

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	100
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p125-tq144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ProASIC3 Device Family Overview

General Description

ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

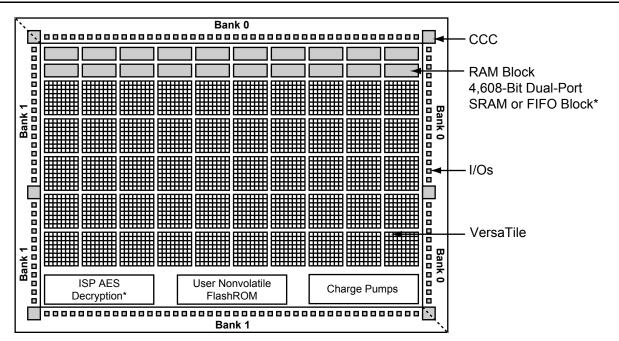
Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

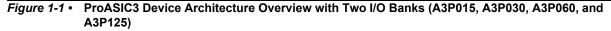
ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks.


Advanced Flash Technology

The ProASIC3 family offers many benefits, including nonvolatility and reprogrammability through an advanced flashbased, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.


Advanced Architecture

The proprietary ProASIC3 architecture provides granularity comparable to standard-cell ASICs. The ProASIC3 device consists of five distinct and programmable architectural features (Figure 1-1 and Figure 1-2 on page 1-4):

- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

Note: *Not supported by A3P015 and A3P030 devices

† The A3P015 and A3P030 do not support PLL or SRAM.

I/Os with Advanced I/O Standards

The ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3 FPGAs support many different I/O standards—single-ended and differential.

The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1).

		I/C) Standards	Supported
I/O Bank Type	Device and Bank Location	LVTTL/ LVCMOS	PCI/PCI-X	LVPECL, LVDS, B-LVDS, M-LVDS
Advanced	East and west Banks of A3P250 and larger devices	\checkmark	\checkmark	\checkmark
Standard Plus	North and south banks of A3P250 and larger devices All banks of A3P060 and A3P125	\checkmark	\checkmark	Not supported
Standard	All banks of A3P015 and A3P030	\checkmark	Not supported	Not supported

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications
- Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications

ProASIC3 banks for the A3P250 device and above support LVPECL, LVDS, B-LVDS and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a poweredup system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support

ProASIC3 devices support JEDEC-defined wide range I/O operation. ProASIC3 supports the JESD8-B specification, covering both 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8).
 - 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High

