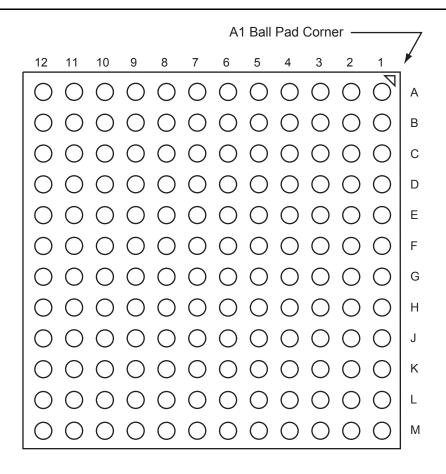


Package Pin Assignments

|            | 2N68            | QN68       |                 |  |
|------------|-----------------|------------|-----------------|--|
| Pin Number | A3P015 Function | Pin Number | A3P015 Function |  |
| 1          | IO82RSB1        | 37         | TRST            |  |
| 2          | IO82R3B1        | 38         | VJTAG           |  |
| 3          |                 |            |                 |  |
| -          | IO78RSB1        | 39         | IO40RSB0        |  |
| 4          | IO76RSB1        | 40         | IO37RSB0        |  |
| 5          | GEC0/IO73RSB1   | 41         | GDB0/IO34RSB0   |  |
| 6          | GEA0/IO72RSB1   | 42         | GDA0/IO33RSB0   |  |
| 7          | GEB0/IO71RSB1   | 43         | GDC0/IO32RSB0   |  |
| 8          | VCC             | 44         | VCCIB0          |  |
| 9          | GND             | 45         | GND             |  |
| 10         | VCCIB1          | 46         | VCC             |  |
| 11         | IO68RSB1        | 47         | IO31RSB0        |  |
| 12         | IO67RSB1        | 48         | IO29RSB0        |  |
| 13         | IO66RSB1        | 49         | IO28RSB0        |  |
| 14         | IO65RSB1        | 50         | IO27RSB0        |  |
| 15         | IO64RSB1        | 51         | IO25RSB0        |  |
| 16         | IO63RSB1        | 52         | IO24RSB0        |  |
| 17         | IO62RSB1        | 53         | IO22RSB0        |  |
| 18         | IO60RSB1        | 54         | IO21RSB0        |  |
| 19         | IO58RSB1        | 55         | IO19RSB0        |  |
| 20         | IO56RSB1        | 56         | IO17RSB0        |  |
| 21         | IO54RSB1        | 57         | IO15RSB0        |  |
| 22         | IO52RSB1        | 58         | IO14RSB0        |  |
| 23         | IO51RSB1        | 59         | VCCIB0          |  |
| 24         | VCC             | 60         | GND             |  |
| 25         | GND             | 61         | VCC             |  |
| 26         | VCCIB1          | 62         | IO12RSB0        |  |
| 27         | IO50RSB1        | 63         | IO10RSB0        |  |
| 28         | IO48RSB1        | 64         | IO08RSB0        |  |
| 29         | IO46RSB1        | 65         | IO06RSB0        |  |
| 30         | IO44RSB1        | 66         | IO04RSB0        |  |
| 31         | IO42RSB1        | 67         | IO02RSB0        |  |
| 32         | ТСК             | 68         | IO00RSB0        |  |
| 33         | TDI             |            |                 |  |
| 34         | TMS             |            |                 |  |
| 35         | VPUMP           |            |                 |  |
|            |                 |            |                 |  |

TDO

36




| QN132      |                 |  |  |  |  |
|------------|-----------------|--|--|--|--|
| Pin Number | A3P030 Function |  |  |  |  |
| C17        | IO51RSB1        |  |  |  |  |
| C18        | NC              |  |  |  |  |
| C19        | ТСК             |  |  |  |  |
| C20        | NC              |  |  |  |  |
| C21        | VPUMP           |  |  |  |  |
| C22        | VJTAG           |  |  |  |  |
| C23        | NC              |  |  |  |  |
| C24        | NC              |  |  |  |  |
| C25        | NC              |  |  |  |  |
| C26        | GDB0/IO38RSB0   |  |  |  |  |
| C27        | NC              |  |  |  |  |
| C28        | VCCIB0          |  |  |  |  |
| C29        | IO32RSB0        |  |  |  |  |
| C30        | IO29RSB0        |  |  |  |  |
| C31        | IO28RSB0        |  |  |  |  |
| C32        | IO25RSB0        |  |  |  |  |
| C33        | NC              |  |  |  |  |
| C34        | NC              |  |  |  |  |
| C35        | VCCIB0          |  |  |  |  |
| C36        | IO17RSB0        |  |  |  |  |
| C37        | IO14RSB0        |  |  |  |  |
| C38        | IO11RSB0        |  |  |  |  |
| C39        | IO07RSB0        |  |  |  |  |
| C40        | IO04RSB0        |  |  |  |  |
| D1         | GND             |  |  |  |  |
| D2         | GND             |  |  |  |  |
| D3         | GND             |  |  |  |  |
| D4         | GND             |  |  |  |  |



