

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	157
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p250-2fg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ProASIC3 Device Family Overview

General Description

ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASIC^{PLUS®} family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets.

Security

The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data.

Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks.

2 – ProASIC3 DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 •	Absolute	Maximum	Ratings
-------------	----------	---------	---------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	-0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	-0.3 to 1.65	V
VCCI	DC I/O output buffer supply voltage	-0.3 to 3.75	V
VMV	DC I/O input buffer supply voltage	-0.3 to 3.75	V
VI	I/O input voltage	–0.3 V to 3.6 V	V
		(when I/O hot insertion mode is enabled)	
		-0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)	
T _{STG} ²	Storage temperature	–65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Calculating Power Dissipation

Quiescent Supply Current

Table 2-7 • Quiescent Supply Current Characteristics

	A3P015	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Typical (25°C)	2 mA	2 mA	2 mA	2 mA	3 mA	3 mA	5 mA	8 mA
Max. (Commercial)	10 mA	10 mA	10 mA	10 mA	20 mA	20 mA	30 mA	50 mA
Max. (Industrial)	15 mA	15 mA	15 mA	15 mA	30 mA	30 mA	45 mA	75 mA

Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-11 and Table 2-12 on page 2-9.

Power per I/O Pin

Table 2-8 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Advanced I/O Banks

	VMV (V)	Static Power P _{DC2} (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended		1	
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.22
3.3 V LVCMOS Wide Range ³	3.3	-	16.22
2.5 V LVCMOS	2.5	-	5.12
1.8 V LVCMOS	1.8	-	2.13
1.5 V LVCMOS (JESD8-11)	1.5	-	1.45
3.3 V PCI	3.3	-	18.11
3.3 V PCI-X	3.3	-	18.11
Differential			
LVDS	2.5	2.26	1.20
LVPECL	3.3	5.72	1.87

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	_	16.23
3.3 V LVCMOS Wide Range ³	3.3	-	16.23

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-34 • I/O Short Currents IOSH/IOSL Applicable to Standard I/O Banks

	Drive Strength	IOSL (mA) ¹	IOSH (mA) ¹
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
3.3 V LVCMOS Wide Range ²	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
1.5 V LVCMOS	2 mA	16	13

Notes:

- 1. $T_{.1} = 100^{\circ}C$
- Applicable to 3.3 V LVCMOS Wide Range. I_{OSL}/I_{OSH} dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-35 • Duration of Short Circuit Event Before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	0.5 years

Table 2-36 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (min)	Input Rise/Fall Time (max)	Reliability		
LVTTL/LVCMOS	No requirement	10 ns *	20 years (110°C)		
LVDS/B-LVDS/ M-LVDS/LVPECL	No requirement	10 ns *	10 years (100°C)		

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

Table 2-81 • 1.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	12.78	0.04	1.44	0.43	12.81	12.78	3.40	2.64	15.05	15.02	ns
	-1	0.56	10.87	0.04	1.22	0.36	10.90	10.87	2.89	2.25	12.80	12.78	ns
	-2	0.49	9.55	0.03	1.07	0.32	9.57	9.55	2.54	1.97	11.24	11.22	ns
4 mA	Std.	0.66	10.01	0.04	1.44	0.43	10.19	9.55	3.75	3.27	12.43	11.78	ns
	-1	0.56	8.51	0.04	1.22	0.36	8.67	8.12	3.19	2.78	10.57	10.02	ns
	-2	0.49	7.47	0.03	1.07	0.32	7.61	7.13	2.80	2.44	9.28	8.80	ns
6 mA	Std.	0.66	9.33	0.04	1.44	0.43	9.51	8.89	3.83	3.43	11.74	11.13	ns
	-1	0.56	7.94	0.04	1.22	0.36	8.09	7.56	3.26	2.92	9.99	9.47	ns
	-2	0.49	6.97	0.03	1.07	0.32	7.10	6.64	2.86	2.56	8.77	8.31	ns
8 mA	Std.	0.66	8.91	0.04	1.44	0.43	9.07	8.89	3.95	4.05	11.31	11.13	ns
	-1	0.56	7.58	0.04	1.22	0.36	7.72	7.57	3.36	3.44	9.62	9.47	ns
	-2	0.49	6.65	0.03	1.07	0.32	6.78	6.64	2.95	3.02	8.45	8.31	ns
12 mA	Std.	0.66	8.91	0.04	1.44	0.43	9.07	8.89	3.95	4.05	11.31	11.13	ns
	-1	0.56	7.58	0.04	1.22	0.36	7.72	7.57	3.36	3.44	9.62	9.47	ns
	-2	0.49	6.65	0.03	1.07	0.32	6.78	6.64	2.95	3.02	8.45	8.31	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-82 • 1.5 V LVCMOS High Slew

Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	7.83	0.04	1.42	0.43	6.42	7.83	2.71	2.55	8.65	10.07	ns
	-1	0.56	6.66	0.04	1.21	0.36	5.46	6.66	2.31	2.17	7.36	8.56	ns
	-2	0.49	5.85	0.03	1.06	0.32	4.79	5.85	2.02	1.90	6.46	7.52	ns
4 mA	Std.	0.66	4.84	0.04	1.42	0.43	4.49	4.84	3.03	3.13	6.72	7.08	ns
	-1	0.56	4.12	0.04	1.21	0.36	3.82	4.12	2.58	2.66	5.72	6.02	ns
	-2	0.49	3.61	0.03	1.06	0.32	3.35	3.61	2.26	2.34	5.02	5.28	ns

Notes:

1. Software default selection highlighted in gray.

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-86 •	Minimum and	Maximum D	OC Input and	Output Levels
--------------	-------------	-----------	--------------	---------------

3.3 V PCI/PCI-X	V	ΊL	V	IH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max,. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
Per PCI specification					Per PCI	curves					10	10

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-11.

Figure 2-11 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-87.

Table 2-87 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}	10
		0.615 * VCCI for t _{DP(F)}	

Note: *Measuring point = V_{trip} . See Table 2-22 on page 2-22 for a complete table of trip points.

Table 2-88 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.68	0.04	0.86	0.43	2.73	1.95	3.21	3.58	4.97	4.19	ns
-1	0.56	2.28	0.04	0.73	0.36	2.32	1.66	2.73	3.05	4.22	3.56	ns
-2	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-89 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.31	0.04	0.85	0.43	2.35	1.70	2.79	3.22	4.59	3.94	ns
-1	0.56	1.96	0.04	0.72	0.36	2.00	1.45	2.37	2.74	3.90	3.35	ns
-2	0.49	1.72	0.03	0.64	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by Microsemi Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-12. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

Figure 2-12 • LVDS Circuit Diagram and Board-Level Implementation

Table 2-100 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.59	0.67	0.79	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.31	0.36	0.42	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.50	0.58	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.36	0.41	0.48	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.32	0.37	0.43	ns

Figure 2-23 •	Output DDR	Timing Diagram
---------------	------------	-----------------------

Table 2-104 • Output DDR Propagation Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.70	0.80	0.94	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	0.80	0.91	1.07	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	0.00	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.22	0.25	0.30	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.22	0.25	0.30	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.36	0.41	0.48	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.32	0.37	0.43	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	350	309	263	MHz

Figure 2-27 • Timing Model and Waveforms

Timing Characteristics

Table 2-106 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.55	0.63	0.74	ns
t _{SUD}	Data Setup Time for the Core Register	0.43	0.49	0.57	ns
t _{HD}	Data Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.45	0.52	0.61	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.32	0.37	0.43	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.36	0.41	0.48	ns

Table 2-118 • FIFO (for all dies except A3P250)Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.34	1.52	1.79	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Related Documents

User's Guides

ProASIC FPGA Fabric User's Guide http://www.microsemi.com/soc/documents/PA3_UG.pdf

Packaging

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Actel. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials are at http://www.microsemi.com/products/solutions/package/docs.aspx.

