

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	97
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p250-2fgg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 – ProASIC3 DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 • Absolute Maximum Ratings	Table 2-1 •	Absolute	Maximum	Ratings
--------------------------------------	-------------	----------	---------	---------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	–0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	–0.3 to 1.65	V
VCCI	DC I/O output buffer supply voltage	-0.3 to 3.75	V
VMV	DC I/O input buffer supply voltage	–0.3 to 3.75	V
VI	I/O input voltage	–0.3 V to 3.6 V	V
		(when I/O hot insertion mode is enabled)	
		-0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)	
T _{STG} ²	Storage temperature	-65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Table 2-11 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Advanced I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	468.67
3.3 V LVCMOS Wide Range ⁴	35	3.3	-	468.67
2.5 V LVCMOS	35	2.5	-	267.48
1.8 V LVCMOS	35	1.8	-	149.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	103.12
3.3 V PCI	10	3.3	-	201.02
3.3 V PCI-X	10	3.3	-	201.02
Differential				
LVDS	_	2.5	7.74	88.92
LVPECL	_	3.3	19.54	166.52

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC3 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-12 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings¹ Applicable to Standard Plus I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC3 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	452.67
3.3 V LVCMOS Wide Range ⁴	35	3.3	-	452.67
2.5 V LVCMOS	35	2.5	-	258.32
1.8 V LVCMOS	35	1.8	-	133.59
1.5 V LVCMOS (JESD8-11)	35	1.5	-	92.84
3.3 V PCI	10	3.3	-	184.92
3.3 V PCI-X	10	3.3	-	184.92

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. P_{DC3} is the static power (where applicable) measured on VMV.

3. P_{AC10} is the total dynamic power measured on VCC and VMV.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings

-2 Speed Grade, Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst Case VCC = 1.425 V, Worst-Case VCCI (per standard)

Standard Plus I/O Banks

I/O Standard	Drive Strength	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor	t _{DOUT} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	35	-	0.45	2.36	0.03	0.75	0.32	2.40	1.93	2.08	2.41	4.07	3.60	ns
3.3 V LVCMOS Wide Range ²	100 µA	12 mA	High	35	_	0.45	3.65	0.03	1.14	0.32	3.65	2.93	3.22	3.72	6.18	5.46	ns
2.5 V LVCMOS	12 mA	12 mA	High	35	_	0.45	2.39	0.03	0.97	0.32	2.44	2.35	2.11	2.32	4.11	4.02	ns
1.8 V LVCMOS	8 mA	8 mA	High	35	-	0.45	3.03	0.03	0.90	0.32	2.87	3.03	2.19	2.32	4.54	4.70	ns
1.5 V LVCMOS	4 mA	4 mA	High	35	-	0.45	3.61	0.03	1.06	0.32	3.35	3.61	2.26	2.34	5.02	5.28	ns
3.3 V PCI	Per PCI spec	-	High	10	25 ⁴	0.45	1.72	0.03	0.64	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ⁴	0.45	1.72	0.03	0.62	0.32	1.76	1.27	2.08	2.41	3.42	2.94	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-64 for connectivity. This resistor is not required during normal operation.

Table 2-29 • I/O Output Buffer Maximum Resistances ¹ Applicable to Standard Plus I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V	2 mA	100	300
LVCMOS	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	25	75
3.3 V LVCMOS Wide Range ⁴	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
1.5 V LVCMOS	2 mA	200	224
Γ	4 mA	100	112
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

^{2.} R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

^{3.} R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

Table 2-49 •	Minimum and Maximum DC Input and Output Levels
	Applicable to Standard I/O Banks

3.3 V LVCMOS Wide Range	Equiv. Software Default		ΊL	v	ΊH	VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Drive Strength Option ¹	Min V	Max V	Min V	Max V	Max V	Min V	μA	μA	Max mA ⁴	Max mA ⁴	μA ⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 85°C junction temperature.

