E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	97
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p125-fg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3 Devices	A3P015 ¹	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Cortex-M1 Devices ²					M1A3P250	M1A3P400	M1A3P600	M1A3P1000
Package Pins QFN CS VQFP TQFP PQFP FBGA	QN68	QN48, QN68, QN132 ⁷ VQ100	QN132 ⁷ CS121 VQ100 TQ144 FG144	QN132 ⁷ VQ100 TQ144 PQ208 FG144	QN132 ⁷ VQ100 PQ208 FG144/256 ⁵	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484

Notes:

- A3P015 is not recommended for new designs.
 Refer to the Cortex-M1 product brief for more information.
 AES is not available for Cortex-M1 ProASIC3 devices.
 Six chip (main) and three quadrant global networks are available for A3P060 and above.
 The M1A3P250 device does not support this package.
 For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs datasheet.
 Package not available.

I/Os Per Package¹

ProASIC3 Devices	A3P015 ²	A3P030	A3P060	A3P125	A3P2	250 ³	A3P4	400 ³	A3P	600	A3P	1000
Cortex-M1 Devices					M1A3P	250 ^{3,5}	M1A3I	P400 ³	M1A3	8P600	M1A3	P1000
					I/C) Туре						
Package	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O ⁴	Differential I/O Pairs						
QN48	-	34	_	_	-	_		-	-	-	-	-
QN68	49	49	-	-	-	-	-	-		-	-	-
QN132 ⁷	-	81	80	84	87	19	-	_		-	-	-
CS121	-	_	96	_	-	-	-	-	-	-	-	-
VQ100	-	77	71	71	68	13	-	-		-	-	-
TQ144	-	_	91	100	-	-	-	-	-	-	-	-
PQ208	-	_	-	133	151	34	151	34	154	35	154	35
FG144	-	_	96	97	97	24	97	25	97	25	97	25
FG256 ^{5,6}	-	_	_	_	157	38	178	38	177	43	177	44
FG484 ⁶	-	_	_	_	—	_	194	38	235	60	300	74

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3 FPGA Fabric User Guide to ensure complying with design and board migration requirements.

2. A3P015 is not recommended for new designs.

3. For A3P250 and A3P400 devices, the maximum number of LVPECL pairs in east and west banks cannot exceed 15. Refer to the ProASIC3 FPGA Fabric Users Guide for position assignments of the 15 LVPECL pairs.

4. Each used differential I/O pair reduces the number of single-ended I/Os available by two.

5. The M1A3P250 device does not support FG256 package.

6. FG256 and FG484 are footprint-compatible packages.

7. Package not available.

Table 1 • ProASIC3 FPGAs Package Sizes Dimensions

Package	CS121	QN48	QN68	QN132 [*]	VQ100	TQ144	PQ208	FG144	FG256	FG484
Length × Width (mm × mm)	6×6	6×6	8 × 8	8 × 8	14 × 14	20 × 20	28 × 28	13 × 13	17 × 17	23 × 23
Nominal Area (mm ²)	36	36	64	64	196	400	784	169	289	529
Pitch (mm)	0.5	0.4	0.4	0.5	0.5	0.5	0.5	1.0	1.0	1.0
Height (mm)	0.99	0.90	0.90	0.75	1.00	1.40	3.40	1.45	1.60	2.23

Note: * *Package not available*

Advanced Flash Technology

The ProASIC3 family offers many benefits, including nonvolatility and reprogrammability through an advanced flashbased, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

Advanced Architecture

The proprietary ProASIC3 architecture provides granularity comparable to standard-cell ASICs. The ProASIC3 device consists of five distinct and programmable architectural features (Figure 1-1 and Figure 1-2 on page 1-4):

- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

Note: *Not supported by A3P015 and A3P030 devices

† The A3P015 and A3P030 do not support PLL or SRAM.

Figure 2-2 • I/O State as a Function of VCCI and VCC Voltage Levels

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ia} are shown for two air flow rates.

Table 2-13 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings ¹ Applicable to Standard I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	_	431.08
3.3 V LVCMOS Wide Range ⁴	35	3.3	-	431.08
2.5 V LVCMOS	35	2.5	-	247.36
1.8 V LVCMOS	35	1.8	-	128.46
1.5 V LVCMOS (JESD8-11)	35	1.5	_	89.46

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. P_{DC3} is the static power (where applicable) measured on VCCI.

