

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	157
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p250-1fgg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User Nonvolatile FlashROM

ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The ProASIC3 development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

ProASIC3 devices (except the A3P015 and A3P030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in A3P015 and A3P030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL. The A3P015 and A3P030 devices do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

I/Os with Advanced I/O Standards

The ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3 FPGAs support many different I/O standards—single-ended and differential.

The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1).

		I/C) Standards	Supported
I/O Bank Type	Device and Bank Location	LVTTL/ LVCMOS	PCI/PCI-X	LVPECL, LVDS, B-LVDS, M-LVDS
Advanced	East and west Banks of A3P250 and larger devices	\checkmark	\checkmark	\checkmark
Standard Plus	North and south banks of A3P250 and larger devices All banks of A3P060 and A3P125	\checkmark	\checkmark	Not supported
Standard	All banks of A3P015 and A3P030	\checkmark	Not supported	Not supported

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

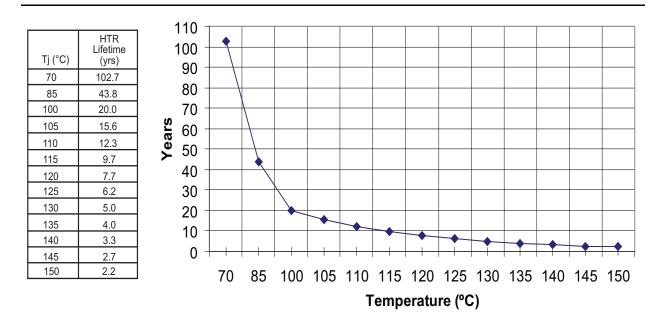
- Single-Data-Rate applications
- Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications

ProASIC3 banks for the A3P250 device and above support LVPECL, LVDS, B-LVDS and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a poweredup system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support


ProASIC3 devices support JEDEC-defined wide range I/O operation. ProASIC3 supports the JESD8-B specification, covering both 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8).
 - 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High

Microsemi

Power Matters."

Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage. Figure 2-1 • **High-Temperature Data Retention (HTR)**

Tabl	e 2-3 •	Flash Program	ning Limits	 Retention, 	, Storage and	Operating	Temperature ¹	1

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C)	Maximum Operating Junction Temperature $T_J (°C)^2$		
Commercial	500	20 years	110	100		
Industrial	500	20 years	110	100		

This is a stress rating only; functional operation at any condition other than those indicated is not implied.
 These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

VCCI and VMV	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
Γ Γ	5%	1.19 V
3.3 V	10%	0.79 V
Γ	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

 Table 2-4 • Overshoot and Undershoot Limits ¹

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-18 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Advanced I/O Banks

		Equiv.			VIL	VIH		VOL	VOH		
I/O Standard	Drive Strength	Software Default Drive Strength Option ²		Min V	Max V	Min V	Max V	Max V	Min V	IOL ¹ mA	IOH ¹ mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ³	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI – 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.6	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI					Per F	PCI specificat	ions				
3.3 V PCI-X					Per P	CI-X specifica	ations				

Notes:

1. Currents are measured at 85°C junction temperature.

2. 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

Timing Characteristics

Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

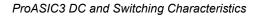
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
4 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
6 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
8 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	Std.	0.66	3.53	0.04	1.02	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	-1	0.56	3.00	0.04	0.86	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	Std.	0.66	3.33	0.04	1.02	0.43	3.39	2.56	3.26	3.68	5.63	4.80	ns
	-1	0.56	2.83	0.04	0.86	0.36	2.89	2.18	2.77	3.13	4.79	4.08	ns
	-2	0.49	2.49	0.03	0.76	0.32	2.53	1.91	2.44	2.75	4.20	3.58	ns
24 mA	Std.	0.66	3.08	0.04	1.02	0.43	3.13	2.12	3.32	4.06	5.37	4.35	ns
	–1	0.56	2.62	0.04	0.86	0.36	2.66	1.80	2.83	3.45	4.57	3.70	ns
	-2	0.49	2.30	0.03	0.76	0.32	2.34	1.58	2.48	3.03	4.01	3.25	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew	
Commercial-Case Conditions: $T_J = 70^{\circ}C$,	Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks	