Package Pin Assignments

QN48					
Pin Number	A3P030 Function				
1	IO82RSB1				
2	GEC0/IO73RSB1				
3	GEA0/IO72RSB1				
4	GEB0/IO71RSB1				
5	GND				
6	VCCIB1				
7	IO68RSB1				
8	IO67RSB1				
9	IO66RSB1				
10	IO65RSB1				
11	IO64RSB1				
12	IO62RSB1				
13	IO61RSB1				
14	IO60RSB1				
15	IO57RSB1				
16	IO55RSB1				
17	IO53RSB1				
18	VCC				
19	VCCIB1				
20	IO46RSB1				
21	IO42RSB1				
22	тск				
23	TDI				
24	TMS				
25	VPUMP				
26	TDO				
27	TRST				
28	VJTAG				
29	IO38RSB0				
30	GDB0/IO34RSB0				
31	GDA0/IO33RSB0				
32	GDC0/IO32RSB0				
33	VCCIB0				
34	GND				
35	VCC				
36	IO25RSB0				

G	QN48						
Pin Number	A3P030 Function						
37	IO24RSB0						
38	IO22RSB0						
39	IO20RSB0						
40	IO18RSB0						
41	IO16RSB0						
42	IO14RSB0						
43	IO10RSB0						
44	IO08RSB0						
45	IO06RSB0						
46	IO04RSB0						
47	IO02RSB0						
48	IO00RSB0						

Package Pin Assignments

QN132			
Pin Number	A3P250 Function		
C17	IO74RSB2		
C18	VCCIB2		
C19	ТСК		
C20	VMV2		
C21	VPUMP		
C22	VJTAG		
C23	VCCIB1		
C24	IO53NSB1		
C25	IO51NPB1		
C26	GCA1/IO50PPB1		
C27	GCC0/IO48NDB1		
C28	VCCIB1		
C29	IO42NDB1		
C30	GNDQ		
C31	GBA1/IO40RSB0		
C32	GBB0/IO37RSB0		
C33	VCC		
C34	IO24RSB0		
C35	IO19RSB0		
C36	IO16RSB0		
C37	IO10RSB0		
C38	VCCIB0		
C39	GAB1/IO03RSB0		
C40	VMV0		
D1	GND		
D2	GND		
D3	GND		
D4	GND		

FG144			
Pin Number A3P250 Function			
K1	GEB0/IO99NDB3		
K2	GEA1/IO98PDB3		
K3	GEA0/IO98NDB3		
K4	GEA2/IO97RSB2		
K5	IO90RSB2		
K6	IO84RSB2		
K7	GND		
K8	IO66RSB2		
K9	GDC2/IO63RSB2		
K10	GND		
K11	GDA0/IO60VDB1		
K12	GDB0/IO59VDB1		
L1	GND		
L2	VMV3		
L3	GEB2/IO96RSB2		
L4	IO91RSB2		
L5	VCCIB2		
L6	IO82RSB2		
L7	IO80RSB2		
L8	IO72RSB2		
L9	TMS		
L10	VJTAG		
L11	VMV2		
L12	TRST		
M1	GNDQ		
M2	GEC2/IO95RSB2		
M3	IO92RSB2		
M4	IO89RSB2		
M5	IO87RSB2		
M6	IO85RSB2		
M7	IO78RSB2		
M8	IO76RSB2		
M9	TDI		
M10	VCCIB2		
M11	VPUMP		
M12	GNDQ		