Table 2-61 • 2.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks

	/ ppilou	DIE LO AG	artaniood										
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.60	11.40	0.04	1.31	0.43	11.22	11.40	2.68	2.20	13.45	13.63	ns
	-1	0.51	9.69	0.04	1.11	0.36	9.54	9.69	2.28	1.88	11.44	11.60	ns
	-2	0.45	8.51	0.03	0.98	0.32	8.38	8.51	2.00	1.65	10.05	10.18	ns
6 mA	Std.	0.60	7.96	0.04	1.31	0.43	8.11	7.81	3.05	2.89	10.34	10.05	ns
	-1	0.51	6.77	0.04	1.11	0.36	6.90	6.65	2.59	2.46	8.80	8.55	ns
	-2	0.45	5.94	0.03	0.98	0.32	6.05	5.84	2.28	2.16	7.72	7.50	ns
8 mA	Std.	0.60	7.96	0.04	1.31	0.43	8.11	7.81	3.05	2.89	10.34	10.05	ns
	-1	0.51	6.77	0.04	1.11	0.36	6.90	6.65	2.59	2.46	8.80	8.55	ns
	-2	0.45	5.94	0.03	0.98	0.32	6.05	5.84	2.28	2.16	7.72	7.50	ns
12 mA	Std.	0.60	6.18	0.04	1.31	0.43	6.29	5.92	3.30	3.32	8.53	8.15	ns
	-1	0.51	5.26	0.04	1.11	0.36	5.35	5.03	2.81	2.83	7.26	6.94	ns
	-2	0.45	4.61	0.03	0.98	0.32	4.70	4.42	2.47	2.48	6.37	6.09	ns
16 mA	Std.	0.60	5.76	0.04	1.31	0.43	5.87	5.53	3.36	3.44	8.11	7.76	ns
	-1	0.51	4.90	0.04	1.11	0.36	4.99	4.70	2.86	2.92	6.90	6.60	ns
	-2	0.45	4.30	0.03	0.98	0.32	4.38	4.13	2.51	2.57	6.05	5.80	ns
24 mA	Std.	0.60	5.51	0.04	1.31	0.43	5.50	5.51	3.43	3.87	7.74	7.74	ns
	-1	0.51	4.68	0.04	1.11	0.36	4.68	4.68	2.92	3.29	6.58	6.59	ns
	-2	0.45	4.11	0.03	0.98	0.32	4.11	4.11	2.56	2.89	5.78	5.78	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-81 • 1.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	12.78	0.04	1.44	0.43	12.81	12.78	3.40	2.64	15.05	15.02	ns
	-1	0.56	10.87	0.04	1.22	0.36	10.90	10.87	2.89	2.25	12.80	12.78	ns
	-2	0.49	9.55	0.03	1.07	0.32	9.57	9.55	2.54	1.97	11.24	11.22	ns
4 mA	Std.	0.66	10.01	0.04	1.44	0.43	10.19	9.55	3.75	3.27	12.43	11.78	ns
	-1	0.56	8.51	0.04	1.22	0.36	8.67	8.12	3.19	2.78	10.57	10.02	ns
	-2	0.49	7.47	0.03	1.07	0.32	7.61	7.13	2.80	2.44	9.28	8.80	ns
6 mA	Std.	0.66	9.33	0.04	1.44	0.43	9.51	8.89	3.83	3.43	11.74	11.13	ns
	-1	0.56	7.94	0.04	1.22	0.36	8.09	7.56	3.26	2.92	9.99	9.47	ns
	-2	0.49	6.97	0.03	1.07	0.32	7.10	6.64	2.86	2.56	8.77	8.31	ns
8 mA	Std.	0.66	8.91	0.04	1.44	0.43	9.07	8.89	3.95	4.05	11.31	11.13	ns
	-1	0.56	7.58	0.04	1.22	0.36	7.72	7.57	3.36	3.44	9.62	9.47	ns
	-2	0.49	6.65	0.03	1.07	0.32	6.78	6.64	2.95	3.02	8.45	8.31	ns
12 mA	Std.	0.66	8.91	0.04	1.44	0.43	9.07	8.89	3.95	4.05	11.31	11.13	ns
	-1	0.56	7.58	0.04	1.22	0.36	7.72	7.57	3.36	3.44	9.62	9.47	ns
	-2	0.49	6.65	0.03	1.07	0.32	6.78	6.64	2.95	3.02	8.45	8.31	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-82 • 1.5 V LVCMOS High Slew

Commercial-Case Conditions: T	J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus I/O	Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	7.83	0.04	1.42	0.43	6.42	7.83	2.71	2.55	8.65	10.07	ns
	-1	0.56	6.66	0.04	1.21	0.36	5.46	6.66	2.31	2.17	7.36	8.56	ns
	-2	0.49	5.85	0.03	1.06	0.32	4.79	5.85	2.02	1.90	6.46	7.52	ns
4 mA	Std.	0.66	4.84	0.04	1.42	0.43	4.49	4.84	3.03	3.13	6.72	7.08	ns
	-1	0.56	4.12	0.04	1.21	0.36	3.82	4.12	2.58	2.66	5.72	6.02	ns
	-2	0.49	3.61	0.03	1.06	0.32	3.35	3.61	2.26	2.34	5.02	5.28	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Characteristics

Table 2-88 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.68	0.04	0.86	0.43	2.73	1.95	3.21	3.58	4.97	4.19	ns
-1	0.56	2.28	0.04	0.73	0.36	2.32	1.66	2.73	3.05	4.22	3.56	ns
-2	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-89 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.31	0.04	0.85	0.43	2.35	1.70	2.79	3.22	4.59	3.94	ns
-1	0.56	1.96	0.04	0.72	0.36	2.00	1.45	2.37	2.74	3.90	3.35	ns
-2	0.49	1.72	0.03	0.64	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by Microsemi Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-12. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

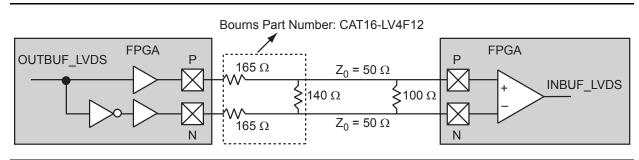


Figure 2-12 • LVDS Circuit Diagram and Board-Level Implementation

Table 2-111 • A3P250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.80	1.01	0.91	1.15	1.07	1.36	ns
t _{RCKH}	Input High Delay for Global Clock	0.78	1.04	0.89	1.18	1.04	1.39	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-112 • A3P400 Global Resource