-														
Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zнs}	Units
100 µA	2 mA	Std.	0.60	11.14	0.04	1.52	0.43	11.14	9.54	3.51	3.61	14.53	12.94	ns
		-1	0.51	9.48	0.04	1.29	0.36	9.48	8.12	2.99	3.07	12.36	11.00	ns
		-2	0.45	8.32	0.03	1.14	0.32	8.32	7.13	2.62	2.70	10.85	9.66	ns
100 µA	4 mA	Std.	0.60	6.96	0.04	1.52	0.43	6.96	5.79	3.99	4.45	10.35	9.19	ns
		-1	0.51	5.92	0.04	1.29	0.36	5.92	4.93	3.39	3.78	8.81	7.82	ns
		-2	0.45	5.20	0.03	1.14	0.32	5.20	4.33	2.98	3.32	7.73	6.86	ns
100 µA	6 mA	Std.	0.60	6.96	0.04	1.52	0.43	6.96	5.79	3.99	4.45	10.35	9.19	ns
		-1	0.51	5.92	0.04	1.29	0.36	5.92	4.93	3.39	3.78	8.81	7.82	ns
		-2	0.45	5.20	0.03	1.14	0.32	5.20	4.33	2.98	3.32	7.73	6.86	ns
100 µA	8 mA	Std.	0.60	4.89	0.04	1.52	0.43	4.89	3.92	4.31	4.98	8.28	7.32	ns
		-1	0.51	4.16	0.04	1.29	0.36	4.16	3.34	3.67	4.24	7.04	6.22	ns
		-2	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns
100 µA	16 mA	Std.	0.60	4.89	0.04	1.52	0.43	4.89	3.92	4.31	4.98	8.28	7.32	ns
		-1	0.51	4.16	0.04	1.29	0.36	4.16	3.34	3.67	4.24	7.04	6.22	ns
		-2	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns

Notes:

The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
 Software default selection bioblighted in group.

2. Software default selection highlighted in gray.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

	Applicable to Standard I/O Banks														
Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units			
100 µA	2 mA	Std.	0.60	10.93	0.04	1.52	0.43	10.93	9.46	3.20	3.32	ns			
		-1	0.51	9.29	0.04	1.29	0.36	9.29	8.04	2.72	2.82	ns			
		-2	0.45	8.16	0.03	1.13	0.32	8.16	7.06	2.39	2.48	ns			
100 µA	4 mA	Std.	0.60	10.93	0.04	1.52	0.43	10.93	9.46	3.20	3.32	ns			
		-1	0.51	9.29	0.04	1.29	0.36	9.29	8.04	2.72	2.82	ns			
		-2	0.45	8.16	0.03	1.13	0.32	8.16	7.06	2.39	2.48	ns			
100 µA	6 mA	Std.	0.60	6.82	0.04	1.52	0.43	6.82	5.70	3.70	4.16	ns			
		-1	0.51	5.80	0.04	1.29	0.36	5.80	4.85	3.15	3.54	ns			
		-2	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns			
100 µA	8 mA	Std.	0.60	6.82	0.04	1.52	0.43	6.82	5.70	3.70	4.16	ns			
		-1	0.51	5.80	0.04	1.29	0.36	5.80	4.85	3.15	3.54	ns			
		-2	0.45	5.09	0.03	1.13	0.32	5.09	4.25	2.77	3.11	ns			

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. Software default selection highlighted in gray.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-75 • 1.8 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	15.01	0.04	1.20	0.43	13.15	15.01	1.99	1.99	ns
	-1	0.56	12.77	0.04	1.02	0.36	11.19	12.77	1.70	1.70	ns
	-2	0.49	11.21	0.03	0.90	0.32	9.82	11.21	1.49	1.49	ns
4 mA	Std.	0.66	10.10	0.04	1.20	0.43	9.55	10.10	2.41	2.37	ns
	-1	0.56	8.59	0.04	1.02	0.36	8.13	8.59	2.05	2.02	ns
	-2	0.49	7.54	0.03	0.90	0.32	7.13	7.54	1.80	1.77	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

Table 2-76 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max., V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10

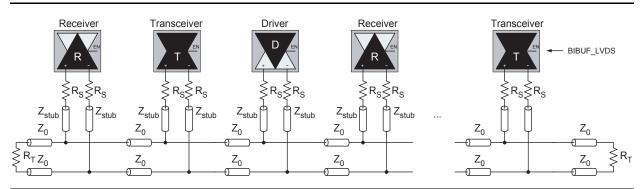
Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

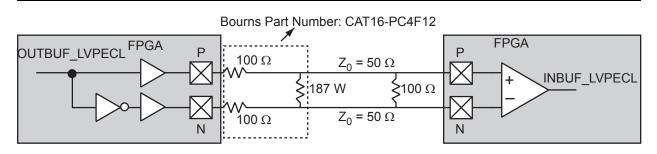

5. Software default selection highlighted in gray.

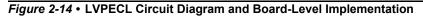


B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-13. The input and output buffer delays are available in the LVDS section in Table 2-92.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").





LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Package Pin Assignments

	2N68	QN68			
Pin Number	A3P015 Function	Pin Number	A3P015 Function		
1	IO82RSB1	37	TRST		
2	IO82R3B1	38	VJTAG		
3					
	IO78RSB1	39	IO40RSB0		
4	IO76RSB1	40	IO37RSB0		
5	GEC0/IO73RSB1	41	GDB0/IO34RSB0		
6	GEA0/IO72RSB1	42	GDA0/IO33RSB0		
7	GEB0/IO71RSB1	43	GDC0/IO32RSB0		
8	VCC	44	VCCIB0		
9	GND	45	GND		
10	VCCIB1	46	VCC		
11	IO68RSB1	47	IO31RSB0		
12	IO67RSB1	48	IO29RSB0		
13	IO66RSB1	49	IO28RSB0		
14	IO65RSB1	50	IO27RSB0		
15	IO64RSB1	51	IO25RSB0		
16	IO63RSB1	52	IO24RSB0		
17	IO62RSB1	53	IO22RSB0		
18	IO60RSB1	54	IO21RSB0		
19	IO58RSB1	55	IO19RSB0		
20	IO56RSB1	56	IO17RSB0		
21	IO54RSB1	57	IO15RSB0		
22	IO52RSB1	58	IO14RSB0		
23	IO51RSB1	59	VCCIB0		
24	VCC	60	GND		
25	GND	61	VCC		
26	VCCIB1	62	IO12RSB0		
27	IO50RSB1	63	IO10RSB0		
28	IO48RSB1	64	IO08RSB0		
29	IO46RSB1	65	IO06RSB0		
30	IO44RSB1	66	IO04RSB0		
31	IO42RSB1	67	IO02RSB0		
32	ТСК	68	IO00RSB0		
33	TDI				
34	TMS				
35	VPUMP				

TDO

36

QN132			QN132	QN132		
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function	
A1	GAB2/IO69RSB1	A37	GBB1/IO38RSB0	B25	GND	
A2	IO130RSB1	A38	GBC0/IO35RSB0	B26	NC	
A3	VCCIB1	A39	VCCIB0	B27	GCB2/IO58RSB0	
A4	GFC1/IO126RSB1	A40	IO28RSB0	B28	GND	
A5	GFB0/IO123RSB1	A41	IO22RSB0	B29	GCB0/IO54RSB0	
A6	VCCPLF	A42	IO18RSB0	B30	GCC1/IO51RSB0	
A7	GFA1/IO121RSB1	A43	IO14RSB0	B31	GND	
A8	GFC2/IO118RSB1	A44	IO11RSB0	B32	GBB2/IO43RSB0	
A9	IO115RSB1	A45	IO07RSB0	B33	VMV0	
A10	VCC	A46	VCC	B34	GBA0/IO39RSB0	
A11	GEB1/IO110RSB1	A47	GAC1/IO05RSB0	B35	GBC1/IO36RSB0	
A12	GEA0/IO107RSB1	A48	GAB0/IO02RSB0	B36	GND	
A13	GEC2/IO104RSB1	B1	IO68RSB1	B37	IO26RSB0	
A14	IO100RSB1	B2	GAC2/IO131RSB1	B38	IO21RSB0	
A15	VCC	B3	GND	B39	GND	
A16	IO99RSB1	B4	GFC0/IO125RSB1	B40	IO13RSB0	
A17	IO96RSB1	B5	VCOMPLF	B41	IO08RSB0	
A18	IO94RSB1	B6	GND	B42	GND	
A19	IO91RSB1	B7	GFB2/IO119RSB1	B43	GAC0/IO04RSB0	
A20	IO85RSB1	B8	IO116RSB1	B44	GNDQ	
A21	IO79RSB1	B9	GND	C1	GAA2/IO67RSB1	
A22	VCC	B10	GEB0/IO109RSB1	C2	IO132RSB1	
A23	GDB2/IO71RSB1	B11	VMV1	C3	VCC	
A24	TDI	B12	GEB2/IO105RSB1	C4	GFB1/IO124RSB1	
A25	TRST	B13	IO101RSB1	C5	GFA0/IO122RSB1	
A26	GDC1/IO61RSB0	B14	GND	C6	GFA2/IO120RSB1	
A27	VCC	B15	IO98RSB1	C7	IO117RSB1	
A28	IO60RSB0	B16	IO95RSB1	C8	VCCIB1	
A29	GCC2/IO59RSB0	B17	GND	C9	GEA1/IO108RSB1	
A30	GCA2/IO57RSB0	B18	IO87RSB1	C10	GNDQ	
A31	GCA0/IO56RSB0	B19	IO81RSB1	C11	GEA2/IO106RSB1	
A32	GCB1/IO53RSB0	B20	GND	C12	IO103RSB1	
A33	IO49RSB0	B21	GNDQ	C13	VCCIB1	
A34	VCC	B22	TMS	C14	IO97RSB1	
A35	IO44RSB0	B23	TDO	C15	IO93RSB1	
A36	GBA2/IO41RSB0	B24	GDC0/IO62RSB0	C16	IO89RSB1	

