E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	151
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p250-1pqg208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ProASIC3 Devices	A3P015 ¹	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Cortex-M1 Devices ²					M1A3P250	M1A3P400	M1A3P600	M1A3P1000
Package Pins QFN	QN68	QN48, QN68, QN132 ⁷	QN132 ⁷	QN132 ⁷	QN132 ⁷			
CS VQFP TQFP		VQ100	CS121 VQ100 TQ144	VQ100 TQ144	VQ100			
PQFP FBGA			FG144	PQ208 FG144	PQ208 FG144/256 ⁵	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484	PQ208 FG144/256/ 484

Notes:

- A3P015 is not recommended for new designs.
 Refer to the Cortex-M1 product brief for more information.
 AES is not available for Cortex-M1 ProASIC3 devices.
 Six chip (main) and three quadrant global networks are available for A3P060 and above.
 The M1A3P250 device does not support this package.
 For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs datasheet.
 Package not available.

2 – ProASIC3 DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 • Absolute Maximum Ratings	Table 2-1 •	Absolute	Maximum	Ratings
--------------------------------------	-------------	----------	---------	---------

Symbol	Parameter	Limits	Units							
VCC	DC core supply voltage	–0.3 to 1.65	V							
VJTAG	JTAG DC voltage	-0.3 to 3.75	V							
VPUMP	Programming voltage	-0.3 to 3.75	V							
VCCPLL	Analog power supply (PLL)	–0.3 to 1.65	V							
VCCI	DC I/O output buffer supply voltage	-0.3 to 3.75	V							
VMV	DC I/O input buffer supply voltage	ut buffer supply voltage -0.3 to 3.75								
VI	I/O input voltage	–0.3 V to 3.6 V	V							
		(when I/O hot insertion mode is enabled)								
		-0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)								
T _{STG} ²	Storage temperature	-65 to +150								
T _J ²	Junction temperature	+125								

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Table 2-62 •	2.5 V LV Commer Applicat	cial-Cas	e Cond	itions:			st-Case	• VCC =	= 1.425	V, Wor	st-Case	VCCI = 2	2.3 V
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	8.28	0.04	1.30	0.43	7.41	8.28	2.25	2.07	9.64	10.51	ns
	-1	0.56	7.04	0.04	1.10	0.36	6.30	7.04	1.92	1.76	8.20	8.94	ns
	-2	0.49	6.18	0.03	0.97	0.32	5.53	6.18	1.68	1.55	7.20	7.85	ns
6 mA .	Std.	0.66	4.85	0.04	1.30	0.43	4.65	4.85	2.59	2.71	6.88	7.09	ns
	-1	0.56	4.13	0.04	1.10	0.36	3.95	4.13	2.20	2.31	5.85	6.03	ns
	-2	0.49	3.62	0.03	0.97	0.32	3.47	3.62	1.93	2.02	5.14	5.29	ns
8 mA	Std.	0.66	4.85	0.04	1.30	0.43	4.65	4.85	2.59	2.71	6.88	7.09	ns
	-1	0.56	4.13	0.04	1.10	0.36	3.95	4.13	2.20	2.31	5.85	6.03	ns
	-2	0.49	3.62	0.03	0.97	0.32	3.47	3.62	1.93	2.02	5.14	5.29	ns
12 mA	Std.	0.66	3.21	0.04	1.30	0.43	3.27	3.14	2.82	3.11	5.50	5.38	ns
-	-1	0.56	2.73	0.04	1.10	0.36	2.78	2.67	2.40	2.65	4.68	4.57	ns
	-2	0.49	2.39	0.03	0.97	0.32	2.44	2.35	2.11	2.32	4.11	4.02	ns

