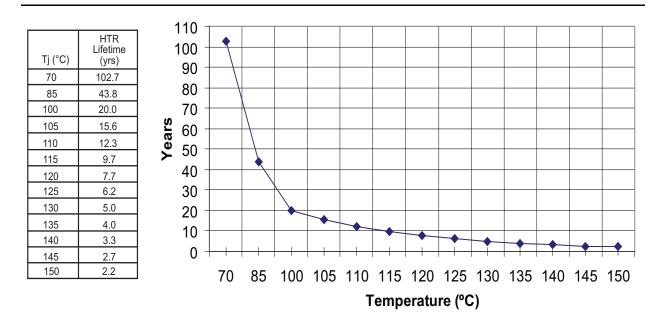


Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs


The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2012.02	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	157
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p250-1fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Microsemi

Power Matters."

Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage. Figure 2-1 • **High-Temperature Data Retention (HTR)**

Tabl	e 2-3 •	Flash Program	ning Limits	 Retention, 	, Storage and	Operating	Temperature ¹	1

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C)	Maximum Operating Junction Temperature $T_J (°C)^2$
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

This is a stress rating only; functional operation at any condition other than those indicated is not implied.
 These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

VCCI and VMV	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
Γ Γ	5%	1.19 V
3.3 V	10%	0.79 V
Γ	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

 Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

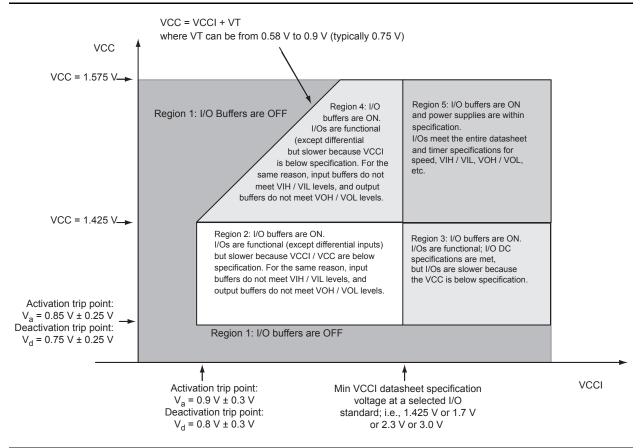


Figure 2-2 • I/O State as a Function of VCCI and VCC Voltage Levels

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ia} are shown for two air flow rates.

2-5

Table 2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
2.5 V LVCMOS	2.5	-	5.14
1.8 V LVCMOS	1.8	-	2.13
1.5 V LVCMOS (JESD8-11)	1.5	-	1.48
3.3 V PCI	3.3	-	18.13
3.3 V PCI-X	3.3	_	18.13

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-10 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	17.24
3.3 V LVCMOS Wide Range ³	3.3	-	17.24
2.5 V LVCMOS	2.5	-	5.19
1.8 V LVCMOS	1.8	-	2.18
1.5 V LVCMOS (JESD8-11)	1.5	-	1.52

Notes:

1. PDC2 is the static power (where applicable) measured on VMV.

2. PAC9 is the total dynamic power measured on VCC and VMV.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Timing Characteristics

Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
4 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
6 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
8 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	Std.	0.66	3.53	0.04	1.02	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	-1	0.56	3.00	0.04	0.86	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	Std.	0.66	3.33	0.04	1.02	0.43	3.39	2.56	3.26	3.68	5.63	4.80	ns
	-1	0.56	2.83	0.04	0.86	0.36	2.89	2.18	2.77	3.13	4.79	4.08	ns
	-2	0.49	2.49	0.03	0.76	0.32	2.53	1.91	2.44	2.75	4.20	3.58	ns
24 mA	Std.	0.66	3.08	0.04	1.02	0.43	3.13	2.12	3.32	4.06	5.37	4.35	ns
	–1	0.56	2.62	0.04	0.86	0.36	2.66	1.80	2.83	3.45	4.57	3.70	ns
	-2	0.49	2.30	0.03	0.76	0.32	2.34	1.58	2.48	3.03	4.01	3.25	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	V	ΊL	V	ΊH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL1	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	124	169	10	10