QN132			QN132	QN132		
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function	
A1	GAB2/IO117UPB3	A37	GBB1/IO38RSB0	B25	GND	
A2	IO117VPB3	A38	GBC0/IO35RSB0	B26	IO54PDB1	
A3	VCCIB3	A39	VCCIB0	B27	GCB2/IO52PDB1	
A4	GFC1/IO110PDB3	A40	IO28RSB0	B28	GND	
A5	GFB0/IO109NPB3	A41	IO22RSB0	B29	GCB0/IO49NDB1	
A6	VCCPLF	A42	IO18RSB0	B30	GCC1/IO48PDB1	
A7	GFA1/IO108PPB3	A43	IO14RSB0	B31	GND	
A8	GFC2/IO105PPB3	A44	IO11RSB0	B32	GBB2/IO42PDB1	
A9	IO103NDB3	A45	IO07RSB0	B33	VMV1	
A10	VCC	A46	VCC	B34	GBA0/IO39RSB0	
A11	GEA1/IO98PPB3	A47	GAC1/IO05RSB0	B35	GBC1/IO36RSB0	
A12	GEA0/IO98NPB3	A48	GAB0/IO02RSB0	B36	GND	
A13	GEC2/IO95RSB2	B1	IO118VDB3	B37	IO26RSB0	
A14	IO91RSB2	B2	GAC2/IO116UDB3	B38	IO21RSB0	
A15	VCC	B3	GND	B39	GND	
A16	IO90RSB2	B4	GFC0/IO110NDB3	B40	IO13RSB0	
A17	IO87RSB2	B5	VCOMPLF	B41	IO08RSB0	
A18	IO85RSB2	B6	GND	B42	GND	
A19	IO82RSB2	B7	GFB2/IO106PSB3	B43	GAC0/IO04RSB0	
A20	IO76RSB2	B8	IO103PDB3	B44	GNDQ	
A21	IO70RSB2	B9	GND	C1	GAA2/IO118UDB3	
A22	VCC	B10	GEB0/IO99NDB3	C2	IO116VDB3	
A23	GDB2/IO62RSB2	B11	VMV3	C3	VCC	
A24	TDI	B12	GEB2/IO96RSB2	C4	GFB1/IO109PPB3	
A25	TRST	B13	IO92RSB2	C5	GFA0/IO108NPB3	
A26	GDC1/IO58UDB1	B14	GND	C6	GFA2/IO107PSB3	
A27	VCC	B15	IO89RSB2	C7	IO105NPB3	
A28	IO54NDB1	B16	IO86RSB2	C8	VCCIB3	
A29	IO52NDB1	B17	GND	C9	GEB1/IO99PDB3	
A30	GCA2/IO51PPB1	B18	IO78RSB2	C10	GNDQ	
A31	GCA0/IO50NPB1	B19	IO72RSB2	C11	GEA2/IO97RSB2	
A32	GCB1/IO49PDB1	B20	GND	C12	IO94RSB2	
A33	IO47NSB1	B21	GNDQ	C13	VCCIB2	
A34	VCC	B22	TMS	C14	IO88RSB2	
A35	IO41NPB1	B23	TDO	C15	IO84RSB2	
A36	GBA2/IO41PPB1	B24	GDC0/IO58VDB1	C16	IO80RSB2	