3. P_{AC10} is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

	Applica	ble to A	dvanced	l I/O Ba	anks								
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	10.26	0.04	1.02	0.43	10.45	8.90	2.64	2.46	12.68	11.13	ns
	-1	0.56	8.72	0.04	0.86	0.36	8.89	7.57	2.25	2.09	10.79	9.47	ns
	-2	0.49	7.66	0.03	0.76	0.32	7.80	6.64	1.98	1.83	9.47	8.31	ns
4 mA	Std.	0.66	10.26	0.04	1.02	0.43	10.45	8.90	2.64	2.46	12.68	11.13	ns
	-1	0.56	8.72	0.04	0.86	0.36	8.89	7.57	2.25	2.09	10.79	9.47	ns
	-2	0.49	7.66	0.03	0.76	0.32	7.80	6.64	1.98	1.83	9.47	8.31	ns
6 mA	Std.	0.66	7.27	0.04	1.02	0.43	7.41	6.28	2.98	3.04	9.65	8.52	ns
	-1	0.56	6.19	0.04	0.86	0.36	6.30	5.35	2.54	2.59	8.20	7.25	ns
	-2	0.49	5.43	0.03	0.76	0.32	5.53	4.69	2.23	2.27	7.20	6.36	ns
8 mA	Std.	0.66	7.27	0.04	1.02	0.43	7.41	6.28	2.98	3.04	9.65	8.52	ns
	-1	0.56	6.19	0.04	0.86	0.36	6.30	5.35	2.54	2.59	8.20	7.25	ns
	-2	0.49	5.43	0.03	0.76	0.32	5.53	4.69	2.23	2.27	7.20	6.36	ns
12 mA	Std.	0.66	5.58	0.04	1.02	0.43	5.68	4.87	3.21	3.42	7.92	7.11	ns
	-1	0.56	4.75	0.04	0.86	0.36	4.84	4.14	2.73	2.91	6.74	6.05	ns
	-2	0.49	4.17	0.03	0.76	0.32	4.24	3.64	2.39	2.55	5.91	5.31	ns
16 mA	Std.	0.66	5.21	0.04	1.02	0.43	5.30	4.56	3.26	3.51	7.54	6.80	ns
	-1	0.56	4.43	0.04	0.86	0.36	4.51	3.88	2.77	2.99	6.41	5.79	ns
	-2	0.49	3.89	0.03	0.76	0.32	3.96	3.41	2.43	2.62	5.63	5.08	ns
24 mA	Std.	0.66	4.85	0.04	1.02	0.43	4.94	4.54	3.32	3.88	7.18	6.78	ns
	-1	0.56	4.13	0.04	0.86	0.36	4.20	3.87	2.82	3.30	6.10	5.77	ns
	-2	0.49	3.62	0.03	0.76	0.32	3.69	3.39	2.48	2.90	5.36	5.06	ns

Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

	Applicable to Statiualu Flus I/O Balliks												
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
4 mA	Std.	0.66	9.68	0.04	1.00	0.43	9.86	8.42	2.28	2.21	12.09	10.66	ns
	-1	0.56	8.23	0.04	0.85	0.36	8.39	7.17	1.94	1.88	10.29	9.07	ns
	-2	0.49	7.23	0.03	0.75	0.32	7.36	6.29	1.70	1.65	9.03	7.96	ns
6 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
8 mA	Std.	0.66	6.70	0.04	1.00	0.43	6.82	5.89	2.58	2.74	9.06	8.12	ns
	-1	0.56	5.70	0.04	0.85	0.36	5.80	5.01	2.20	2.33	7.71	6.91	ns
	-2	0.49	5.00	0.03	0.75	0.32	5.10	4.40	1.93	2.05	6.76	6.06	ns
12 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns
16 mA	Std.	0.66	5.05	0.04	1.00	0.43	5.14	4.51	2.79	3.08	7.38	6.75	ns
	-1	0.56	4.29	0.04	0.85	0.36	4.37	3.84	2.38	2.62	6.28	5.74	ns
	-2	0.49	3.77	0.03	0.75	0.32	3.84	3.37	2.09	2.30	5.51	5.04	ns