Table 2-56 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-57 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

2.5 V LVCMOS	v	IL	v	IH	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-73 • 1.8 V LVCMOS Low Slew

Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus I/O Banks

	Applicab		naara i		Danie								
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	14.80	0.04	1.20	0.43	13.49	14.80	2.25	1.46	15.73	17.04	ns
	-1	0.56	12.59	0.04	1.02	0.36	11.48	12.59	1.91	1.25	13.38	14.49	ns
	-2	0.49	11.05	0.03	0.90	0.32	10.08	11.05	1.68	1.09	11.75	12.72	ns
4 mA	Std.	0.66	9.90	0.04	1.20	0.43	9.73	9.90	2.65	2.50	11.97	12.13	ns
	-1	0.56	8.42	0.04	1.02	0.36	8.28	8.42	2.26	2.12	10.18	10.32	ns
	-2	0.49	7.39	0.03	0.90	0.32	7.27	7.39	1.98	1.86	8.94	9.06	ns
6 mA	Std.	0.66	7.44	0.04	1.20	0.43	7.58	7.32	2.94	2.99	9.81	9.56	ns
	-1	0.56	6.33	0.04	1.02	0.36	6.44	6.23	2.50	2.54	8.35	8.13	ns
	-2	0.49	5.55	0.03	0.90	0.32	5.66	5.47	2.19	2.23	7.33	7.14	ns
8 mA	Std.	0.66	7.44	0.04	1.20	0.43	7.58	7.32	2.94	2.99	9.81	9.56	ns
	-1	0.56	6.33	0.04	1.02	0.36	6.44	6.23	2.50	2.54	8.35	8.13	ns
	-2	0.49	5.55	0.03	0.90	0.32	5.66	5.47	2.19	2.23	7.33	7.14	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-74 • 1.8 V LVCMOS High SlewCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 VApplicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	11.21	0.04	1.20	0.43	8.53	11.21	1.99	1.21	ns
	-1	0.56	9.54	0.04	1.02	0.36	7.26	9.54	1.69	1.03	ns
	-2	0.49	8.37	0.03	0.90	0.32	6.37	8.37	1.49	0.90	ns
4 mA	Std.	0.66	6.34	0.04	1.20	0.43	5.38	6.34	2.41	2.48	ns
	-1	0.56	5.40	0.04	1.02	0.36	4.58	5.40	2.05	2.11	ns
	-2	0.49	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Output Enable Register

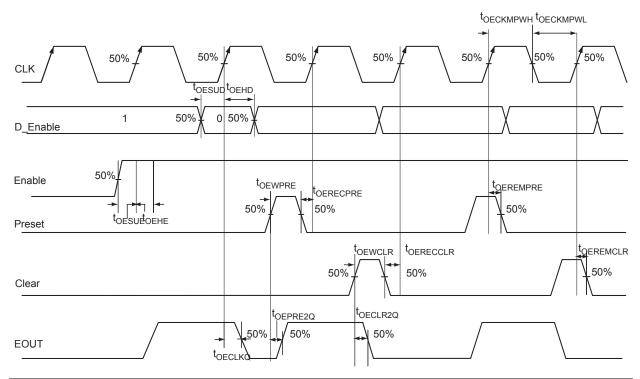
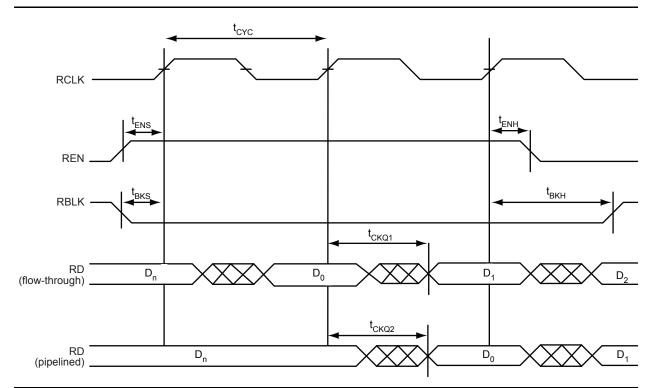
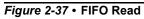
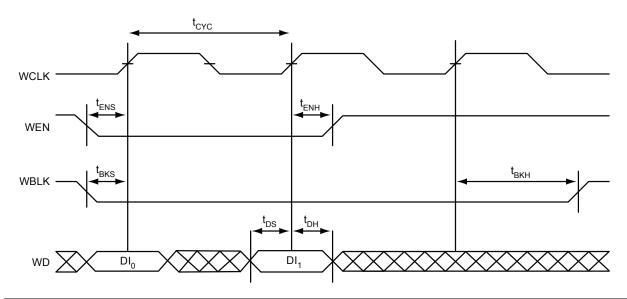
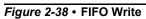