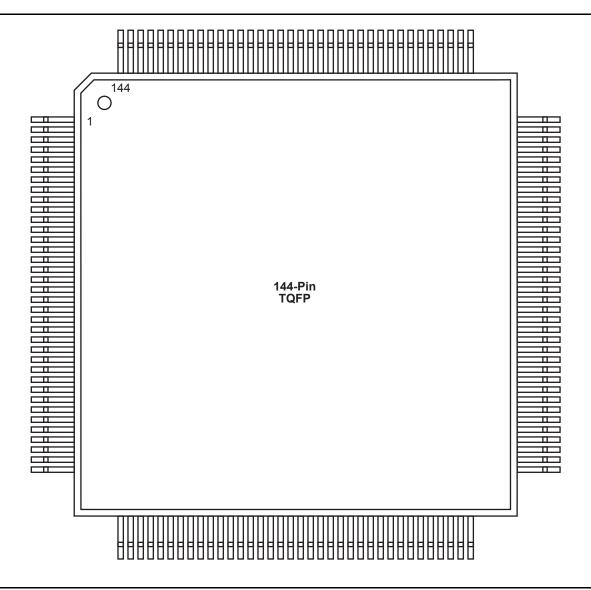
```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).


3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

	QN132
Pin Number	A3P250 Function
C17	IO74RSB2
C18	VCCIB2
C19	ТСК
C20	VMV2
C21	VPUMP
C22	VJTAG
C23	VCCIB1
C24	IO53NSB1
C25	IO51NPB1
C26	GCA1/IO50PPB1
C27	GCC0/IO48NDB1
C28	VCCIB1
C29	IO42NDB1
C30	GNDQ
C31	GBA1/IO40RSB0
C32	GBB0/IO37RSB0
C33	VCC
C34	IO24RSB0
C35	IO19RSB0
C36	IO16RSB0
C37	IO10RSB0
C38	VCCIB0
C39	GAB1/IO03RSB0
C40	VMV0
D1	GND
D2	GND
D3	GND
D4	GND

TQ144 – Top View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

TQ144				
Pin Number	A3P125 Function			
109	GBA1/IO40RSB0			
110	GBA0/IO39RSB0			
111	GBB1/IO38RSB0			
112	GBB0/IO37RSB0			
113	GBC1/IO36RSB0			
114	GBC0/IO35RSB0			
115	IO34RSB0			
116	IO33RSB0			
117	VCCIB0			
118	GND			
119	VCC			
120	IO29RSB0			
121	IO28RSB0			
122	IO27RSB0			
123	IO25RSB0			
124	IO23RSB0			
125	IO21RSB0			
126	IO19RSB0			
127	IO17RSB0			
128	IO16RSB0			
129	IO14RSB0			
130	IO12RSB0			
131	IO10RSB0			
132	IO08RSB0			
133	IO06RSB0			
134	VCCIB0			
135	GND			
136	VCC			
137	GAC1/IO05RSB0			
138	GAC0/IO04RSB0			
139	GAB1/IO03RSB0			
140	GAB0/IO02RSB0			
141	GAA1/IO01RSB0			
142	GAA0/IO00RSB0			
143	GNDQ			
144	VMV0			

Microsemi

	PQ208		PQ208	PQ208	
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
109	TRST	145	IO46RSB0	181	IO21RSB0
110	VJTAG	146	NC	182	IO20RSB0
111	GDA0/IO66RSB0	147	NC	183	IO19RSB0
112	GDA1/IO65RSB0	148	NC	184	IO18RSB0
113	GDB0/IO64RSB0	149	GBC2/IO45RSB0	185	IO17RSB0
114	GDB1/IO63RSB0	150	IO44RSB0	186	VCCIB0
115	GDC0/IO62RSB0	151	GBB2/IO43RSB0	187	VCC
116	GDC1/IO61RSB0	152	IO42RSB0	188	IO16RSB0
117	NC	153	GBA2/IO41RSB0	189	IO15RSB0
118	NC	154	VMV0	190	IO14RSB0
119	NC	155	GNDQ	191	IO13RSB0
120	NC	156	GND	192	IO12RSB0
121	NC	157	NC	193	IO11RSB0
122	GND	158	GBA1/IO40RSB0	194	IO10RSB0
123	VCCIB0	159	GBA0/IO39RSB0	195	GND
124	NC	160	GBB1/IO38RSB0	196	IO09RSB0
125	NC	161	GBB0/IO37RSB0	197	IO08RSB0
126	VCC	162	GND	198	IO07RSB0
127	IO60RSB0	163	GBC1/IO36RSB0	199	IO06RSB0
128	GCC2/IO59RSB0	164	GBC0/IO35RSB0	200	VCCIB0
129	GCB2/IO58RSB0	165	IO34RSB0	201	GAC1/IO05RSB0
130	GND	166	IO33RSB0	202	GAC0/IO04RSB0
131	GCA2/IO57RSB0	167	IO32RSB0	203	GAB1/IO03RSB0
132	GCA0/IO56RSB0	168	IO31RSB0	204	GAB0/IO02RSB0
133	GCA1/IO55RSB0	169	IO30RSB0	205	GAA1/IO01RSB0
134	GCB0/IO54RSB0	170	VCCIB0	206	GAA0/IO00RSB0