QN132					
Pin Number	A3P250 Function				
C17	IO74RSB2				
C18	VCCIB2				
C19	ТСК				
C20	VMV2				
C21	VPUMP				
C22	VJTAG				
C23	VCCIB1				
C24	IO53NSB1				
C25	IO51NPB1				
C26	GCA1/IO50PPB1				
C27	GCC0/IO48NDB1				
C28	VCCIB1				
C29	IO42NDB1				
C30	GNDQ				
C31	GBA1/IO40RSB0				
C32	GBB0/IO37RSB0				
C33	VCC				
C34	IO24RSB0				
C35	IO19RSB0				
C36	IO16RSB0				
C37	IO10RSB0				
C38	VCCIB0				
C39	GAB1/IO03RSB0				
C40	VMV0				
D1	GND				
D2	GND				
D3	GND				
D4	GND				

PQ208			PQ208	PQ208		
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function	
1	GND	37	IO116RSB1	73	IO92RSB1	
2	GAA2/IO67RSB1	38	IO115RSB1	74	IO91RSB1	
3	IO68RSB1	39	NC	75	IO90RSB1	
4	GAB2/IO69RSB1	40	VCCIB1	76	IO89RSB1	
5	IO132RSB1	41	GND	77	IO88RSB1	
6	GAC2/IO131RSB1	42	IO114RSB1	78	IO87RSB1	
7	NC	43	IO113RSB1	79	IO86RSB1	
8	NC	44	GEC1/IO112RSB1	80	IO85RSB1	
9	IO130RSB1	45	GEC0/IO111RSB1	81	GND	
10	IO129RSB1	46	GEB1/IO110RSB1	82	IO84RSB1	
11	NC	47	GEB0/IO109RSB1	83	IO83RSB1	
12	IO128RSB1	48	GEA1/IO108RSB1	84	IO82RSB1	
13	NC	49	GEA0/IO107RSB1	85	IO81RSB1	
14	NC	50	VMV1	86	IO80RSB1	
15	NC	51	GNDQ	87	IO79RSB1	
16	VCC	52	GND	88	VCC	
17	GND	53	NC	89	VCCIB1	
18	VCCIB1	54	NC	90	IO78RSB1	
19	IO127RSB1	55	GEA2/IO106RSB1	91	IO77RSB1	
20	NC	56	GEB2/IO105RSB1	92	IO76RSB1	
21	GFC1/IO126RSB1	57	GEC2/IO104RSB1	93	IO75RSB1	
22	GFC0/IO125RSB1	58	IO103RSB1	94	IO74RSB1	
23	GFB1/IO124RSB1	59	IO102RSB1	95	IO73RSB1	
24	GFB0/IO123RSB1	60	IO101RSB1	96	GDC2/IO72RSB1	
25	VCOMPLF	61	IO100RSB1	97	GND	
26	GFA0/IO122RSB1	62	VCCIB1	98	GDB2/IO71RSB1	
27	VCCPLF	63	IO99RSB1	99	GDA2/IO70RSB1	
28	GFA1/IO121RSB1	64	IO98RSB1	100	GNDQ	
29	GND	65	GND	101	ТСК	
30	GFA2/IO120RSB1	66	IO97RSB1	102	TDI	
31	NC	67	IO96RSB1	103	TMS	
32	GFB2/IO119RSB1	68	IO95RSB1	104	VMV1	
33	NC	69	IO94RSB1	105	GND	
34	GFC2/IO118RSB1	70	IO93RSB1	106	VPUMP	
35	IO117RSB1	71	VCC	107	NC	
36	NC	72	VCCIB1	108	TDO	

🌜 Microsemi.