Microsomi

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-63 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	10.84	0.04	1.30	0.43	10.64	10.84	2.26	1.99	12.87	13.08	ns
	–1	0.56	9.22	0.04	1.10	0.36	9.05	9.22	1.92	1.69	10.95	11.12	ns
	-2	0.49	8.10	0.03	0.97	0.32	7.94	8.10	1.68	1.49	9.61	9.77	ns
6 mA	Std.	0.66	7.37	0.04	1.30	0.43	7.50	7.36	2.59	2.61	9.74	9.60	ns
	–1	0.56	6.27	0.04	1.10	0.36	6.38	6.26	2.20	2.22	8.29	8.16	ns
	-2	0.49	5.50	0.03	0.97	0.32	5.60	5.50	1.93	1.95	7.27	7.17	ns
8 mA	Std.	0.66	7.37	0.04	1.30	0.43	7.50	7.36	2.59	2.61	9.74	9.60	ns
	-1	0.56	6.27	0.04	1.10	0.36	6.38	6.26	2.20	2.22	8.29	8.16	ns
	-2	0.49	5.50	0.03	0.97	0.32	5.60	5.50	1.93	1.95	7.27	7.17	ns
12 mA	Std.	0.66	5.63	0.04	1.30	0.43	5.73	5.51	2.83	3.01	7.97	7.74	ns
	–1	0.56	4.79	0.04	1.10	0.36	4.88	4.68	2.41	2.56	6.78	6.59	ns
	-2	0.49	4.20	0.03	0.97	0.32	4.28	4.11	2.11	2.25	5.95	5.78	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-71 • 1.8 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Applicable to Advanced I/O Ballks													
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	15.53	0.04	1.22	0.43	14.11	15.53	2.78	1.60	16.35	17.77	ns
	–1	0.56	13.21	0.04	1.04	0.36	12.01	13.21	2.36	1.36	13.91	15.11	ns
	-2	0.49	11.60	0.03	0.91	0.32	10.54	11.60	2.07	1.19	12.21	13.27	ns
4 mA	Std.	0.66	10.48	0.04	1.22	0.43	10.41	10.48	3.23	2.73	12.65	12.71	ns
	-1	0.56	8.91	0.04	1.04	0.36	8.86	8.91	2.75	2.33	10.76	10.81	ns
	-2	0.49	7.82	0.03	0.91	0.32	7.77	7.82	2.41	2.04	9.44	9.49	ns
6 mA	Std.	0.66	8.05	0.04	1.22	0.43	8.20	7.84	3.54	3.27	10.43	10.08	ns
	-1	0.56	6.85	0.04	1.04	0.36	6.97	6.67	3.01	2.78	8.88	8.57	ns
	-2	0.49	6.01	0.03	0.91	0.32	6.12	5.86	2.64	2.44	7.79	7.53	ns
8 mA	Std.	0.66	7.50	0.04	1.22	0.43	7.64	7.30	3.61	3.41	9.88	9.53	ns
	-1	0.56	6.38	0.04	1.04	0.36	6.50	6.21	3.07	2.90	8.40	8.11	ns
	-2	0.49	5.60	0.03	0.91	0.32	5.71	5.45	2.69	2.55	7.38	7.12	ns
12 mA	Std.	0.66	7.29	0.04	1.22	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	-1	0.56	6.20	0.04	1.04	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.91	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns
16 mA	Std.	0.66	7.29	0.04	1.22	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	–1	0.56	6.20	0.04	1.04	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.91	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-73 • 1.8 V LVCMOS Low Slew

Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units	
2 mA	Std.	0.66	14.80	0.04	1.20	0.43	13.49	14.80	2.25	1.46	15.73	17.04	ns	
	-1	0.56	12.59	0.04	1.02	0.36	11.48	12.59	1.91	1.25	13.38	14.49	ns	
	-2	0.49	11.05	0.03	0.90	0.32	10.08	11.05	1.68	1.09	11.75	12.72	ns	
4 mA	Std.	0.66	9.90	0.04	1.20	0.43	9.73	9.90	2.65	2.50	11.97	12.13	ns	
	-1	0.56	8.42	0.04	1.02	0.36	8.28	8.42	2.26	2.12	10.18	10.32	ns	
	-2	0.49	7.39	0.03	0.90	0.32	7.27	7.39	1.98	1.86	8.94	9.06	ns	
6 mA	Std.	0.66	7.44	0.04	1.20	0.43	7.58	7.32	2.94	2.99	9.81	9.56	ns	
	-1	0.56	6.33	0.04	1.02	0.36	6.44	6.23	2.50	2.54	8.35	8.13	ns	
	-2	0.49	5.55	0.03	0.90	0.32	5.66	5.47	2.19	2.23	7.33	7.14	ns	
8 mA	Std.	0.66	7.44	0.04	1.20	0.43	7.58	7.32	2.94	2.99	9.81	9.56	ns	
	-1	0.56	6.33	0.04	1.02	0.36	6.44	6.23	2.50	2.54	8.35	8.13	ns	
	-2	0.49	5.55	0.03	0.90	0.32	5.66	5.47	2.19	2.23	7.33	7.14	ns	