FG144				
Pin Number A3P1000 Function				
K1	GEB0/IO189NDB3			
K2	GEA1/IO188PDB3			
K3	GEA0/IO188NDB3			
K4	GEA2/IO187RSB2			
K5	IO169RSB2			
K6	IO152RSB2			
K7	GND			
K8	IO117RSB2			
K9	GDC2/IO116RSB2			
K10	GND			
K11	GDA0/IO113NDB1			
K12	GDB0/IO112NDB1			
L1	GND			
L2	VMV3			
L3	GEB2/IO186RSB2			
L4	IO172RSB2			
L5	VCCIB2			
L6	IO153RSB2			
L7	IO144RSB2			
L8	IO140RSB2			
L9	TMS			
L10	VJTAG			
L11	VMV2			
L12	TRST			
M1	GNDQ			
M2	GEC2/IO185RSB2			
M3	IO173RSB2			
M4	IO168RSB2			
M5	IO161RSB2			
M6	IO156RSB2			
M7	IO145RSB2			
M8	IO141RSB2			
M9	TDI			
M10	VCCIB2			
M11	VPUMP			
M12	GNDQ			

FG256				
Pin Number A3P600 Function				
P9	IO107RSB2			
P10	IO104RSB2			
P11	IO97RSB2			
P12	VMV1			
P13	ТСК			
P14	VPUMP			
P15	TRST			
P16	GDA0/IO88NDB1			
R1	GEA1/IO144PDB3			
R2	GEA0/IO144NDB3			
R3	IO139RSB2			
R4	GEC2/IO141RSB2			
R5	IO132RSB2			
R6	IO127RSB2			
R7	IO121RSB2			
R8	IO114RSB2			
R9	IO109RSB2			
R10	IO105RSB2			
R11	IO98RSB2			
R12	IO96RSB2			
R13	GDB2/IO90RSB2			
R14	TDI			
R15	GNDQ			
R16	TDO			
T1	GND			
T2	IO137RSB2			
Т3	GEB2/IO142RSB2			
T4	IO134RSB2			
T5	IO125RSB2			
Т6	IO123RSB2			
T7	IO118RSB2			
Т8	IO115RSB2			
Т9	IO111RSB2			
T10	IO106RSB2			
T11	IO102RSB2			
T12	GDC2/IO91RSB2			

FG256			
Pin Number	A3P600 Function		
T13	IO93RSB2		
T14	GDA2/IO89RSB2		
T15	TMS		
T16	GND		

🌜 Microsemi.

Package Pin Assignments

	FG484	FG484			FG484
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
A1	GND	B15	NC	D7	GAB0/IO02RSB0
A2	GND	B16	NC	D8	IO16RSB0
A3	VCCIB0	B17	NC	D9	IO17RSB0
A4	NC	B18	NC	D10	IO22RSB0
A5	NC	B19	NC	D11	IO28RSB0
A6	IO15RSB0	B20	NC	D12	IO34RSB0
A7	IO18RSB0	B21	VCCIB1	D13	IO37RSB0
A8	NC	B22	GND	D14	IO41RSB0
A9	NC	C1	VCCIB3	D15	IO43RSB0
A10	IO23RSB0	C2	NC	D16	GBB1/IO57RSB0
A11	IO29RSB0	C3	NC	D17	GBA0/IO58RSB0
A12	IO35RSB0	C4	NC	D18	GBA1/IO59RSB0
A13	IO36RSB0	C5	GND	D19	GND
A14	NC	C6	NC	D20	NC
A15	NC	C7	NC	D21	NC
A16	IO50RSB0	C8	VCC	D22	NC
A17	IO51RSB0	C9	VCC	E1	NC
A18	NC	C10	NC	E2	NC
A19	NC	C11	NC	E3	GND
A20	VCCIB0	C12	NC	E4	GAB2/IO154UDB3
A21	GND	C13	NC	E5	GAA2/IO155UDB3
A22	GND	C14	VCC	E6	IO12RSB0
B1	GND	C15	VCC	E7	GAB1/IO03RSB0
B2	VCCIB3	C16	NC	E8	IO13RSB0
B3	NC	C17	NC	E9	IO14RSB0
B4	NC	C18	GND	E10	IO21RSB0
B5	NC	C19	NC	E11	IO27RSB0
B6	NC	C20	NC	E12	IO32RSB0
B7	NC	C21	NC	E13	IO38RSB0
B8	NC	C22	VCCIB1	E14	IO42RSB0
B9	NC	D1	NC	E15	GBC1/IO55RSB0
B10	NC	D2	NC	E16	GBB0/IO56RSB0
B11	NC	D3	NC	E17	IO44RSB0
B12	NC	D4	GND	E18	GBA2/IO60PDB1
B13	NC	D5	GAA0/IO00RSB0	E19	IO60NDB1
B14	NC	D6	GAA1/IO01RSB0	E20	GND