PQ208			PQ208		PQ208	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	
109	TRST	145	IO84PDB1	181	IO33RSB0	
110	VJTAG	146	IO82NDB1	182	IO31RSB0	
111	GDA0/IO113NDB1	147	IO82PDB1	183	IO29RSB0	
112	GDA1/IO113PDB1	148	IO80NDB1	184	IO27RSB0	
113	GDB0/IO112NDB1	149	GBC2/IO80PDB1	185	IO25RSB0	
114	GDB1/IO112PDB1	150	IO79NDB1	186	VCCIB0	
115	GDC0/IO111NDB1	151	GBB2/IO79PDB1	187	VCC	
116	GDC1/IO111PDB1	152	IO78NDB1	188	IO22RSB0	
117	IO109NDB1	153	GBA2/IO78PDB1	189	IO20RSB0	
118	IO109PDB1	154	VMV1	190	IO18RSB0	
119	IO106NDB1	155	GNDQ	191	IO16RSB0	
120	IO106PDB1	156	GND	192	IO15RSB0	
121	IO104PSB1	157	VMV0	193	IO14RSB0	
122	GND	158	GBA1/IO77RSB0	194	IO13RSB0	
123	VCCIB1	159	GBA0/IO76RSB0	195	GND	
124	IO99NDB1	160	GBB1/IO75RSB0	196	IO12RSB0	
125	IO99PDB1	161	GBB0/IO74RSB0	197	IO11RSB0	
126	NC	162	GND	198	IO10RSB0	
127	IO96NDB1	163	GBC1/IO73RSB0	199	IO09RSB0	
128	GCC2/IO96PDB1	164	GBC0/IO72RSB0	200	VCCIB0	
129	GCB2/IO95PSB1	165	IO70RSB0	201	GAC1/IO05RSB0	
130	GND	166	IO67RSB0	202	GAC0/IO04RSB0	
131	GCA2/IO94PSB1	167	IO63RSB0	203	GAB1/IO03RSB0	
132	GCA1/IO93PDB1	168	IO60RSB0	204	GAB0/IO02RSB0	
133	GCA0/IO93NDB1	169	IO57RSB0	205	GAA1/IO01RSB0	
134	GCB0/IO92NDB1	170	VCCIB0	206	GAA0/IO00RSB0	
135	GCB1/IO92PDB1	171	VCC	207	GNDQ	
136	GCC0/IO91NDB1	172	IO54RSB0	208	VMV0	
137	GCC1/IO91PDB1	173	IO51RSB0			
138	IO88NDB1	174	IO48RSB0			
139	IO88PDB1	175	IO45RSB0			
140	VCCIB1	176	IO42RSB0			
141	GND	177	IO40RSB0			
142	VCC	178	GND			
143	IO86PSB1	179	IO38RSB0			
144	IO84NDB1	180	IO35RSB0			

🌜 Microsemi.

FG144		F	G144	F	G144
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
A1	GNDQ	D1	IO128RSB1	G1	GFA1/IO121RSB1
A2	VMV0	D2	IO129RSB1	G2	GND
A3	GAB0/IO02RSB0	D3	IO130RSB1	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO67RSB1	G4	GFA0/IO122RSB1
A5	IO11RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO18RSB0	D7	GBC0/IO35RSB0	G7	GND
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO61RSB0
A9	IO25RSB0	D9	GBB2/IO43RSB0	G9	IO48RSB0
A10	GBA0/IO39RSB0	D10	IO28RSB0	G10	GCC2/IO59RSB0
A11	GBA1/IO40RSB0	D11	IO44RSB0	G11	IO47RSB0
A12	GNDQ	D12	GCB1/IO53RSB0	G12	GCB2/IO58RSB0
B1	GAB2/IO69RSB1	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO125RSB1	H2	GFB2/IO119RSB1
B3	GAA0/IO00RSB0	E3	GFC1/IO126RSB1	H3	GFC2/IO118RSB1
B4	GAA1/IO01RSB0	E4	VCCIB1	H4	GEC1/IO112RSB1
B5	IO08RSB0	E5	IO68RSB1	H5	VCC
B6	IO14RSB0	E6	VCCIB0	H6	IO50RSB0
B7	IO19RSB0	E7	VCCIB0	H7	IO60RSB0
B8	IO22RSB0	E8	GCC1/IO51RSB0	H8	GDB2/IO71RSB1
B9	GBB0/IO37RSB0	E9	VCCIB0	Н9	GDC0/IO62RSB0
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB0
B11	GND	E11	GCA0/IO56RSB0	H11	IO49RSB0
B12	VMV0	E12	IO46RSB0	H12	VCC
C1	IO132RSB1	F1	GFB0/IO123RSB1	J1	GEB1/IO110RSB1
C2	GFA2/IO120RSB1	F2	VCOMPLF	J2	IO115RSB1
C3	GAC2/IO131RSB1	F3	GFB1/IO124RSB1	J3	VCCIB1
C4	VCC	F4	IO127RSB1	J4	GEC0/IO111RSB1
C5	IO10RSB0	F5	GND	J5	IO116RSB1
C6	IO12RSB0	F6	GND	J6	IO117RSB1
C7	IO21RSB0	F7	GND	J7	VCC
C8	IO24RSB0	F8	GCC0/IO52RSB0	J8	ТСК
C9	IO27RSB0	F9	GCB0/IO54RSB0	J9	GDA2/IO70RSB1
C10	GBA2/IO41RSB0	F10	GND	J10	TDO
C11	IO42RSB0	F11	GCA1/IO55RSB0	J11	GDA1/IO65RSB0
C12	GBC2/IO45RSB0	F12	GCA2/IO57RSB0	J12	GDB1/IO63RSB0