| QN132      |                 |  |  |  |
|------------|-----------------|--|--|--|
| Pin Number | A3P125 Function |  |  |  |
| C17        | IO83RSB1        |  |  |  |
| C18        | VCCIB1          |  |  |  |
| C19        | ТСК             |  |  |  |
| C20        | VMV1            |  |  |  |
| C21        | VPUMP           |  |  |  |
| C22        | VJTAG           |  |  |  |
| C23        | VCCIB0          |  |  |  |
| C24        | NC              |  |  |  |
| C25        | NC              |  |  |  |
| C26        | GCA1/IO55RSB0   |  |  |  |
| C27        | GCC0/IO52RSB0   |  |  |  |
| C28        | C28 VCCIB0      |  |  |  |
| C29        | IO42RSB0        |  |  |  |
| C30        | GNDQ            |  |  |  |
| C31        | GBA1/IO40RSB0   |  |  |  |
| C32        | GBB0/IO37RSB0   |  |  |  |
| C33        | VCC             |  |  |  |
| C34        | IO24RSB0        |  |  |  |
| C35        | IO19RSB0        |  |  |  |
| C36        | IO16RSB0        |  |  |  |
| C37        | IO10RSB0        |  |  |  |
| C38        | VCCIB0          |  |  |  |
| C39        | GAB1/IO03RSB0   |  |  |  |
| C40        | VMV0            |  |  |  |
| D1         | GND             |  |  |  |
| D2         | GND             |  |  |  |
| D3         | GND             |  |  |  |
| D4         | GND             |  |  |  |

## FG144 – Bottom View



### Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

### 🌜 Microsemi.

| F          | G144            | F          | G144            | FG144      |                 |
|------------|-----------------|------------|-----------------|------------|-----------------|
| Pin Number | A3P060 Function | Pin Number | A3P060 Function | Pin Number | A3P060 Function |
| A1         | GNDQ            | D1         | IO91RSB1        | G1         | GFA1/IO84RSB1   |
| A2         | VMV0            | D2         | IO92RSB1        | G2         | GND             |
| A3         | GAB0/IO04RSB0   | D3         | IO93RSB1        | G3         | VCCPLF          |
| A4         | GAB1/IO05RSB0   | D4         | GAA2/IO51RSB1   | G4         | GFA0/IO85RSB1   |
| A5         | IO08RSB0        | D5         | GAC0/IO06RSB0   | G5         | GND             |
| A6         | GND             | D6         | GAC1/IO07RSB0   | G6         | GND             |
| A7         | IO11RSB0        | D7         | GBC0/IO19RSB0   | G7         | GND             |
| A8         | VCC             | D8         | GBC1/IO20RSB0   | G8         | GDC1/IO45RSB0   |
| A9         | IO16RSB0        | D9         | GBB2/IO27RSB0   | G9         | IO32RSB0        |
| A10        | GBA0/IO23RSB0   | D10        | IO18RSB0        | G10        | GCC2/IO43RSB0   |
| A11        | GBA1/IO24RSB0   | D11        | IO28RSB0        | G11        | IO31RSB0        |
| A12        | GNDQ            | D12        | GCB1/IO37RSB0   | G12        | GCB2/IO42RSB0   |
| B1         | GAB2/IO53RSB1   | E1         | VCC             | H1         | VCC             |
| B2         | GND             | E2         | GFC0/IO88RSB1   | H2         | GFB2/IO82RSB1   |
| B3         | GAA0/IO02RSB0   | E3         | GFC1/IO89RSB1   | H3         | GFC2/IO81RSB1   |
| B4         | GAA1/IO03RSB0   | E4         | VCCIB1          | H4         | GEC1/IO77RSB1   |
| B5         | IO00RSB0        | E5         | IO52RSB1        | H5         | VCC             |
| B6         | IO10RSB0        | E6         | VCCIB0          | H6         | IO34RSB0        |
| B7         | IO12RSB0        | E7         | VCCIB0          | H7         | IO44RSB0        |
| B8         | IO14RSB0        | E8         | GCC1/IO35RSB0   | H8         | GDB2/IO55RSB1   |
| B9         | GBB0/IO21RSB0   | E9         | VCCIB0          | H9         | GDC0/IO46RSB0   |
| B10        | GBB1/IO22RSB0   | E10        | VCC             | H10        | VCCIB0          |
| B11        | GND             | E11        | GCA0/IO40RSB0   | H11        | IO33RSB0        |
| B12        | VMV0            | E12        | IO30RSB0        | H12        | VCC             |
| C1         | IO95RSB1        | F1         | GFB0/IO86RSB1   | J1         | GEB1/IO75RSB1   |
| C2         | GFA2/IO83RSB1   | F2         | VCOMPLF         | J2         | IO78RSB1        |
| C3         | GAC2/IO94RSB1   | F3         | GFB1/IO87RSB1   | J3         | VCCIB1          |
| C4         | VCC             | F4         | IO90RSB1        | J4         | GEC0/IO76RSB1   |
| C5         | IO01RSB0        | F5         | GND             | J5         | IO79RSB1        |
| C6         | IO09RSB0        | F6         | GND             | J6         | IO80RSB1        |
| C7         | IO13RSB0        | F7         | GND             | J7         | VCC             |
| C8         | IO15RSB0        | F8         | GCC0/IO36RSB0   | J8         | ТСК             |
| C9         | IO17RSB0        | F9         | GCB0/IO38RSB0   | J9         | GDA2/IO54RSB1   |
| C10        | GBA2/IO25RSB0   | F10        | GND             | J10        | TDO             |
| C11        | IO26RSB0        | F11        | GCA1/IO39RSB0   | J11        | GDA1/IO49RSB0   |
| C12        | GBC2/IO29RSB0   | F12        | GCA2/IO41RSB0   | J12        | GDB1/IO47RSB0   |