Figure 2-19 • Output Enable Register Timing Diagram






Figure 2-35 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.



Timing Waveforms

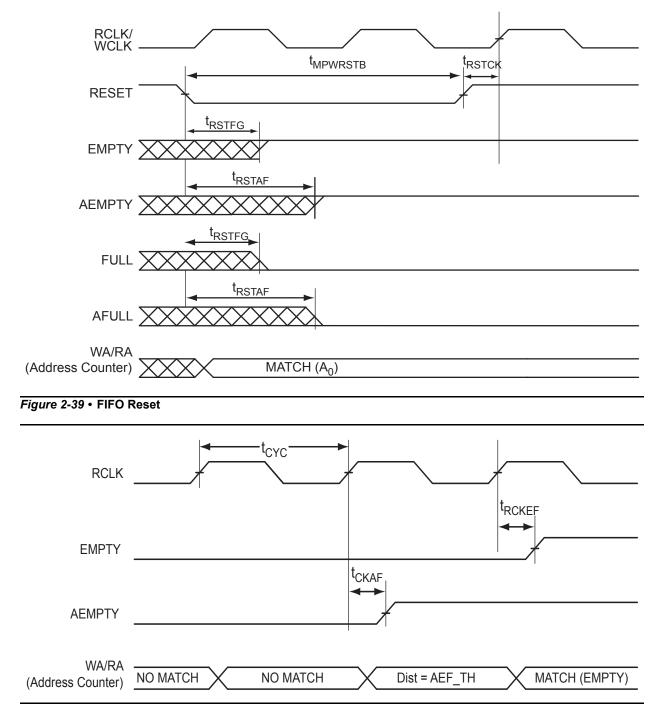
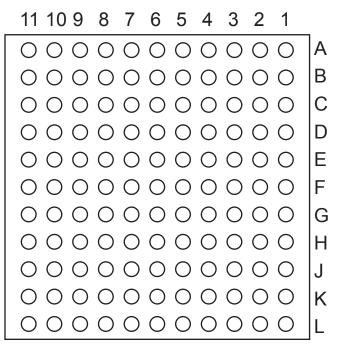



Figure 2-40 • FIFO EMPTY Flag and AEMPTY Flag Assertion

CS121 – Bottom View

Note: The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

🌜 Microsemi.