	FG484	FG484		FG484	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
E21	NC	G13	IO52RSB0	J5	IO218NDB3
E22	IO84PDB1	G14	IO60RSB0	J6	IO216PDB3
F1	NC	G15	GNDQ	J7	IO216NDB3
F2	IO215PDB3	G16	IO80NDB1	J8	VCCIB3
F3	IO215NDB3	G17	GBB2/IO79PDB1	J9	GND
F4	IO224NDB3	G18	IO79NDB1	J10	VCC
F5	IO225NDB3	G19	IO82NPB1	J11	VCC
F6	VMV3	G20	IO85PDB1	J12	VCC
F7	IO11RSB0	G21	IO85NDB1	J13	VCC
F8	GAC0/IO04RSB0	G22	NC	J14	GND
F9	GAC1/IO05RSB0	H1	NC	J15	VCCIB1
F10	IO25RSB0	H2	NC	J16	IO83NPB1
F11	IO36RSB0	H3	VCC	J17	IO86NPB1
F12	IO42RSB0	H4	IO217PDB3	J18	IO90PPB1
F13	IO49RSB0	H5	IO218PDB3	J19	IO87NDB1
F14	IO56RSB0	H6	IO221NDB3	J20	NC
F15	GBC0/IO72RSB0	H7	IO221PDB3	J21	IO89PDB1
F16	IO62RSB0	H8	VMV0	J22	IO89NDB1
F17	VMV0	H9	VCCIB0	K1	IO211PDB3
F18	IO78NDB1	H10	VCCIB0	K2	IO211NDB3
F19	IO81NDB1	H11	IO38RSB0	K3	NC
F20	IO82PPB1	H12	IO47RSB0	K4	IO210PPB3
F21	NC	H13	VCCIB0	K5	IO213NDB3
F22	IO84NDB1	H14	VCCIB0	K6	IO213PDB3
G1	IO214NDB3	H15	VMV1	K7	GFC1/IO209PPB3
G2	IO214PDB3	H16	GBC2/IO80PDB1	K8	VCCIB3
G3	NC	H17	IO83PPB1	K9	VCC
G4	IO222NDB3	H18	IO86PPB1	K10	GND
G5	IO222PDB3	H19	IO87PDB1	K11	GND
G6	GAC2/IO223PDB3	H20	VCC	K12	GND
G7	IO223NDB3	H21	NC	K13	GND
G8	GNDQ	H22	NC	K14	VCC
G9	IO23RSB0	J1	IO212NDB3	K15	VCCIB1
G10	IO29RSB0	J2	IO212PDB3	K16	GCC1/IO91PPB1
G11	IO33RSB0	J3	NC	K17	IO90NPB1
G12	IO46RSB0	J4	IO217NDB3	K18	IO88PDB1

Revision	Changes	Page
Advance v0.2, (continued)	Table 2-43 was updated.	2-64
	Table 2-18 was updated.	2-45
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "User I/O Naming Convention" section was updated.	2-48
	Table 3-7 was updated.	3-6
	The "Methodology" section was updated.	3-10
	Table 3-40 and Table 3-39 were updated.	3-33,3-32
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68