Table 2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	–1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
4 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	–1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
6 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	–1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
8 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	-1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns

Drive Strength 2 mA

4 mA

6 mA

8 mA

ng Chara	octeristics	5								> Mi	Power	Semi Matters.
1.8 V L\ Comme Applica	/CMOS ercial-Ca ble to S	High Sle se Cono tandard	ew litions Plus I/	: T _J = 7 O Ban	′0°C, Wo ks	orst-Cas	e VCC =	1.425	V, Woi	st-Case	VCCI =	1.7 V
Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	11.33	0.04	1.20	0.43	8.72	11.33	2.24	1.52	10.96	13.57	ns
-1	0.56	9.64	0.04	1.02	0.36	7.42	9.64	1.91	1.29	9.32	11.54	ns
-2	0.49	8.46	0.03	0.90	0.32	6.51	8.46	1.68	1.14	8.18	10.13	ns
Std.	0.66	6.48	0.04	1.20	0.43	5.48	6.48	2.65	2.60	7.72	8.72	ns
-1	0.56	5.51	0.04	1.02	0.36	4.66	5.51	2.25	2.21	6.56	7.42	ns
-2	0.49	4.84	0.03	0.90	0.32	4.09	4.84	1.98	1.94	5.76	6.51	ns
Std.	0.66	4.06	0.04	1.20	0.43	3.84	4.06	2.93	3.10	6.07	6.30	ns
-1	0.56	3.45	0.04	1.02	0.36	3.27	3.45	2.49	2.64	5.17	5.36	ns

Table 2-72 •

Notes:

1. Software default selection highlighted in gray.

0.49

0.66

0.56

0.49

3.03

4.06

3.45

3.03

0.03 0.90

1.20

1.02

0.90

0.04

0.04

0.03

-2

Std.

-1

-2

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

0.32

0.43

0.36

0.32

2.87

3.84

3.27

2.87

3.03

4.06

3.45

3.03

2.19 2.32

3.10

2.64

2.32

2.93

2.49

2.19

4.54

6.07

5.17

4.54

4.70

6.30

5.36

4.70

ns

ns

ns

ns

Input Register

Figure 2-17 • Input Register Timing Diagram

Timing Characteristics

Table 2-98 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.27	0.32	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.26	0.30	0.35	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.37	0.42	0.50	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-113 • A3P600 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.425 V

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Microse

Power Matters.

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-114 • A3P1000 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.94	1.16	1.07	1.32	1.26	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	0.93	1.19	1.06	1.35	1.24	1.59	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.35	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Waveforms

Figure 2-32 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

Figure 2-34 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.

Timing Waveforms

Table 2-121 • A3P250 FIFO 1k×4 Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.05	4.61	5.42	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.89	1.02	1.20	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

4 – Package Pin Assignments

QN48 – Bottom View

Note: The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

QN132					
Pin Number A3P030 Function					
C17	IO51RSB1				
C18	NC				
C19	ТСК				
C20	NC				
C21	VPUMP				
C22	VJTAG				
C23	NC				
C24	NC				
C25	NC				
C26	GDB0/IO38RSB0				
C27	NC				
C28	VCCIB0				
C29	IO32RSB0				
C30	IO29RSB0				
C31	IO28RSB0				
C32	IO25RSB0				
C33	NC				
C34	NC				
C35	VCCIB0				
C36	IO17RSB0				
C37	IO14RSB0				
C38	IO11RSB0				
C39	IO07RSB0				
C40	IO04RSB0				
D1	GND				
D2	GND				
D3	GND				
D4	GND				

🌜 Microsemi.