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-74 • 1.8 V LVCMOS High SlewCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 VApplicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	11.21	0.04	1.20	0.43	8.53	11.21	1.99	1.21	ns
	-1	0.56	9.54	0.04	1.02	0.36	7.26	9.54	1.69	1.03	ns
	-2	0.49	8.37	0.03	0.90	0.32	6.37	8.37	1.49	0.90	ns
4 mA	Std.	0.66	6.34	0.04	1.20	0.43	5.38	6.34	2.41	2.48	ns
	-1	0.56	5.40	0.04	1.02	0.36	4.58	5.40	2.05	2.11	ns
	-2	0.49	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

	Ah	Applicable to Standard Flus I/O Ballks													
1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²			
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴			
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10			
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10			
Mataai															

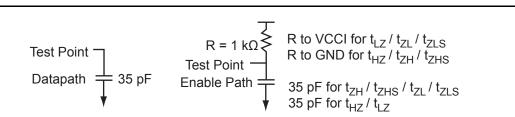
Table 2-77 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-78 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

1.5 V LVCMOS		VIL	VIH	VIH		VIH				VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴				
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10				


Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

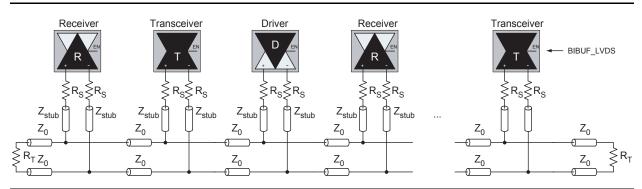
3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-10 • AC Loading

Table 2-79 • AC Waveforms, Measuring Points, and Capacitive Loads

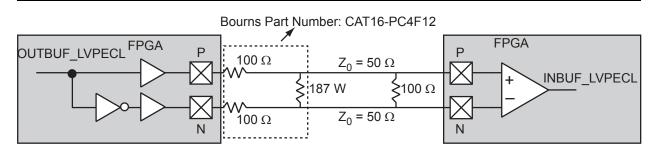
Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.5	0.75	35

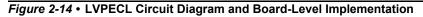

Note: *Measuring point = V_{trip} . See Table 2-22 on page 2-22 for a complete table of trip points.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-13. The input and output buffer delays are available in the LVDS section in Table 2-92.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").





LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Global Resource Characteristics

A3P250 Clock Tree Topology

Clock delays are device-specific. Figure 2-28 is an example of a global tree used for clock routing. The global tree presented in Figure 2-28 is driven by a CCC located on the west side of the A3P250 device. It is used to drive all D-flip-flops in the device.

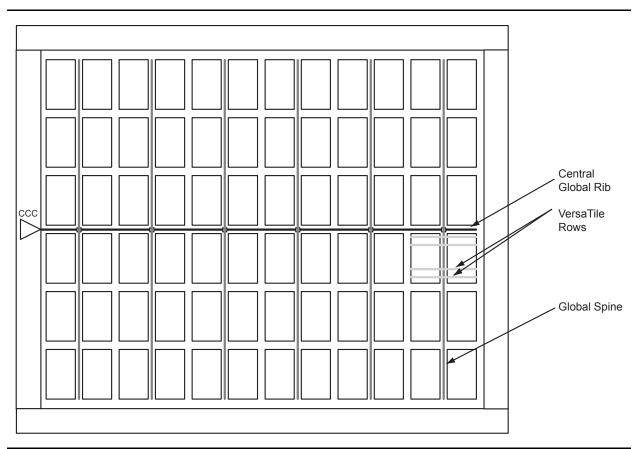


Figure 2-28 • Example of Global Tree Use in an A3P250 Device for Clock Routing

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-90. Table 2-108 to Table 2-114 on page 2-89 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