135	GCB1/IO53RSB0	171	VCC	207	GNDQ
136	GCC0/IO52RSB0	172	IO29RSB0	208	VMV0
137	GCC1/IO51RSB0	173	IO28RSB0		
138	IO50RSB0	174	IO27RSB0		
139	IO49RSB0	175	IO26RSB0		
140	VCCIB0	176	IO25RSB0		
141	GND	177	IO24RSB0		
142	VCC	178	GND		
143	IO48RSB0	179	IO23RSB0		
144	IO47RSB0	180	IO22RSB0		

	PQ208		PQ208	PQ208	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
1	GND	37	IO104PDB3	73	IO83RSB2
2	GAA2/IO118UDB3	38	IO104NDB3	74	IO82RSB2
3	IO118VDB3	39	IO103PSB3	75	IO81RSB2
4	GAB2/IO117UDB3	40	VCCIB3	76	IO80RSB2
5	IO117VDB3	41	GND	77	IO79RSB2
6	GAC2/IO116UDB3	42	IO101PDB3	78	IO78RSB2
7	IO116VDB3	43	IO101NDB3	79	IO77RSB2
8	IO115UDB3	44	GEC1/IO100PDB3	80	IO76RSB2
9	IO115VDB3	45	GEC0/IO100NDB3	81	GND
10	IO114UDB3	46	GEB1/IO99PDB3	82	IO75RSB2
11	IO114VDB3	47	GEB0/IO99NDB3	83	IO74RSB2
12	IO113PDB3	48	GEA1/IO98PDB3	84	IO73RSB2
13	IO113NDB3	49	GEA0/IO98NDB3	85	IO72RSB2
14	IO112PDB3	50	VMV3	86	IO71RSB2
15	IO112NDB3	51	GNDQ	87	IO70RSB2
16	VCC	52	GND	88	VCC
17	GND	53	NC	89	VCCIB2
18	VCCIB3	54	NC	90	IO69RSB2
19	IO111PDB3	55	GEA2/IO97RSB2	91	IO68RSB2
20	IO111NDB3	56	GEB2/IO96RSB2	92	IO67RSB2
21	GFC1/IO110PDB3	57	GEC2/IO95RSB2	93	IO66RSB2
22	GFC0/IO110NDB3	58	IO94RSB2	94	IO65RSB2
23	GFB1/IO109PDB3	59	IO93RSB2	95	IO64RSB2
24	GFB0/IO109NDB3	60	IO92RSB2	96	GDC2/IO63RSB2
25	VCOMPLF	61	IO91RSB2	97	GND
26	GFA0/IO108NPB3	62	VCCIB2	98	GDB2/IO62RSB2
27	VCCPLF	63	IO90RSB2	99	GDA2/IO61RSB2
28	GFA1/IO108PPB3	64	IO89RSB2	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO107PDB3	66	IO88RSB2	102	TDI
31	IO107NDB3	67	IO87RSB2	103	TMS
32	GFB2/IO106PDB3	68	IO86RSB2	104	VMV2
33	IO106NDB3	69	IO85RSB2	105	GND
34	GFC2/IO105PDB3	70	IO84RSB2	106	VPUMP
35	IO105NDB3	71	VCC	107	NC
36	NC	72	VCCIB2	108	TDO

	PQ208		PQ208	PQ208	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
109	TRST	145	IO45PDB1	181	IO21RSB0
110	VJTAG	146	IO44NDB1	182	IO20RSB0
111	GDA0/IO60VDB1	147	IO44PDB1	183	IO19RSB0
112	GDA1/IO60UDB1	148	IO43NDB1	184	IO18RSB0
113	GDB0/IO59VDB1	149	GBC2/IO43PDB1	185	IO17RSB0
114	GDB1/IO59UDB1	150	IO42NDB1	186	VCCIB0
115	GDC0/IO58VDB1	151	GBB2/IO42PDB1	187	VCC
116	GDC1/IO58UDB1	152	IO41NDB1	188	IO16RSB0
117	IO57VDB1	153	GBA2/IO41PDB1	189	IO15RSB0
118	IO57UDB1	154	VMV1	190	IO14RSB0
119	IO56NDB1	155	GNDQ	191	IO13RSB0
120	IO56PDB1	156	GND	192	IO12RSB0
121	IO55RSB1	157	NC	193	IO11RSB0
122	GND	158	GBA1/IO40RSB0	194	IO10RSB0
123	VCCIB1	159	GBA0/IO39RSB0	195	GND