Package Pin Assignments

FG256		FG256		FG256		
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function	
G13	GCC1/IO48PPB1	K1	GFC2/IO105PDB3	M5	VMV3	
G14	IO47NPB1	K2	IO107NPB3	M6	VCCIB2	
G15	IO54PDB1	K3	IO104PPB3	M7	VCCIB2	
G16	IO54NDB1	K4	NC	M8	NC	
H1	GFB0/IO109NPB3	K5	VCCIB3	M9	IO74RSB2	
H2	GFA0/IO108NDB3	K6	VCC	M10	VCCIB2	
H3	GFB1/IO109PPB3	K7	GND	M11	VCCIB2	
H4	VCOMPLF	K8	GND	M12	VMV2	
H5	GFC0/IO110NPB3	K9	GND	M13	NC	
H6	VCC	K10	GND	M14	GDB1/IO59UPB1	
H7	GND	K11	VCC	M15	GDC1/IO58UDB1	
H8	GND	K12	VCCIB1	M16	IO56NDB1	
H9	GND	K13	IO52NPB1	N1	IO103NDB3	
H10	GND	K14	IO55RSB1	N2	IO101PPB3	
H11	VCC	K15	IO53NPB1	N3	GEC1/IO100PPB3	
H12	GCC0/IO48NPB1	K16	IO51NDB1	N4	NC	
H13	GCB1/IO49PPB1	L1	IO105NDB3	N5	GNDQ	
H14	GCA0/IO50NPB1	L2	IO104NPB3	N6	GEA2/IO97RSB2	
H15	NC	L3	NC	N7	IO86RSB2	
H16	GCB0/IO49NPB1	L4	IO102RSB3	N8	IO82RSB2	
J1	GFA2/IO107PPB3	L5	VCCIB3	N9	IO75RSB2	
J2	GFA1/IO108PDB3	L6	GND	N10	IO69RSB2	
J3	VCCPLF	L7	VCC	N11	IO64RSB2	
J4	IO106NDB3	L8	VCC	N12	GNDQ	
J5	GFB2/IO106PDB3	L9	VCC	N13	NC	
J6	VCC	L10	VCC	N14	VJTAG	
J7	GND	L11	GND	N15	GDC0/IO58VDB1	
J8	GND	L12	VCCIB1	N16	GDA1/IO60UDB1	
J9	GND	L13	GDB0/IO59VPB1	P1	GEB1/IO99PDB3	
J10	GND	L14	IO57VDB1	P2	GEB0/IO99NDB3	
J11	VCC	L15	IO57UDB1	P3	NC	
J12	GCB2/IO52PPB1	L16	IO56PDB1	P4	NC	
J13	GCA1/IO50PPB1	M1	IO103PDB3	P5	IO92RSB2	
J14	GCC2/IO53PPB1	M2	NC	P6	IO89RSB2	
J15	NC	M3	IO101NPB3	P7	IO85RSB2	
J16	GCA2/IO51PDB1	M4	GEC0/IO100NPB3	P8	IO81RSB2	

🌜 Microsemi.