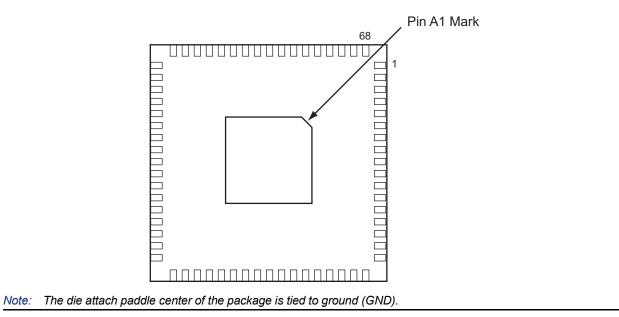
Table 2-115 • ProASIC3 CCC/PLL Specification

Parameter	Minimum	Typical	Maximum	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		350	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT CCC}	0.75		350	MHz
Serial Clock (SCLK) for Dynamic PLL ¹			125	MHz
Delay Increments in Programmable Delay Blocks ^{2, 3}		200 ⁴		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Input Period Jitter			1.5	ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	N	lax Peak-to-F	Peak Period Jitt	er
	1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz	0.50%		0.70%	
24 MHz to 100 MHz	1.00%		1.20%	
100 MHz to 250 MHz	1.75%		2.00%	
250 MHz to 350 MHz	2.50%		5.60%	
Acquisition Time				
(A3P250 and A3P1000 only) LockControl = 0			300	μs
LockControl = 1			300	μs
(all other dies) LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁵				
(A3P250 and A3P1000 only) LockControl = 0			1.6	ns
LockControl = 1			1.6	ns
(all other dies) LockControl = 0			1.6	ns
LockControl = 1			0.8	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{2, 3}	0.6		5.56	ns
Delay Range in Block: Programmable Delay 2 ^{2, 3}	0.225		5.56	ns
Delay Range in Block: Fixed Delay ^{2, 3}		2.2		ns

Notes:

1. Maximum value obtained for a -2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 for deratings.


3. $T_J = 25^{\circ}C$, VCC = 1.5 V

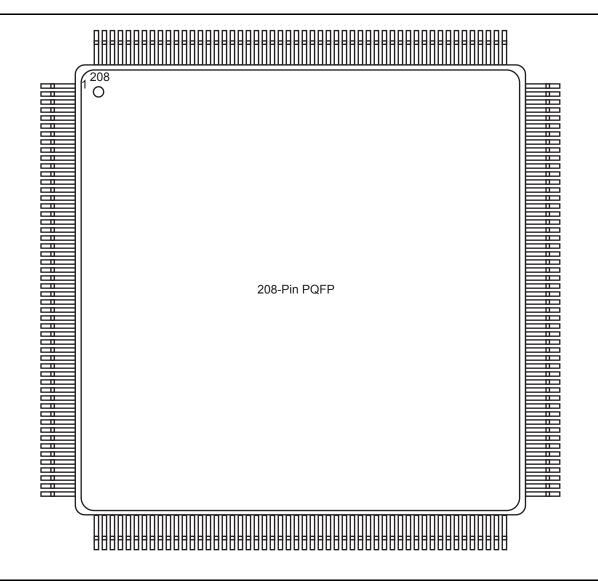
- 4. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help for more information.
- 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

6. The A3P030 device does not contain a PLL.

QN68 – Bottom View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.



CS121				
Pin Number	A3P060 Function			
K10	VPUMP			
K11	GDB1/IO47RSB0			
L1	VMV1			
L2	GNDQ			
L3	IO65RSB1			
L4	IO63RSB1			
L5	IO61RSB1			
L6	IO58RSB1			
L7	IO57RSB1			
L8	IO55RSB1			
L9	GNDQ			
L10	GDA0/IO50RSB0			
L11	VMV1			

Package Pin Assignments

PQ208 – Top View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

🌜 Microsemi.