124	NC	160	GBB1/IO38RSB0	196	IO09RSB0
125	NC	161	GBB0/IO37RSB0	197	IO08RSB0
126	VCC	162	GND	198	IO07RSB0
127	IO53NDB1	163	GBC1/IO36RSB0	199	IO06RSB0
128	GCC2/IO53PDB1	164	GBC0/IO35RSB0	200	VCCIB0
129	GCB2/IO52PSB1	165	IO34RSB0	201	GAC1/IO05RSB0
130	GND	166	IO33RSB0	202	GAC0/IO04RSB0
131	GCA2/IO51PSB1	167	IO32RSB0	203	GAB1/IO03RSB0
132	GCA1/IO50PDB1	168	IO31RSB0	204	GAB0/IO02RSB0
133	GCA0/IO50NDB1	169	IO30RSB0	205	GAA1/IO01RSB0
134	GCB0/IO49NDB1	170	VCCIB0	206	GAA0/IO00RSB0
135	GCB1/IO49PDB1	171	VCC	207	GNDQ
136	GCC0/IO48NDB1	172	IO29RSB0	208	VMV0
137	GCC1/IO48PDB1	173	IO28RSB0		
138	IO47NDB1	174	IO27RSB0		
139	IO47PDB1	175	IO26RSB0		
140	VCCIB1	176	IO25RSB0		
141	GND	177	IO24RSB0		
142	VCC	178	GND		
143	IO46RSB1	179	IO23RSB0		
144	IO45NDB1	180	IO22RSB0		

	FG144		FG144		FG144
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
A1	GNDQ	D1	IO149NDB3	G1	GFA1/IO145PPB3
A2	VMV0	D2	IO149PDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO153VDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO155UPB3	G4	GFA0/IO145NPB3
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO30RSB0	D7	GBC0/IO54RSB0	G7	GND
A8	VCC	D8	GBC1/IO55RSB0	G8	GDC1/IO77UPB1
A9	IO34RSB0	D9	GBB2/IO61PDB1	G9	IO72NDB1
A10	GBA0/IO58RSB0	D10	IO61NDB1	G10	GCC2/IO72PDB1
A11	GBA1/IO59RSB0	D11	IO62NPB1	G11	IO71NDB1
A12	GNDQ	D12	GCB1/IO68PPB1	G12	GCB2/IO71PDB1
B1	GAB2/IO154UDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO147NDB3	H2	GFB2/IO143PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO147PDB3	H3	GFC2/IO142PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO137PDB3
B5	IO14RSB0	E5	IO155VPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO75PDB1
B7	IO23RSB0	E7	VCCIB0	H7	IO75NDB1
B8	IO31RSB0	E8	GCC1/IO67PDB1	H8	GDB2/IO81RSB2
B9	GBB0/IO56RSB0	E9	VCCIB1	H9	GDC0/IO77VPB1
B10	GBB1/IO57RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO69NDB1	H11	IO73PSB1
B12	VMV1	E12	IO70NDB1	H12	VCC
C1	IO154VDB3	F1	GFB0/IO146NPB3	J1	GEB1/IO136PDB3
C2	GFA2/IO144PPB3	F2	VCOMPLF	J2	IO143NDB3
C3	GAC2/IO153UDB3	F3	GFB1/IO146PPB3	J3	VCCIB3
C4	VCC	F4	IO144NPB3	J4	GEC0/IO137NDB3
C5	IO12RSB0	F5	GND	J5	IO125RSB2
C6	IO17RSB0	F6	GND	J6	IO116RSB2
C7	IO25RSB0	F7	GND	J7	VCC
C8	IO32RSB0	F8	GCC0/IO67NDB1	J8	ТСК
C9	IO53RSB0	F9	GCB0/IO68NPB1	J9	GDA2/IO80RSB2
C10	GBA2/IO60PDB1	F10	GND	J10	TDO
C11	IO60NDB1	F11	GCA1/IO69PDB1	J11	GDA1/IO79UDB1
C12	GBC2/IO62PPB1	F12	GCA2/IO70PDB1	J12	GDB1/IO78UDB1