Package Pin Assignments

FG256		FG256		FG256		
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function	
A1	GND	C5	GAC0/IO04RSB0	E9	IO31RSB0	
A2	GAA0/IO00RSB0	C6	GAC1/IO05RSB0	E10	VCCIB0	
A3	GAA1/IO01RSB0	C7	IO20RSB0	E11	VCCIB0	
A4	GAB0/IO02RSB0	C8	IO24RSB0	E12	VMV1	
A5	IO16RSB0	C9	IO33RSB0	E13	GBC2/IO62PDB1	
A6	IO17RSB0	C10	IO39RSB0	E14	IO65RSB1	
A7	IO22RSB0	C11	IO45RSB0	E15	IO52RSB0	
A8	IO28RSB0	C12	GBC0/IO54RSB0	E16	IO66PDB1	
A9	IO34RSB0	C13	IO48RSB0	F1	IO150NDB3	
A10	IO37RSB0	C14	VMV0	F2	IO149NPB3	
A11	IO41RSB0	C15	IO61NPB1	F3	IO09RSB0	
A12	IO43RSB0	C16	IO63PDB1	F4	IO152UDB3	
A13	GBB1/IO57RSB0	D1	IO151VDB3	F5	VCCIB3	
A14	GBA0/IO58RSB0	D2	IO151UDB3	F6	GND	
A15	GBA1/IO59RSB0	D3	GAC2/IO153UDB3	F7	VCC	
A16	GND	D4	IO06RSB0	F8	VCC	
B1	GAB2/IO154UDB3	D5	GNDQ	F9	VCC	
B2	GAA2/IO155UDB3	D6	IO10RSB0	F10	VCC	
B3	IO12RSB0	D7	IO19RSB0	F11	GND	
B4	GAB1/IO03RSB0	D8	IO26RSB0	F12	VCCIB1	
B5	IO13RSB0	D9	IO30RSB0	F13	IO62NDB1	
B6	IO14RSB0	D10	IO40RSB0	F14	IO49RSB0	
B7	IO21RSB0	D11	IO46RSB0	F15	IO64PPB1	
B8	IO27RSB0	D12	GNDQ	F16	IO66NDB1	
B9	IO32RSB0	D13	IO47RSB0	G1	IO148NDB3	
B10	IO38RSB0	D14	GBB2/IO61PPB1	G2	IO148PDB3	
B11	IO42RSB0	D15	IO53RSB0	G3	IO149PPB3	
B12	GBC1/IO55RSB0	D16	IO63NDB1	G4	GFC1/IO147PPB3	
B13	GBB0/IO56RSB0	E1	IO150PDB3	G5	VCCIB3	
B14	IO44RSB0	E2	IO08RSB0	G6	VCC	
B15	GBA2/IO60PDB1	E3	IO153VDB3	G7	GND	
B16	IO60NDB1	E4	IO152VDB3	G8	GND	
C1	IO154VDB3	E5	VMV0	G9	GND	
C2	IO155VDB3	E6	VCCIB0	G10	GND	
C3	IO11RSB0	E7	VCCIB0	G11	VCC	
C4	IO07RSB0	E8	IO25RSB0	G12	VCCIB1	

Revision	Changes	Page
Revision 9 (Oct 2009) Product Brief v1.3	The CS121 package was added to table under "Features and Benefits" section, the "I/Os Per Package 1" table, Table 1 • ProASIC3 FPGAs Package Sizes Dimensions, "ProASIC3 Ordering Information", and the "Temperature Grade Offerings" table.	I – IV
	"ProASIC3 Ordering Information" was revised to include the fact that some RoHS compliant packages are halogen-free.	IV
Packaging v1.5	The "CS121 – Bottom View" figure and pin table for A3P060 are new.	4-15
Revision 8 (Aug 2009) Product Brief v1.2	All references to M7 devices (CoreMP7) and speed grade –F were removed from this document.	N/A
	Table 1-1 I/O Standards supported is new.	1-7
	The I/Os with Advanced I/O Standards section was revised to add definitions of hot-swap and cold-sparing.	1-7
DC and Switching Characteristics v1.4	$3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS data.	N/A
	${\rm I}_{\rm IL}$ and ${\rm I}_{\rm IH}$ input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A
	–F was removed from the datasheet. The speed grade is no longer supported.	N/A
	The notes in Table 2-2 • Recommended Operating Conditions 1 were updated.	2-2
	Table 2-4 • Overshoot and Undershoot Limits 1 was updated.	2-3
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays wasupdated.	2-6
	In Table 2-116 • RAM4K9, the following specifications were removed: t _{WRO} t _{CCKH}	2-96
	In Table 2-117 • RAM512X18, the following specifications were removed: t _{WRO} t _{CCKH}	2-97
	In the title of Table 2-74 • 1.8 V LVCMOS High Slew, VCCI had a typo. It was changed from 3.0 V to 1.7 V.	2-58
Revision 7 (Feb 2009) Product Brief v1.1	The "Advanced I/O" section was revised to add a bullet regarding wide range power supply voltage support.	I
	The table under "Features and Benefits" section, was updated to include a value for typical equivalent macrocells for A3P250.	I
	The QN48 package was added to the following tables: the table under "Features and Benefits" section, "I/Os Per Package 1" "ProASIC3 FPGAs Package Sizes Dimensions", and "Temperature Grade Offerings". The number of singled-ended I/Os for QN68 was added to the "I/Os Per Package 1" table.	N/A
	The Wide Range I/O Support section is new.	1-7
Revision 6 (Dec 2008)	The "QN48 – Bottom View" section is new.	4-1
Packaging v1.4	The "QN68" pin table for A3P030 is new.	4-5

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.