	PQ208		PQ208	PQ208	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
109	TRST	145	IO84PDB1	181	IO33RSB0
110	VJTAG	146	IO82NDB1	182	IO31RSB0
111	GDA0/IO113NDB1	147	IO82PDB1	183	IO29RSB0
112	GDA1/IO113PDB1	148	IO80NDB1	184	IO27RSB0
113	GDB0/IO112NDB1	149	GBC2/IO80PDB1	185	IO25RSB0
114	GDB1/IO112PDB1	150	IO79NDB1	186	VCCIB0
115	GDC0/IO111NDB1	151	GBB2/IO79PDB1	187	VCC
116	GDC1/IO111PDB1	152	IO78NDB1	188	IO22RSB0
117	IO109NDB1	153	GBA2/IO78PDB1	189	IO20RSB0
118	IO109PDB1	154	VMV1	190	IO18RSB0
119	IO106NDB1	155	GNDQ	191	IO16RSB0
120	IO106PDB1	156	GND	192	IO15RSB0
121	IO104PSB1	157	VMV0	193	IO14RSB0
122	GND	158	GBA1/IO77RSB0	194	IO13RSB0
123	VCCIB1	159	GBA0/IO76RSB0	195	GND
124	IO99NDB1	160	GBB1/IO75RSB0	196	IO12RSB0
125	IO99PDB1	161	GBB0/IO74RSB0	197	IO11RSB0
126	NC	162	GND	198	IO10RSB0
127	IO96NDB1	163	GBC1/IO73RSB0	199	IO09RSB0
128	GCC2/IO96PDB1	164	GBC0/IO72RSB0	200	VCCIB0
129	GCB2/IO95PSB1	165	IO70RSB0	201	GAC1/IO05RSB0
130	GND	166	IO67RSB0	202	GAC0/IO04RSB0
131	GCA2/IO94PSB1	167	IO63RSB0	203	GAB1/IO03RSB0
132	GCA1/IO93PDB1	168	IO60RSB0	204	GAB0/IO02RSB0
133	GCA0/IO93NDB1	169	IO57RSB0	205	GAA1/IO01RSB0
134	GCB0/IO92NDB1	170	VCCIB0	206	GAA0/IO00RSB0
135	GCB1/IO92PDB1	171	VCC	207	GNDQ
136	GCC0/IO91NDB1	172	IO54RSB0	208	VMV0
137	GCC1/IO91PDB1	173	IO51RSB0		
138	IO88NDB1	174	IO48RSB0		
139	IO88PDB1	175	IO45RSB0		
140	VCCIB1	176	IO42RSB0		
141	GND	177	IO40RSB0		
142	VCC	178	GND		
143	IO86PSB1	179	IO38RSB0		
144	IO84NDB1	180	IO35RSB0		

FG144			
Pin Number	A3P125 Function		
K1	GEB0/IO109RSB1		
K2	GEA1/IO108RSB1		
K3	GEA0/IO107RSB1		
K4	GEA2/IO106RSB1		
K5	IO100RSB1		
K6	IO98RSB1		
K7	GND		
K8	IO73RSB1		
K9	GDC2/IO72RSB1		
K10	GND		
K11	GDA0/IO66RSB0		
K12	GDB0/IO64RSB0		
L1	GND		
L2	VMV1		
L3	GEB2/IO105RSB1		
L4	IO102RSB1		
L5	VCCIB1		
L6	IO95RSB1		
L7	IO85RSB1		
L8	IO74RSB1		
L9	TMS		
L10	VJTAG		
L11	VMV1		
L12	TRST		
M1	GNDQ		
M2	GEC2/IO104RSB1		
M3	IO103RSB1		
M4	IO101RSB1		
M5	IO97RSB1		
M6	IO94RSB1		
M7	IO86RSB1		
M8	IO75RSB1		
M9 TDI			
M10	VCCIB1		
M11	VPUMP		
M12	GNDQ		

🌜 Microsemi.