	FG144		FG144		FG144
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
A1	GNDQ	D1	IO169PDB3	G1	GFA1/IO162PPB3
A2	VMV0	D2	IO169NDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO172NDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO174PPB3	G4	GFA0/IO162NPB3
A5	IO10RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO34RSB0	D7	GBC0/IO54RSB0	G7	GND
A8	VCC	D8	GBC1/IO55RSB0	G8	GDC1/IO86PPB1
A9	IO50RSB0	D9	GBB2/IO61PDB1	G9	IO74NDB1
A10	GBA0/IO58RSB0	D10	IO61NDB1	G10	GCC2/IO74PDB1
A11	GBA1/IO59RSB0	D11	IO62NPB1	G11	IO73NDB1
A12	GNDQ	D12	GCB1/IO70PPB1	G12	GCB2/IO73PDB1
B1	GAB2/IO173PDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO164NDB3	H2	GFB2/IO160PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO164PDB3	H3	GFC2/IO159PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO146PDB3
B5	IO13RSB0	E5	IO174NPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO80PDB1
B7	IO31RSB0	E7	VCCIB0	H7	IO80NDB1
B8	IO39RSB0	E8	GCC1/IO69PDB1	H8	GDB2/IO90RSB2
B9	GBB0/IO56RSB0	E9	VCCIB1	H9	GDC0/IO86NPB1
B10	GBB1/IO57RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO71NDB1	H11	IO84PSB1
B12	VMV1	E12	IO72NDB1	H12	VCC
C1	IO173NDB3	F1	GFB0/IO163NPB3	J1	GEB1/IO145PDB3
C2	GFA2/IO161PPB3	F2	VCOMPLF	J2	IO160NDB3
C3	GAC2/IO172PDB3	F3	GFB1/IO163PPB3	J3	VCCIB3
C4	VCC	F4	IO161NPB3	J4	GEC0/IO146NDB3
C5	IO16RSB0	F5	GND	J5	IO129RSB2
C6	IO25RSB0	F6	GND	J6	IO131RSB2
C7	IO28RSB0	F7	GND	J7	VCC
C8	IO42RSB0	F8	GCC0/IO69NDB1	J8	TCK
C9	IO45RSB0	F9	GCB0/IO70NPB1	J9	GDA2/IO89RSB2
C10	GBA2/IO60PDB1	F10	GND	J10	TDO
C11	IO60NDB1	F11	GCA1/IO71PDB1	J11	GDA1/IO88PDB1
C12	GBC2/IO62PPB1	F12	GCA2/IO72PDB1	J12	GDB1/IO87PDB1

	FG256		FG256	FG256	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
G13	GCC1/IO69PPB1	K1	GFC2/IO159PDB3	M5	VMV3
G14	IO65NPB1	K2	IO161NPB3	M6	VCCIB2
G15	IO75PDB1	K3	IO156PPB3	M7	VCCIB2
G16	IO75NDB1	K4	IO129RSB2	M8	IO117RSB2
H1	GFB0/IO163NPB3	K5	VCCIB3	M9	IO110RSB2
H2	GFA0/IO162NDB3	K6	VCC	M10	VCCIB2
H3	GFB1/IO163PPB3	K7	GND	M11	VCCIB2
H4	VCOMPLF	K8	GND	M12	VMV2
H5	GFC0/IO164NPB3	K9	GND	M13	IO94RSB2
H6	VCC	K10	GND	M14	GDB1/IO87PPB1
H7	GND	K11	VCC	M15	GDC1/IO86PDB1
H8	GND	K12	VCCIB1	M16	IO84NDB1
H9	GND	K13	IO73NPB1	N1	IO150NDB3
H10	GND	K14	IO80NPB1	N2	IO147PPB3
H11	VCC	K15	IO74NPB1	N3	GEC1/IO146PPB3
H12	GCC0/IO69NPB1	K16	IO72NDB1	N4	IO140RSB2
H13	GCB1/IO70PPB1	L1	IO159NDB3	N5	GNDQ