| FG144      |                 |  |  |  |
|------------|-----------------|--|--|--|
| Pin Number | A3P125 Function |  |  |  |
| K1         | GEB0/IO109RSB1  |  |  |  |
| K2         | GEA1/IO108RSB1  |  |  |  |
| K3         | GEA0/IO107RSB1  |  |  |  |
| K4         | GEA2/IO106RSB1  |  |  |  |
| K5         | IO100RSB1       |  |  |  |
| K6         | IO98RSB1        |  |  |  |
| K7         | GND             |  |  |  |
| K8         | IO73RSB1        |  |  |  |
| K9         | GDC2/IO72RSB1   |  |  |  |
| K10        | GND             |  |  |  |
| K11        | GDA0/IO66RSB0   |  |  |  |
| K12        | GDB0/IO64RSB0   |  |  |  |
| L1         | GND             |  |  |  |
| L2         | VMV1            |  |  |  |
| L3         | GEB2/IO105RSB1  |  |  |  |
| L4         | IO102RSB1       |  |  |  |
| L5 VCCIB1  |                 |  |  |  |
| L6         | IO95RSB1        |  |  |  |
| L7         | IO85RSB1        |  |  |  |
| L8         | IO74RSB1        |  |  |  |
| L9         | TMS             |  |  |  |
| L10        | VJTAG           |  |  |  |
| L11        | VMV1            |  |  |  |
| L12        | TRST            |  |  |  |
| M1         | GNDQ            |  |  |  |
| M2         | GEC2/IO104RSB1  |  |  |  |
| M3         | IO103RSB1       |  |  |  |
| M4         | IO101RSB1       |  |  |  |
| M5         | IO97RSB1        |  |  |  |
| M6         | IO94RSB1        |  |  |  |
| M7         | IO86RSB1        |  |  |  |
| M8         | IO75RSB1        |  |  |  |
| M9         | TDI             |  |  |  |
| M10        | VCCIB1          |  |  |  |
| M11        | VPUMP           |  |  |  |
| M12        | GNDQ            |  |  |  |