Package Pin Assignments

F	G144	F	G144	FG144	
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function
A1	GNDQ	D1	IO91RSB1	G1	GFA1/IO84RSB1
A2	VMV0	D2	IO92RSB1	G2	GND
A3	GAB0/IO04RSB0	D3	IO93RSB1	G3	VCCPLF
A4	GAB1/IO05RSB0	D4	GAA2/IO51RSB1	G4	GFA0/IO85RSB1
A5	IO08RSB0	D5	GAC0/IO06RSB0	G5	GND
A6	GND	D6	GAC1/IO07RSB0	G6	GND
A7	IO11RSB0	D7	GBC0/IO19RSB0	G7	GND
A8	VCC	D8	GBC1/IO20RSB0	G8	GDC1/IO45RSB0
A9	IO16RSB0	D9	GBB2/IO27RSB0	G9	IO32RSB0
A10	GBA0/IO23RSB0	D10	IO18RSB0	G10	GCC2/IO43RSB0
A11	GBA1/IO24RSB0	D11	IO28RSB0	G11	IO31RSB0
A12	GNDQ	D12	GCB1/IO37RSB0	G12	GCB2/IO42RSB0
B1	GAB2/IO53RSB1	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO88RSB1	H2	GFB2/IO82RSB1
B3	GAA0/IO02RSB0	E3	GFC1/IO89RSB1	H3	GFC2/IO81RSB1
B4	GAA1/IO03RSB0	E4	VCCIB1	H4	GEC1/IO77RSB1
B5	IO00RSB0	E5	IO52RSB1	H5	VCC
B6	IO10RSB0	E6	VCCIB0	H6	IO34RSB0
B7	IO12RSB0	E7	VCCIB0	H7	IO44RSB0
B8	IO14RSB0	E8	GCC1/IO35RSB0	H8	GDB2/IO55RSB1
B9	GBB0/IO21RSB0	E9	VCCIB0	H9	GDC0/IO46RSB0
B10	GBB1/IO22RSB0	E10	VCC	H10	VCCIB0
B11	GND	E11	GCA0/IO40RSB0	H11	IO33RSB0
B12	VMV0	E12	IO30RSB0	H12	VCC
C1	IO95RSB1	F1	GFB0/IO86RSB1	J1	GEB1/IO75RSB1
C2	GFA2/IO83RSB1	F2	VCOMPLF	J2	IO78RSB1
C3	GAC2/IO94RSB1	F3	GFB1/IO87RSB1	J3	VCCIB1
C4	VCC	F4	IO90RSB1	J4	GEC0/IO76RSB1
C5	IO01RSB0	F5	GND	J5	IO79RSB1
C6	IO09RSB0	F6	GND	J6	IO80RSB1
C7	IO13RSB0	F7	GND	J7	VCC
C8	IO15RSB0	F8	GCC0/IO36RSB0	J8	ТСК
C9	IO17RSB0	F9	GCB0/IO38RSB0	J9	GDA2/IO54RSB1
C10	GBA2/IO25RSB0	F10	GND	J10	TDO
C11	IO26RSB0	F11	GCA1/IO39RSB0	J11	GDA1/IO49RSB0
C12	GBC2/IO29RSB0	F12	GCA2/IO41RSB0	J12	GDB1/IO47RSB0

FG256		FG256		FG256	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
G13	GCC1/IO67PPB1	K1	GFC2/IO142PDB3	M5	VMV3
G14	IO64NPB1	K2	IO144NPB3	M6	VCCIB2
G15	IO73PDB1	K3	IO141PPB3	M7	VCCIB2
G16	IO73NDB1	K4	IO120RSB2	M8	IO108RSB2
H1	GFB0/IO146NPB3	K5	VCCIB3	M9	IO101RSB2
H2	GFA0/IO145NDB3	K6	VCC	M10	VCCIB2
H3	GFB1/IO146PPB3	K7	GND	M11	VCCIB2
H4	VCOMPLF	K8	GND	M12	VMV2
H5	GFC0/IO147NPB3	K9	GND	M13	IO83RSB2
H6	VCC	K10	GND	M14	GDB1/IO78UPB1
H7	GND	K11	VCC	M15	GDC1/IO77UDB1
H8	GND	K12	VCCIB1	M16	IO75NDB1
H9	GND	K13	IO71NPB1	N1	IO140NDB3
H10	GND	K14	IO74RSB1	N2	IO138PPB3
H11	VCC	K15	IO72NPB1	N3	GEC1/IO137PPB3
H12	GCC0/IO67NPB1	K16	IO70NDB1	N4	IO131RSB2
H13	GCB1/IO68PPB1	L1	IO142NDB3	N5	GNDQ
H14	GCA0/IO69NPB1	L2	IO141NPB3	N6	GEA2/IO134RSB2
H15	NC	L3	IO125RSB2	N7	IO117RSB2
H16	GCB0/IO68NPB1	L4	IO139RSB3	N8	IO111RSB2
J1	GFA2/IO144PPB3	L5	VCCIB3	N9	IO99RSB2
J2	GFA1/IO145PDB3	L6	GND	N10	IO94RSB2
J3	VCCPLF	L7	VCC	N11	IO87RSB2
J4	IO143NDB3	L8	VCC	N12	GNDQ
J5	GFB2/IO143PDB3	L9	VCC	N13	IO93RSB2
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO77VDB1
J8	GND	L12	VCCIB1	N16	GDA1/IO79UDB1
J9	GND	L13	GDB0/IO78VPB1	P1	GEB1/IO136PDB3
J10	GND	L14	IO76VDB1	P2	GEB0/IO136NDB3
J11	VCC	L15	IO76UDB1	P3	VMV2
J12	GCB2/IO71PPB1	L16	IO75PDB1	P4	IO129RSB2
J13	GCA1/IO69PPB1	M1	IO140PDB3	P5	IO128RSB2
J14	GCC2/IO72PPB1	M2	IO130RSB2	P6	IO122RSB2
J15	NC	M3	IO138NPB3	P7	IO115RSB2
J16	GCA2/IO70PDB1	M4	GEC0/IO137NPB3	P8	IO110RSB2