FG256			FG256	FG256		
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function	
A1	GND	C5	GAC0/IO04RSB0	E9	IO24RSB0	
A2	GAA0/IO00RSB0	C6	GAC1/IO05RSB0	E10	VCCIB0	
A3	GAA1/IO01RSB0	C7	IO13RSB0	E11	VCCIB0	
A4	GAB0/IO02RSB0	C8	IO17RSB0	E12	VMV1	
A5	IO07RSB0	C9	IO22RSB0	E13	GBC2/IO43PDB1	
A6	IO10RSB0	C10	IO27RSB0	E14	IO46RSB1	
A7	IO11RSB0	C11	IO31RSB0	E15	NC	
A8	IO15RSB0	C12	GBC0/IO35RSB0	E16	IO45PDB1	
A9	IO20RSB0	C13	IO34RSB0	F1	IO113NDB3	
A10	IO25RSB0	C14	NC	F2	IO112PPB3	
A11	IO29RSB0	C15	IO42NPB1	F3	NC	
A12	IO33RSB0	C16	IO44PDB1	F4	IO115VDB3	
A13	GBB1/IO38RSB0	D1	IO114VDB3	F5	VCCIB3	
A14	GBA0/IO39RSB0	D2	IO114UDB3	F6	GND	
A15	GBA1/IO40RSB0	D3	GAC2/IO116UDB3	F7	VCC	
A16	GND	D4	NC	F8	VCC	
B1	GAB2/IO117UDB3	D5	GNDQ	F9	VCC	
B2	GAA2/IO118UDB3	D6	IO08RSB0	F10	VCC	
B3	NC	D7	IO14RSB0	F11	GND	
B4	GAB1/IO03RSB0	D8	IO18RSB0	F12	VCCIB1	
B5	IO06RSB0	D9	IO23RSB0	F13	IO43NDB1	
B6	IO09RSB0	D10	IO28RSB0	F14	NC	
B7	IO12RSB0	D11	IO32RSB0	F15	IO47PPB1	
B8	IO16RSB0	D12	GNDQ	F16	IO45NDB1	
B9	IO21RSB0	D13	NC	G1	IO111NDB3	
B10	IO26RSB0	D14	GBB2/IO42PPB1	G2	IO111PDB3	
B11	IO30RSB0	D15	NC	G3	IO112NPB3	
B12	GBC1/IO36RSB0	D16	IO44NDB1	G4	GFC1/IO110PPB3	
B13	GBB0/IO37RSB0	E1	IO113PDB3	G5	VCCIB3	
B14	NC	E2	NC	G6	VCC	
B15	GBA2/IO41PDB1	E3	IO116VDB3	G7	GND	
B16	IO41NDB1	E4	IO115UDB3	G8	GND	
C1	IO117VDB3	E5	VMV0	G9	GND	
C2	IO118VDB3	E6	VCCIB0	G10	GND	
C3	NC	E7	VCCIB0	G11	VCC	
C4	NC	E8	IO19RSB0	G12	VCCIB1	

🌜 Microsemi.