H14	GCA0/IO71NPB1	L2	IO156NPB3	N6	GEA2/IO143RSB2
H15	IO67NPB1	L3	IO151PPB3	N7	IO126RSB2
H16	GCB0/IO70NPB1	L4	IO158PSB3	N8	IO120RSB2
J1	GFA2/IO161PPB3	L5	VCCIB3	N9	IO108RSB2
J2	GFA1/IO162PDB3	L6	GND	N10	IO103RSB2
J3	VCCPLF	L7	VCC	N11	IO99RSB2
J4	IO160NDB3	L8	VCC	N12	GNDQ
J5	GFB2/IO160PDB3	L9	VCC	N13	IO92RSB2
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO86NDB1
J8	GND	L12	VCCIB1	N16	GDA1/IO88PDB1
J9	GND	L13	GDB0/IO87NPB1	P1	GEB1/IO145PDB3
J10	GND	L14	IO85NDB1	P2	GEB0/IO145NDB3
J11	VCC	L15	IO85PDB1	P3	VMV2
J12	GCB2/IO73PPB1	L16	IO84PDB1	P4	IO138RSB2
J13	GCA1/IO71PPB1	M1	IO150PDB3	P5	IO136RSB2
J14	GCC2/IO74PPB1	M2	IO151NPB3	P6	IO131RSB2
J15	IO80PPB1	M3	IO147NPB3	P7	IO124RSB2
J16	GCA2/IO72PDB1	M4	GEC0/IO146NPB3	P8	IO119RSB2

	FG484		FG484	FG484	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
A1	GND	B15	IO63RSB0	D7	GAB0/IO02RSB0
A2	GND	B16	IO66RSB0	D8	IO16RSB0
A3	VCCIB0	B17	IO68RSB0	D9	IO22RSB0
A4	IO07RSB0	B18	IO70RSB0	D10	IO28RSB0
A5	IO09RSB0	B19	NC	D11	IO35RSB0
A6	IO13RSB0	B20	NC	D12	IO45RSB0
A7	IO18RSB0	B21	VCCIB1	D13	IO50RSB0
A8	IO20RSB0	B22	GND	D14	IO55RSB0
A9	IO26RSB0	C1	VCCIB3	D15	IO61RSB0
A10	IO32RSB0	C2	IO220PDB3	D16	GBB1/IO75RSB0
A11	IO40RSB0	C3	NC	D17	GBA0/IO76RSB0
A12	IO41RSB0	C4	NC	D18	GBA1/IO77RSB0
A13	IO53RSB0	C5	GND	D19	GND
A14	IO59RSB0	C6	IO10RSB0	D20	NC
A15	IO64RSB0	C7	IO14RSB0	D21	NC
A16	IO65RSB0	C8	VCC	D22	NC
A17	IO67RSB0	C9	VCC	E1	IO219NDB3
A18	IO69RSB0	C10	IO30RSB0	E2	NC
A19	NC	C11	IO37RSB0	E3	GND
A20	VCCIB0	C12	IO43RSB0	E4	GAB2/IO224PDB3
A21	GND	C13	NC	E5	GAA2/IO225PDB3
A22	GND	C14	VCC	E6	GNDQ
B1	GND	C15	VCC	E7	GAB1/IO03RSB0
B2	VCCIB3	C16	NC	E8	IO17RSB0
B3	NC	C17	NC	E9	IO21RSB0
B4	IO06RSB0	C18	GND	E10	IO27RSB0
B5	IO08RSB0	C19	NC	E11	IO34RSB0
B6	IO12RSB0	C20	NC	E12	IO44RSB0
B7	IO15RSB0	C21	NC	E13	IO51RSB0
B8	IO19RSB0	C22	VCCIB1	E14	IO57RSB0
B9	IO24RSB0	D1	IO219PDB3	E15	GBC1/IO73RSB0
B10	IO31RSB0	D2	IO220NDB3	E16	GBB0/IO74RSB0
B11	IO39RSB0	D3	NC	E17	IO71RSB0
B12	IO48RSB0	D4	GND	E18	GBA2/IO78PDB1
B13	IO54RSB0	D5	GAA0/IO00RSB0	E19	IO81PDB1
B14	IO58RSB0	D6	GAA1/IO01RSB0	E20	GND

	FG484		FG484	FG484	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
R17	GDB1/IO112PPB1	U9	IO165RSB2	W1	NC
R18	GDC1/IO111PDB1	U10	IO159RSB2	W2	IO191PDB3
R19	IO107NDB1	U11	IO151RSB2	W3	NC
R20	VCC	U12	IO137RSB2	W4	GND
R21	IO104NDB1	U13	IO134RSB2	W5	IO183RSB2
R22	IO105PDB1	U14	IO128RSB2	W6	GEB2/IO186RSB2
T1	IO198PDB3	U15	VMV1	W7	IO172RSB2