Package Pin Assignments

FG256			FG256		FG256	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number A3P1000 Funct		
A1	GND	C7	IO25RSB0	E13	GBC2/IO80PDB1	
A2	GAA0/IO00RSB0	C8	IO36RSB0	E14	IO83PPB1	
A3	GAA1/IO01RSB0	C9	IO42RSB0	E15	IO86PPB1	
A4	GAB0/IO02RSB0	C10	IO49RSB0	E16	IO87PDB1	
A5	IO16RSB0	C11	IO56RSB0	F1	IO217NDB3	
A6	IO22RSB0	C12	GBC0/IO72RSB0	F2	IO218NDB3	
A7	IO28RSB0	C13	IO62RSB0	F3	IO216PDB3	
A8	IO35RSB0	C14	VMV0	F4	IO216NDB3	
A9	IO45RSB0	C15	IO78NDB1	F5	VCCIB3	
A10	IO50RSB0	C16	IO81NDB1	F6	GND	
A11	IO55RSB0	D1	IO222NDB3	F7	VCC	
A12	IO61RSB0	D2	IO222PDB3	F8	VCC	
A13	GBB1/IO75RSB0	D3	GAC2/IO223PDB3	F9	VCC	
A14	GBA0/IO76RSB0	D4	IO223NDB3	F10	VCC	
A15	GBA1/IO77RSB0	D5	GNDQ	F11	GND	
A16	GND	D6	IO23RSB0	F12	VCCIB1	
B1	GAB2/IO224PDB3	D7	IO29RSB0	F13	IO83NPB1	
B2	GAA2/IO225PDB3	D8	IO33RSB0	F14	IO86NPB1	
B3	GNDQ	D9	IO46RSB0	F15	IO90PPB1	
B4	GAB1/IO03RSB0	D10	IO52RSB0	F16	IO87NDB1	
B5	IO17RSB0	D11	IO60RSB0	G1	IO210PSB3	
B6	IO21RSB0	D12	GNDQ	G2	IO213NDB3	
B7	IO27RSB0	D13	IO80NDB1	G3	IO213PDB3	
B8	IO34RSB0	D14	GBB2/IO79PDB1	G4	GFC1/IO209PPB3	
B9	IO44RSB0	D15	IO79NDB1	G5	VCCIB3	
B10	IO51RSB0	D16	IO82NSB1	G6	VCC	
B11	IO57RSB0	E1	IO217PDB3	G7	GND	
B12	GBC1/IO73RSB0	E2	IO218PDB3	G8	GND	
B13	GBB0/IO74RSB0	E3	IO221NDB3	G9	GND	
B14	IO71RSB0	E4	IO221PDB3	G10	GND	
B15	GBA2/IO78PDB1	E5	VMV0	G11	VCC	
B16	IO81PDB1	E6	VCCIB0	G12	VCCIB1	
C1	IO224NDB3	E7	VCCIB0	G13	GCC1/IO91PPB1	
C2	IO225NDB3	E8	IO38RSB0	G14	IO90NPB1	
C3	VMV3	E9	IO47RSB0	G15	IO88PDB1	
C4	IO11RSB0	E10	VCCIB0	G16	IO88NDB1	
C5	GAC0/IO04RSB0	E11	VCCIB0	H1	GFB0/IO208NPB3	
C6	GAC1/IO05RSB0	E12	VMV1	H2	GFA0/IO207NDB3	