F	G144	F	G144	FG144	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
A1	GNDQ	D1	IO112NDB3	G1	GFA1/IO108PPB3
A2	VMV0	D2	IO112PDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO116VDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO118UPB3	G4	GFA0/IO108NPB3
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO29RSB0	D7	GBC0/IO35RSB0	G7	GND
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO58UPB1
A9	IO33RSB0	D9	GBB2/IO42PDB1	G9	IO53NDB1
A10	GBA0/IO39RSB0	D10	IO42NDB1	G10	GCC2/IO53PDB1
A11	GBA1/IO40RSB0	D11	IO43NPB1	G11	IO52NDB1
A12	GNDQ	D12	GCB1/IO49PPB1	G12	GCB2/IO52PDB1
B1	GAB2/IO117UDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO110NDB3	H2	GFB2/IO106PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO110PDB3	H3	GFC2/IO105PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO100PDB3
B5	IO14RSB0	E5	IO118VPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO79RSB2
B7	IO22RSB0	E7	VCCIB0	H7	IO65RSB2
B8	IO30RSB0	E8	GCC1/IO48PDB1	H8	GDB2/IO62RSB2
B9	GBB0/IO37RSB0	E9	VCCIB1	H9	GDC0/IO58VPB1
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO50NDB1	H11	IO54PSB1
B12	VMV1	E12	IO51NDB1	H12	VCC
C1	IO117VDB3	F1	GFB0/IO109NPB3	J1	GEB1/IO99PDB3
C2	GFA2/IO107PPB3	F2	VCOMPLF	J2	IO106NDB3
C3	GAC2/IO116UDB3	F3	GFB1/IO109PPB3	J3	VCCIB3
C4	VCC	F4	IO107NPB3	J4	GEC0/IO100NDB3
C5	IO12RSB0	F5	GND	J5	IO88RSB2
C6	IO17RSB0	F6	GND	J6	IO81RSB2
C7	IO24RSB0	F7	GND	J7	VCC
C8	IO31RSB0	F8	GCC0/IO48NDB1	J8	ТСК
C9	IO34RSB0	F9	GCB0/IO49NPB1	J9	GDA2/IO61RSB2
C10	GBA2/IO41PDB1	F10	GND	J10	TDO
C11	IO41NDB1	F11	GCA1/IO50PDB1	J11	GDA1/IO60UDB1
C12	GBC2/IO43PPB1	F12	GCA2/IO51PDB1	J12	GDB1/IO59UDB1

🌜 Microsemi.

	FG256		FG256	FG256	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
G13	GCC1/IO48PPB1	K1	GFC2/IO105PDB3	M5	VMV3
G14	IO47NPB1	K2	IO107NPB3	M6	VCCIB2
G15	IO54PDB1	K3	IO104PPB3	M7	VCCIB2
G16	IO54NDB1	K4	NC	M8	NC
H1	GFB0/IO109NPB3	K5	VCCIB3	M9	IO74RSB2
H2	GFA0/IO108NDB3	K6	VCC	M10	VCCIB2
H3	GFB1/IO109PPB3	K7	GND	M11	VCCIB2
H4	VCOMPLF	K8	GND	M12	VMV2
H5	GFC0/IO110NPB3	K9	GND	M13	NC
H6	VCC	K10	GND	M14	GDB1/IO59UPB1
H7	GND	K11	VCC	M15	GDC1/IO58UDB1
H8	GND	K12	VCCIB1	M16	IO56NDB1
H9	GND	K13	IO52NPB1	N1	IO103NDB3
H10	GND	K14	IO55RSB1	N2	IO101PPB3
H11	VCC	K15	IO53NPB1	N3	GEC1/IO100PPB3
H12	GCC0/IO48NPB1	K16	IO51NDB1	N4	NC
H13	GCB1/IO49PPB1	L1	IO105NDB3	N5	GNDQ
H14	GCA0/IO50NPB1	L2	IO104NPB3	N6	GEA2/IO97RSB2
H15	NC	L3	NC	N7	IO86RSB2
H16	GCB0/IO49NPB1	L4	IO102RSB3	N8	IO82RSB2
J1	GFA2/IO107PPB3	L5	VCCIB3	N9	IO75RSB2
J2	GFA1/IO108PDB3	L6	GND	N10	IO69RSB2
J3	VCCPLF	L7	VCC	N11	IO64RSB2
J4	IO106NDB3	L8	VCC	N12	GNDQ
J5	GFB2/IO106PDB3	L9	VCC	N13	NC
J6	VCC	L10	VCC	N14	VJTAG
J7	GND	L11	GND	N15	GDC0/IO58VDB1
J8	GND	L12	VCCIB1	N16	GDA1/IO60UDB1
J9	GND	L13	GDB0/IO59VPB1	P1	GEB1/IO99PDB3
J10	GND	L14	IO57VDB1	P2	GEB0/IO99NDB3
J11	VCC	L15	IO57UDB1	P3	NC
J12	GCB2/IO52PPB1	L16	IO56PDB1	P4	NC
J13	GCA1/IO50PPB1	M1	IO103PDB3	P5	IO92RSB2
J14	GCC2/IO53PPB1	M2	NC	P6	IO89RSB2
J15	NC	M3	IO101NPB3	P7	IO85RSB2
J16	GCA2/IO51PDB1	M4	GEC0/IO100NPB3	P8	IO81RSB2