T2	IO198NDB3	U16	тск	W8	IO170RSB2
Т3	NC	U17	VPUMP	W9	IO164RSB2
T4	IO194PPB3	U18	TRST	W10	IO158RSB2
T5	IO192PPB3	U19	GDA0/IO113NDB1	W11	IO153RSB2
T6	GEC1/IO190PPB3	U20	NC	W12	IO142RSB2
T7	IO192NPB3	U21	IO108NDB1	W13	IO135RSB2
Т8	GNDQ	U22	IO109PDB1	W14	IO130RSB2
Т9	GEA2/IO187RSB2	V1	NC	W15	GDC2/IO116RSB2
T10	IO161RSB2	V2	NC	W16	IO120RSB2
T11	IO155RSB2	V3	GND	W17	GDA2/IO114RSB2
T12	IO141RSB2	V4	GEA1/IO188PDB3	W18	TMS
T13	IO129RSB2	V5	GEA0/IO188NDB3	W19	GND
T14	IO124RSB2	V6	IO184RSB2	W20	NC
T15	GNDQ	V7	GEC2/IO185RSB2	W21	NC
T16	IO110PDB1	V8	IO168RSB2	W22	NC
T17	VJTAG	V9	IO163RSB2	Y1	VCCIB3
T18	GDC0/IO111NDB1	V10	IO157RSB2	Y2	IO191NDB3
T19	GDA1/IO113PDB1	V11	IO149RSB2	Y3	NC
T20	NC	V12	IO143RSB2	Y4	IO182RSB2
T21	IO108PDB1	V13	IO138RSB2	Y5	GND
T22	IO105NDB1	V14	IO131RSB2	Y6	IO177RSB2
U1	IO195PDB3	V15	IO125RSB2	Y7	IO174RSB2
U2	IO195NDB3	V16	GDB2/IO115RSB2	Y8	VCC
U3	IO194NPB3	V17	TDI	Y9	VCC
U4	GEB1/IO189PDB3	V18	GNDQ	Y10	IO154RSB2
U5	GEB0/IO189NDB3	V19	TDO	Y11	IO148RSB2
U6	VMV2	V20	GND	Y12	IO140RSB2
U7	IO179RSB2	V21	NC	Y13	NC
U8	IO171RSB2	V22	IO109NDB1	Y14	VCC

Revision	Changes	Page
Revision 13 (January 2013)	The "ProASIC3 Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43104).	1-IV
	Added a note to Table 2-2 • Recommended Operating Conditions 1 (SAR 43644): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	2-2
	The note in Table 2-115 • ProASIC3 CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42569).	2-90
	Libero Integrated Design Environment (IDE) was changed to Libero System-on- Chip (SoC) throughout the document (SAR 40284). Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 12 (September 2012)	The Security section was modified to clarify that Microsemi does not support read-back of programmed data.	1-1
	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information" to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions 1 (SAR 38321).	2-1 2-2
	Table 2-35 • Duration of Short Circuit Event Before Failure was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37933).	2-31
	In Table 2-93 • Minimum and Maximum DC Input and Output Levels, VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 28549).	2-68
	Figure 2-37 • FIFO Read and Figure 2-38 • FIFO Write are new (SAR 28371).	2-99
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38321). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.