### 🌜 Microsemi.

|            | FG144           |            | FG144           |            | FG144           |
|------------|-----------------|------------|-----------------|------------|-----------------|
| Pin Number | A3P600 Function | Pin Number | A3P600 Function | Pin Number | A3P600 Function |
| A1         | GNDQ            | D1         | IO169PDB3       | G1         | GFA1/IO162PPB3  |
| A2         | VMV0            | D2         | IO169NDB3       | G2         | GND             |
| A3         | GAB0/IO02RSB0   | D3         | IO172NDB3       | G3         | VCCPLF          |
| A4         | GAB1/IO03RSB0   | D4         | GAA2/IO174PPB3  | G4         | GFA0/IO162NPB3  |
| A5         | IO10RSB0        | D5         | GAC0/IO04RSB0   | G5         | GND             |
| A6         | GND             | D6         | GAC1/IO05RSB0   | G6         | GND             |
| A7         | IO34RSB0        | D7         | GBC0/IO54RSB0   | G7         | GND             |
| A8         | VCC             | D8         | GBC1/IO55RSB0   | G8         | GDC1/IO86PPB1   |
| A9         | IO50RSB0        | D9         | GBB2/IO61PDB1   | G9         | IO74NDB1        |
| A10        | GBA0/IO58RSB0   | D10        | IO61NDB1        | G10        | GCC2/IO74PDB1   |
| A11        | GBA1/IO59RSB0   | D11        | IO62NPB1        | G11        | IO73NDB1        |
| A12        | GNDQ            | D12        | GCB1/IO70PPB1   | G12        | GCB2/IO73PDB1   |
| B1         | GAB2/IO173PDB3  | E1         | VCC             | H1         | VCC             |
| B2         | GND             | E2         | GFC0/IO164NDB3  | H2         | GFB2/IO160PDB3  |
| B3         | GAA0/IO00RSB0   | E3         | GFC1/IO164PDB3  | H3         | GFC2/IO159PSB3  |
| B4         | GAA1/IO01RSB0   | E4         | VCCIB3          | H4         | GEC1/IO146PDB3  |
| B5         | IO13RSB0        | E5         | IO174NPB3       | H5         | VCC             |
| B6         | IO19RSB0        | E6         | VCCIB0          | H6         | IO80PDB1        |
| B7         | IO31RSB0        | E7         | VCCIB0          | H7         | IO80NDB1        |
| B8         | IO39RSB0        | E8         | GCC1/IO69PDB1   | H8         | GDB2/IO90RSB2   |
| B9         | GBB0/IO56RSB0   | E9         | VCCIB1          | H9         | GDC0/IO86NPB1   |
| B10        | GBB1/IO57RSB0   | E10        | VCC             | H10        | VCCIB1          |
| B11        | GND             | E11        | GCA0/IO71NDB1   | H11        | IO84PSB1        |
| B12        | VMV1            | E12        | IO72NDB1        | H12        | VCC             |
| C1         | IO173NDB3       | F1         | GFB0/IO163NPB3  | J1         | GEB1/IO145PDB3  |
| C2         | GFA2/IO161PPB3  | F2         | VCOMPLF         | J2         | IO160NDB3       |
| C3         | GAC2/IO172PDB3  | F3         | GFB1/IO163PPB3  | J3         | VCCIB3          |
| C4         | VCC             | F4         | IO161NPB3       | J4         | GEC0/IO146NDB3  |
| C5         | IO16RSB0        | F5         | GND             | J5         | IO129RSB2       |
| C6         | IO25RSB0        | F6         | GND             | J6         | IO131RSB2       |
| C7         | IO28RSB0        | F7         | GND             | J7         | VCC             |
| C8         | IO42RSB0        | F8         | GCC0/IO69NDB1   | J8         | TCK             |
| C9         | IO45RSB0        | F9         | GCB0/IO70NPB1   | J9         | GDA2/IO89RSB2   |
| C10        | GBA2/IO60PDB1   | F10        | GND             | J10        | TDO             |
| C11        | IO60NDB1        | F11        | GCA1/IO71PDB1   | J11        | GDA1/IO88PDB1   |
| C12        | GBC2/IO62PPB1   | F12        | GCA2/IO72PDB1   | J12        | GDB1/IO87PDB1   |



# **5 – Datasheet Information**

# **List of Changes**

The following table lists critical changes that were made in each version of the ProASIC3 datasheet.