	FG484		FG484	FG484	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
E21	NC	G13	IO40RSB0	J5	IO168NPB3
E22	NC	G14	IO45RSB0	J6	IO167PPB3
F1	NC	G15	GNDQ	J7	IO169PDB3
F2	NC	G16	IO50RSB0	J8	VCCIB3
F3	NC	G17	GBB2/IO61PPB1	J9	GND
F4	IO173NDB3	G18	IO53RSB0	J10	VCC
F5	IO174NDB3	G19	IO63NDB1	J11	VCC
F6	VMV3	G20	NC	J12	VCC
F7	IO07RSB0	G21	NC	J13	VCC
F8	GAC0/IO04RSB0	G22	NC	J14	GND
F9	GAC1/IO05RSB0	H1	NC	J15	VCCIB1
F10	IO20RSB0	H2	NC	J16	IO62NDB1
F11	IO24RSB0	H3	VCC	J17	IO64NPB1
F12	IO33RSB0	H4	IO166PDB3	J18	IO65PPB1
F13	IO39RSB0	H5	IO167NPB3	J19	IO66NDB1
F14	IO44RSB0	H6	IO172NDB3	J20	NC
F15	GBC0/IO54RSB0	H7	IO169NDB3	J21	IO68PDB1
F16	IO51RSB0	H8	VMV0	J22	IO68NDB1
F17	VMV0	H9	VCCIB0	K1	IO157PDB3
F18	IO61NPB1	H10	VCCIB0	K2	IO157NDB3
F19	IO63PDB1	H11	IO25RSB0	К3	NC
F20	NC	H12	IO31RSB0	K4	IO165NDB3
F21	NC	H13	VCCIB0	K5	IO165PDB3
F22	NC	H14	VCCIB0	K6	IO168PPB3
G1	IO170NDB3	H15	VMV1	K7	GFC1/IO164PPB3
G2	IO170PDB3	H16	GBC2/IO62PDB1	K8	VCCIB3
G3	NC	H17	IO67PPB1	К9	VCC
G4	IO171NDB3	H18	IO64PPB1	K10	GND
G5	IO171PDB3	H19	IO66PDB1	K11	GND
G6	GAC2/IO172PDB3	H20	VCC	K12	GND
G7	IO06RSB0	H21	NC	K13	GND
G8	GNDQ	H22	NC	K14	VCC
G9	IO10RSB0	J1	NC	K15	VCCIB1
G10	IO19RSB0	J2	NC	K16	GCC1/IO69PPB1
G11	IO26RSB0	J3	NC	K17	IO65NPB1
G12	IO30RSB0	J4	IO166NDB3	K18	IO75PDB1