🌜 Microsemi.

Package Pin Assignments

FG484			FG484		FG484		
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function		
A1	GND	B15	NC	D7	GAB0/IO02RSB0		
A2	GND	B16	NC	D8	IO16RSB0		
A3	VCCIB0	B17	NC	D9	IO17RSB0		
A4	NC	B18	NC	D10	IO22RSB0		
A5	NC	B19	NC	D11	IO28RSB0		
A6	IO15RSB0	B20	NC	D12	IO34RSB0		
A7	IO18RSB0	B21	VCCIB1	D13	IO37RSB0		
A8	NC	B22	GND	D14	IO41RSB0		
A9	NC	C1	VCCIB3	D15	IO43RSB0		
A10	IO23RSB0	C2	NC	D16	GBB1/IO57RSB0		
A11	IO29RSB0	C3	NC	D17	GBA0/IO58RSB0		
A12	IO35RSB0	C4	NC	D18	GBA1/IO59RSB0		
A13	IO36RSB0	C5	GND	D19	GND		
A14	NC	C6	NC	D20	NC		
A15	NC	C7	NC	D21	NC		
A16	IO50RSB0	C8	VCC	D22	NC		
A17	IO51RSB0	C9	VCC	E1	NC		
A18	NC	C10	NC	E2	NC		
A19	NC	C11	NC	E3	GND		
A20	VCCIB0	C12	NC	E4	GAB2/IO154UDB3		
A21	GND	C13	NC	E5	GAA2/IO155UDB3		
A22	GND	C14	VCC	E6	IO12RSB0		
B1	GND	C15	VCC	E7	GAB1/IO03RSB0		
B2	VCCIB3	C16	NC	E8	IO13RSB0		
B3	NC	C17	NC	E9	IO14RSB0		
B4	NC	C18	GND	E10	IO21RSB0		
B5	NC	C19	NC	E11	IO27RSB0		
B6	NC	C20	NC	E12	IO32RSB0		
B7	NC	C21	NC	E13	IO38RSB0		
B8	NC	C22	VCCIB1	E14	IO42RSB0		
B9	NC	D1	NC	E15	GBC1/IO55RSB0		
B10	NC	D2	NC	E16	GBB0/IO56RSB0		
B11	NC	D3	NC	E17	IO44RSB0		
B12	NC	D4	GND	E18	GBA2/IO60PDB1		
B13	NC	D5	GAA0/IO00RSB0	E19	IO60NDB1		
B14	NC	D6	GAA1/IO01RSB0	E20	GND		