| Revision                       | Changes                                                                                                                                                                                                                                                           | Page                      |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Revision 18<br>(March 2016)    | Updated 3.3 V DC supply voltage's maximum Commercial and Industrial values from 3.3 V to 3.6 V in Table 2-2 (SAR 72693).                                                                                                                                          | 2-2                       |
|                                | Added reference of Package Mechanical Drawings document in all package pin assignment notes (76833).                                                                                                                                                              | NA                        |
| Revision 17                    | Removed PQFP embedded heat spreader info. from Table 2-5 (SAR 52320).                                                                                                                                                                                             | 2-6                       |
| (June 2015)                    | Updated "VCCIBx I/O Supply Voltage" (SAR 43323).                                                                                                                                                                                                                  | 3-1                       |
| Revision 16<br>(December 2014) | Updated "ProASIC3 Ordering Information". Interchanged the positions of Y- Security Feature and I- Application (Temperature Range) (SAR 61079).<br>Added Note "Only devices with package size greater than or equal to 5x5 are supported".                         | 1-IV                      |
|                                | Updated Table Note (2) in Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature so that the Table Note is not applicable for Maximum Storage Temperature $T_{STG}$ (SAR 54297).                                                     | 2-3                       |
|                                | Added values for Drive strength 2 mA in Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew, Table 2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, and Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew (SAR 57184). | 2-34, 2-35,<br>2-36, 2-37 |
|                                | Added Figure 2-1 • High-Temperature Data Retention (HTR) (SAR 45466).                                                                                                                                                                                             | 2-3                       |
|                                | Updates made to maintain the style and consistency of the document.                                                                                                                                                                                               | NA                        |
| Revision 15<br>(July 2014)     | Added corner pad table note (3) to "QN132 – Bottom View" (SAR 47442).                                                                                                                                                                                             | 4-6                       |
|                                | Ambient temperature removed in Table 2-2, table notes and "ProASIC3 Ordering Information" figure were modified (SAR 48343).                                                                                                                                       | 2-2<br>1-IV               |
|                                | Other updates were made to maintain the style and consistency of the datasheet.                                                                                                                                                                                   | NA                        |
| Revision 14<br>(April 2014)    | Note added for the discontinuance of QN132 package to the following tables and section: "ProASIC3 Devices", "I/Os Per Package 1", "ProASIC3 FPGAs Package Sizes Dimensions" and "QN132 – Bottom View" section (SAR 55118).                                        | I, III, 4-6               |



Datasheet Information

| Revision             | Changes                                                                                                                                                                                                                                                                                                                     | Page             |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| v2.0<br>(April 2007) | In the "Packaging Tables", Ambient was deleted.                                                                                                                                                                                                                                                                             | ii               |
|                      | The timing characteristics tables were updated.                                                                                                                                                                                                                                                                             | N/A              |
|                      | The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.                                                                                                                                                                                                                          | 2-15             |
|                      | The "PLL Macro" section was updated to include power-up information.                                                                                                                                                                                                                                                        | 2-15             |
|                      | Table 2-11 • ProASIC3 CCC/PLL Specification was updated.                                                                                                                                                                                                                                                                    | 2-29             |
|                      | Figure 2-19 • Peak-to-Peak Jitter Definition is new.                                                                                                                                                                                                                                                                        | 2-18             |
|                      | The "SRAM and FIFO" section was updated with operation and timing requirement information.                                                                                                                                                                                                                                  | 2-21             |
|                      | The "RESET" section was updated with read and write information.                                                                                                                                                                                                                                                            | 2-25             |
|                      | The "RESET" section was updated with read and write information.                                                                                                                                                                                                                                                            | 2-25             |
|                      | The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.                                                                                                                                                                                            | 2-28             |
|                      | PCI-X 3.3 V was added to Table 2-11 • VCCI Voltages and Compatible Standards.                                                                                                                                                                                                                                               | 2-29             |
|                      | In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.                                                                                                                                                                                                       | 2-34             |
|                      | Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.                                                                                                                                                                                                                             | 2-64             |
|                      | Notes 3, 4, and 5 were added to Table 2-17 $\cdot$ Comparison Table for 5 V–Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.                                                                                                                         | 2-40             |
|                      | The "VCCPLF PLL Supply Voltage" section was updated.                                                                                                                                                                                                                                                                        | 2-50             |
|                      | The "VPUMP Programming Supply Voltage" section was updated.                                                                                                                                                                                                                                                                 | 2-50             |
|                      | The "GL Globals" section was updated to include information about direct input into quadrant clocks.                                                                                                                                                                                                                        | 2-51             |
|                      | V <sub>JTAG</sub> was deleted from the "TCK Test Clock" section.                                                                                                                                                                                                                                                            | 2-51             |
|                      | In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.                                                                                                                                                                                            | 2-51             |
|                      | Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".                                                                                                                                                                              | 3-2              |
|                      | Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os)1.                                                                                                                                                                                                                                  | 3-2              |
|                      | In EQ 3-2, 150 was changed to 110 and the result changed from 3.9 to 1.951.                                                                                                                                                                                                                                                 | 3-5              |
|                      | Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.                                                                                                                                                                                                                                         | 3-6              |
|                      | Table 3-5 • Package Thermal Resistivities was updated.                                                                                                                                                                                                                                                                      | 3-5              |
|                      | Table 3-14 • Summary of Maximum and Minimum DC Input and Output Levels<br>Applicable to Commercial and Industrial Conditions—Software Default Settings<br>(Advanced) and Table 3-17 • Summary of Maximum and Minimum DC Input<br>Levels Applicable to Commercial and Industrial Conditions (Standard Plus) were<br>updated. | 3-17 to 3-<br>17 |