FG484			FG484		FG484		
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function		
A1	GND	B15	IO63RSB0	D7	GAB0/IO02RSB0		
A2	GND	B16	IO66RSB0	D8	IO16RSB0		
A3	VCCIB0	B17	IO68RSB0	D9	IO22RSB0		
A4	IO07RSB0	B18	IO70RSB0	D10	IO28RSB0		
A5	IO09RSB0	B19	NC	D11	IO35RSB0		
A6	IO13RSB0	B20	NC	D12	IO45RSB0		
A7	IO18RSB0	B21	VCCIB1	D13	IO50RSB0		
A8	IO20RSB0	B22	GND	D14	IO55RSB0		
A9	IO26RSB0	C1	VCCIB3	D15	IO61RSB0		
A10	IO32RSB0	C2	IO220PDB3	D16	GBB1/IO75RSB0		
A11	IO40RSB0	C3	NC	D17	GBA0/IO76RSB0		
A12	IO41RSB0	C4	NC	D18	GBA1/IO77RSB0		
A13	IO53RSB0	C5	GND	D19	GND		
A14	IO59RSB0	C6	IO10RSB0	D20	NC		
A15	IO64RSB0	C7	IO14RSB0	D21	NC		
A16	IO65RSB0	C8	VCC	D22	NC		
A17	IO67RSB0	C9	VCC	E1	IO219NDB3		
A18	IO69RSB0	C10	IO30RSB0	E2	NC		
A19	NC	C11	IO37RSB0	E3	GND		
A20	VCCIB0	C12	IO43RSB0	E4	GAB2/IO224PDB3		
A21	GND	C13	NC	E5	GAA2/IO225PDB3		
A22	GND	C14	VCC	E6	GNDQ		
B1	GND	C15	VCC	E7	GAB1/IO03RSB0		
B2	VCCIB3	C16	NC	E8	IO17RSB0		
B3	NC	C17	NC	E9	IO21RSB0		
B4	IO06RSB0	C18	GND	E10	IO27RSB0		
B5	IO08RSB0	C19	NC	E11	IO34RSB0		
B6	IO12RSB0	C20	NC	E12	IO44RSB0		
B7	IO15RSB0	C21	NC	E13	IO51RSB0		
B8	IO19RSB0	C22	VCCIB1	E14	IO57RSB0		
B9	IO24RSB0	D1	IO219PDB3	E15	GBC1/IO73RSB0		
B10	IO31RSB0	D2	IO220NDB3	E16	GBB0/IO74RSB0		
B11	IO39RSB0	D3	NC	E17	IO71RSB0		
B12	IO48RSB0	D4	GND	E18	GBA2/IO78PDB1		
B13	IO54RSB0	D5	GAA0/IO00RSB0	E19	IO81PDB1		
B14	IO58RSB0	D6	GAA1/IO01RSB0	E20	GND		

Datasheet Information

Revision	Changes	Page				
v2.0 (April 2007)	In the "Packaging Tables", Ambient was deleted.	ii				
	The timing characteristics tables were updated. The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up.					
		Table 2-11 • ProASIC3 CCC/PLL Specification was updated.	2-29			
	Figure 2-19 • Peak-to-Peak Jitter Definition is new.	2-18				
	The "SRAM and FIFO" section was updated with operation and timing requirement information.	2-21				
	The "RESET" section was updated with read and write information.	2-25				
	The "RESET" section was updated with read and write information.	2-25				
	The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled.	2-28				
	PCI-X 3.3 V was added to Table 2-11 • VCCI Voltages and Compatible Standards.					
	In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4.	2-34				
	Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.	2-64				
	Notes 3, 4, and 5 were added to Table 2-17 • Comparison Table for 5 V- Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7.The "VCCPLF PLL Supply Voltage" section was updated.The "VPUMP Programming Supply Voltage" section was updated.					
	The "GL Globals" section was updated to include information about direct input into quadrant clocks.	2-51				
	V _{JTAG} was deleted from the "TCK Test Clock" section.	2-51				
	In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated.	2-51				
	Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45".	3-2				
	Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os)1.	3-2				
	In EQ 3-2, 150 was changed to 110 and the result changed from 3.9 to 1.951.	3-5				
	Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was updated.	3-6				
	Table 3-5 • Package Thermal Resistivities was updated.	3-5				
	Table 3-14 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings (Advanced) and Table 3-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions (Standard Plus) were updated.	3-17 to 3- 17				

Revision	Changes	Page
Advance v0.2,	Table 2-43 was updated.	2-64
(continued)	Table 2-18 was updated.	2-45
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "User I/O Naming Convention" section was updated.	2-48
	Table 3-7 was updated.	3-6
	The "Methodology" section was updated.	3-10
	Table 3-40 and Table 3-39 were updated.	3-33,3-32
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68