	FG484		FG484	FG484	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
A1	GND	B15	NC	D7	GAB0/IO02RSB0
A2	GND	B16	IO47RSB0	D8	IO11RSB0
A3	VCCIB0	B17	IO49RSB0	D9	IO16RSB0
A4	NC	B18	NC	D10	IO18RSB0
A5	NC	B19	NC	D11	IO28RSB0
A6	IO09RSB0	B20	NC	D12	IO34RSB0
A7	IO15RSB0	B21	VCCIB1	D13	IO37RSB0
A8	NC	B22	GND	D14	IO41RSB0
A9	NC	C1	VCCIB3	D15	IO43RSB0
A10	IO22RSB0	C2	NC	D16	GBB1/IO57RSB0
A11	IO23RSB0	C3	NC	D17	GBA0/IO58RSB0
A12	IO29RSB0	C4	NC	D18	GBA1/IO59RSB0
A13	IO35RSB0	C5	GND	D19	GND
A14	NC	C6	NC	D20	NC
A15	NC	C7	NC	D21	NC
A16	IO46RSB0	C8	VCC	D22	NC
A17	IO48RSB0	C9	VCC	E1	NC
A18	NC	C10	NC	E2	NC
A19	NC	C11	NC	E3	GND
A20	VCCIB0	C12	NC	E4	GAB2/IO173PDB3
A21	GND	C13	NC	E5	GAA2/IO174PDB3
A22	GND	C14	VCC	E6	GNDQ
B1	GND	C15	VCC	E7	GAB1/IO03RSB0
B2	VCCIB3	C16	NC	E8	IO13RSB0
B3	NC	C17	NC	E9	IO14RSB0
B4	NC	C18	GND	E10	IO21RSB0
B5	NC	C19	NC	E11	IO27RSB0
B6	IO08RSB0	C20	NC	E12	IO32RSB0
B7	IO12RSB0	C21	NC	E13	IO38RSB0
B8	NC	C22	VCCIB1	E14	IO42RSB0
B9	NC	D1	NC	E15	GBC1/IO55RSB0
B10	IO17RSB0	D2	NC	E16	GBB0/IO56RSB0
B11	NC	D3	NC	E17	IO52RSB0
B12	NC	D4	GND	E18	GBA2/IO60PDB1
B13	IO36RSB0	D5	GAA0/IO00RSB0	E19	IO60NDB1
B14	NC	D6	GAA1/IO01RSB0	E20	GND

	FG484		FG484	FG484	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
R17	GDB1/IO112PPB1	U9	IO165RSB2	W1	NC
R18	GDC1/IO111PDB1	U10	IO159RSB2	W2	IO191PDB3
R19	IO107NDB1	U11	IO151RSB2	W3	NC
R20	VCC	U12	IO137RSB2	W4	GND
R21	IO104NDB1	U13	IO134RSB2	W5	IO183RSB2
R22	IO105PDB1	U14	IO128RSB2	W6	GEB2/IO186RSB2
T1	IO198PDB3	U15	VMV1	W7	IO172RSB2
T2	IO198NDB3	U16	тск	W8	IO170RSB2
Т3	NC	U17	VPUMP	W9	IO164RSB2
T4	IO194PPB3	U18	TRST	W10	IO158RSB2
T5	IO192PPB3	U19	GDA0/IO113NDB1	W11	IO153RSB2
T6	GEC1/IO190PPB3	U20	NC	W12	IO142RSB2
T7	IO192NPB3	U21	IO108NDB1	W13	IO135RSB2
Т8	GNDQ	U22	IO109PDB1	W14	IO130RSB2
Т9	GEA2/IO187RSB2	V1	NC	W15	GDC2/IO116RSB2
T10	IO161RSB2	V2	NC	W16	IO120RSB2
T11	IO155RSB2	V3	GND	W17	GDA2/IO114RSB2
T12	IO141RSB2	V4	GEA1/IO188PDB3	W18	TMS
T13	IO129RSB2	V5	GEA0/IO188NDB3	W19	GND
T14	IO124RSB2	V6	IO184RSB2	W20	NC
T15	GNDQ	V7	GEC2/IO185RSB2	W21	NC
T16	IO110PDB1	V8	IO168RSB2	W22	NC
T17	VJTAG	V9	IO163RSB2	Y1	VCCIB3
T18	GDC0/IO111NDB1	V10	IO157RSB2	Y2	IO191NDB3
T19	GDA1/IO113PDB1	V11	IO149RSB2	Y3	NC
T20	NC	V12	IO143RSB2	Y4	IO182RSB2
T21	IO108PDB1	V13	IO138RSB2	Y5	GND
T22	IO105NDB1	V14	IO131RSB2	Y6	IO177RSB2
U1	IO195PDB3	V15	IO125RSB2	Y7	IO174RSB2
U2	IO195NDB3	V16	GDB2/IO115RSB2	Y8	VCC
U3	IO194NPB3	V17	TDI	Y9	VCC
U4	GEB1/IO189PDB3	V18	GNDQ	Y10	IO154RSB2
U5	GEB0/IO189NDB3	V19	TDO	Y11	IO148RSB2
U6	VMV2	V20	GND	Y12	IO140RSB2
U7	IO179RSB2	V21	NC	Y13	NC
U8	IO171RSB2	V22	IO109NDB1	Y14	VCC