	FG484		FG484	FG484	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
R17	GDB1/IO112PPB1	U9	IO165RSB2	W1	NC
R18	GDC1/IO111PDB1	U10	IO159RSB2	W2	IO191PDB3
R19	IO107NDB1	U11	IO151RSB2	W3	NC
R20	VCC	U12	IO137RSB2	W4	GND
R21	IO104NDB1	U13	IO134RSB2	W5	IO183RSB2
R22	IO105PDB1	U14	IO128RSB2	W6	GEB2/IO186RSB2
T1	IO198PDB3	U15	VMV1	W7	IO172RSB2
T2	IO198NDB3	U16	тск	W8	IO170RSB2
Т3	NC	U17	VPUMP	W9	IO164RSB2
T4	IO194PPB3	U18	TRST	W10	IO158RSB2
T5	IO192PPB3	U19	GDA0/IO113NDB1	W11	IO153RSB2
T6	GEC1/IO190PPB3	U20	NC	W12	IO142RSB2
T7	IO192NPB3	U21	IO108NDB1	W13	IO135RSB2
Т8	GNDQ	U22	IO109PDB1	W14	IO130RSB2
Т9	GEA2/IO187RSB2	V1	NC	W15	GDC2/IO116RSB2
T10	IO161RSB2	V2	NC	W16	IO120RSB2
T11	IO155RSB2	V3	GND	W17	GDA2/IO114RSB2
T12	IO141RSB2	V4	GEA1/IO188PDB3	W18	TMS
T13	IO129RSB2	V5	GEA0/IO188NDB3	W19	GND
T14	IO124RSB2	V6	IO184RSB2	W20	NC
T15	GNDQ	V7	GEC2/IO185RSB2	W21	NC
T16	IO110PDB1	V8	IO168RSB2	W22	NC
T17	VJTAG	V9	IO163RSB2	Y1	VCCIB3
T18	GDC0/IO111NDB1	V10	IO157RSB2	Y2	IO191NDB3
T19	GDA1/IO113PDB1	V11	IO149RSB2	Y3	NC
T20	NC	V12	IO143RSB2	Y4	IO182RSB2
T21	IO108PDB1	V13	IO138RSB2	Y5	GND
T22	IO105NDB1	V14	IO131RSB2	Y6	IO177RSB2
U1	IO195PDB3	V15	IO125RSB2	Y7	IO174RSB2
U2	IO195NDB3	V16	GDB2/IO115RSB2	Y8	VCC
U3	IO194NPB3	V17	TDI	Y9	VCC
U4	GEB1/IO189PDB3	V18	GNDQ	Y10	IO154RSB2
U5	GEB0/IO189NDB3	V19	TDO	Y11	IO148RSB2
U6	VMV2	V20	GND	Y12	IO140RSB2
U7	IO179RSB2	V21	NC	Y13	NC
U8	IO171RSB2	V22	IO109NDB1	Y14	VCC

Datasheet Information

Revision	Changes	Page
Advance v0.3	The "PLL Macro" section was updated. EXTFB information was removed from this section.	2-15
	The CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} was updated in Table 2- 11 • ProASIC3 CCC/PLL Specification	2-29
	EXTFB was removed from Figure 2-27 • CCC/PLL Macro.	2-28
	Table 2-13 • ProASIC3 I/O Features was updated.	
	The "Hot-Swap Support" section was updated.	2-33
	The "Cold-Sparing Support" section was updated.	2-34
	"Electrostatic Discharge (ESD) Protection" section was updated.	2-35
	The LVPECL specification in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices was updated.	2-64
	In the Bank 1 area of Figure 2-72, VMV2 was changed to VMV1 and VCCIB2 was changed to VCC_IB1.	2-97
	The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section.	2-50
	The "JTAG Pins" section was updated.	2-51
	"128-Bit AES Decryption" section was updated to include M7 device information.	2-53
	Table 3-6 was updated.	3-6
	Table 3-7 was updated.	3-6
	In Table 3-11, PAC4 was updated.	3-93-8
	Table 3-20 was updated.	3-20
	The note in Table 3-32 was updated.	3-27
	All Timing Characteristics tables were updated from LVTTL to Register Delays	3-31 to 3- 73
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-85 to 3-90
	F _{TCKMAX} was updated in Table 3-110.	3-97
Advance v0.2	Figure 2-11 was updated.	2-9
	The "Clock Resources (VersaNets)" section was updated.	2-9
	The "VersaNet Global Networks and Spine Access" section was updated.	2-9
	The "PLL Macro" section was updated.	2-15
	Figure 2-27 was updated.	2-28
	Figure 2-20 was updated.	2-19
	Table 2-5 was updated.	2-25
	Table 2-6 was updated.	2-25
	The "FIFO Flag Usage Considerations" section was updated.	2-27
	Table 2-13 was updated.	2-30
	Figure 2-24 was updated.	2-31
	The "Cold-Sparing Support" section is new.	2-34

Revision	Changes	Page
Advance v0.2,	Table 2-43 was updated.	2-64
(continued)	Table 2-18 was updated.	2-45
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "User I/O Naming Convention" section was updated.	2-48
	Table 3-7 was updated.	3-6
	The "Methodology" section was updated.	3-10
	Table 3-40 and Table 3-39 were updated.	3-33,3-32
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68