Datasheet Information

Revision	Changes	Page
Revision 5 (Aug 2008) DC and Switching Characteristics v1.3	TJ, Maximum Junction Temperature, was changed to 100° from 110° in the "Thermal Characteristics" section and EQ 1. The calculated result of Maximum Power Allowed has thus changed to 1.463 W from 1.951 W.	2-6
	Values for the A3P015 device were added to Table 2-7 • Quiescent Supply Current Characteristics.	2-7
	Values for the A3P015 device were added to Table 2-14 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices. P_{AC14} was removed. Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices is new.	2-11, 2-12
	The "PLL Contribution—PPLL" section was updated to change the P _{PLL} formula from $P_{AC13} + P_{AC14} * F_{CLKOUT}$ to $P_{DC4} + P_{AC13} * F_{CLKOUT}$.	2-14
	Both fall and rise values were included for $t_{\mbox{DDRISUD}}$ and $t_{\mbox{DDRIHD}}$ in Table 2-102 \bullet Input DDR Propagation Delays.	2-78
	Table 2-107 • A3P015 Global Resource is new.	2-86
	The typical value for Delay Increments in Programmable Delay Blocks was changed from 160 to 200 in Table 2-115 • ProASIC3 CCC/PLL Specification.	2-90
Revision 4 (Jun 2008) DC and Switching Characteristics v1.2	Table note references were added to Table 2-2 • Recommended Operating Conditions 1, and the order of the table notes was changed.	2-2
	The title for Table 2-4 • Overshoot and Undershoot Limits 1 was modified to remove "as measured on quiet I/Os." Table note 1 was revised to remove "estimated SSO density over cycles." Table note 2 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching I/Os."	2-3
	The "Power per I/O Pin" section was updated to include 3 additional tables pertaining to input buffer power and output buffer power.	2-7
	Table 2-29 • I/O Output Buffer Maximum Resistances 1 was revised to include values for 3.3 V PCI/PCI-X.	2-27
	Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels was updated.	2-66
Revision 3 (Jun 2008) Packaging v1.3	Pin numbers were added to the "QN68 – Bottom View" package diagram. Note 2 was added below the diagram.	4-3
	The "QN132 – Bottom View" package diagram was updated to include D1 to D4. In addition, note 1 was changed from top view to bottom view, and note 2 is new.	4-6
Revision 2 (Feb 2008) Product Brief v1.0	This document was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview.	N/A
	This document was updated to include A3P015 device information. QN68 is a new package that was added because it is offered in the A3P015. The following sections were updated:	N/A
	"Features and Benefits"	
	"ProASIC3 Ordering Information"	
	"Temperature Grade Offerings"	
	"ProASIC3 Flash Family FPGAs"	
	"A3P015 and A3P030" note	
	Introduction and Overview (NA)	

Revision	Changes	Page
Advance v0.2,	Table 2-43 was updated.	2-64
(continued)	Table 2-18 was updated.	2-45
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "User I/O Naming Convention" section was updated.	2-48
	Table 3-7 was updated.	3-6
	The "Methodology" section was updated.	3-10
	Table 3-40 and Table 3-39 were updated.	3-33,3-32
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3 Device Status" table on page IV, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Unmarked (production)

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.