5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

6. Software default selection highlighted in gray.

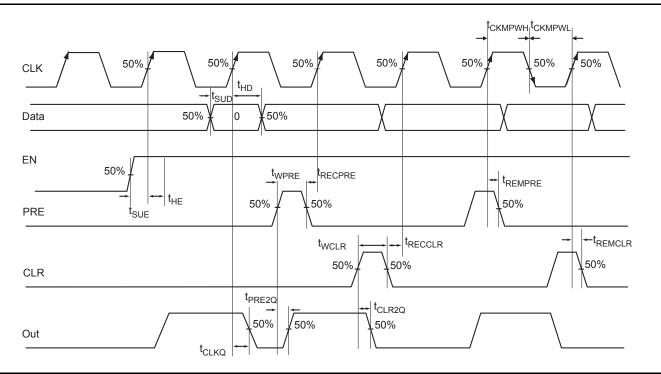

Timing Characteristics

Table 2-100 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.59	0.67	0.79	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.31	0.36	0.42	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.50	0.58	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.36	0.41	0.48	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Figure 2-27 • Timing Model and Waveforms

Timing Characteristics

Table 2-106 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.55	0.63	0.74	ns
t _{SUD}	Data Setup Time for the Core Register	0.43	0.49	0.57	ns
t _{HD}	Data Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.45	0.52	0.61	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.32	0.37	0.43	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.36	0.41	0.48	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Characteristics

Table 2-107 • A3P015 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2	-	-1	S		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.66	0.81	0.75	0.92	0.88	1.08	ns
t _{RCKH}	Input High Delay for Global Clock	0.67	0.84	0.76	0.96	0.89	1.13	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.18		0.21		0.25	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-108 • A3P030 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

			-2		–1		Std.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.67	0.81	0.76	0.92	0.89	1.09	ns
t _{RCKH}	Input High Delay for Global Clock	0.68	0.85	0.77	0.97	0.91	1.14	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.18		0.21		0.24	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-111 • A3P250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2	-	-1	S	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.80	1.01	0.91	1.15	1.07	1.36	ns
t _{RCKH}	Input High Delay for Global Clock	0.78	1.04	0.89	1.18	1.04	1.39	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-112 • A3P400 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2 -1		-1	Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3 – Pin Descriptions

Supply Pins

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

GND

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it's better to float VCCIX of unused bank or tie it to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V.

When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on ProASIC3 devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on ProASIC3 devices.

Package Pin Assignments

QN132					
Pin Number	A3P060 Function				
C17	IO57RSB1				
C18	NC				
C19	ТСК				
C20	VMV1				
C21	VPUMP				
C22	VJTAG				
C23	VCCIB0				
C24	NC				
C25	NC				
C26	GCA1/IO42RSB0				
C27	GCC0/IO39RSB0				
C28	VCCIB0				
C29	IO29RSB0				
C30	GNDQ				
C31	GBA1/IO27RSB0				
C32	GBB0/IO24RSB0				
C33	VCC				
C34	IO19RSB0				
C35	IO16RSB0				
C36	IO13RSB0				
C37	GAC1/IO10RSB0				
C38	NC				
C39	GAA0/IO05RSB0				
C40	VMV0				
D1	GND				
D2	GND				
D3	GND				
D4	GND				

Package Pin Assignments

VQ100		VQ100		VQ100		
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function	
1	GND	37	VCC	73	GBA2/IO25RSB0	
2	GAA2/IO51RSB1	38	GND	74	VMV0	
3	IO52RSB1	39	VCCIB1	75	GNDQ	
4	GAB2/IO53RSB1	40	IO60RSB1	76	GBA1/IO24RSB0	
5	IO95RSB1	41	IO59RSB1	77	GBA0/IO23RSB0	
6	GAC2/IO94RSB1	42	IO58RSB1	78	GBB1/IO22RSB0	
7	IO93RSB1	43	IO57RSB1	79	GBB0/IO21RSB0	
8	IO92RSB1	44	GDC2/IO56RSB1	80	GBC1/IO20RSB0	
9	GND	45	GDB2/IO55RSB1	81	GBC0/IO19RSB0	
10	GFB1/IO87RSB1	46	GDA2/IO54RSB1	82	IO18RSB0	
11	GFB0/IO86RSB1	47	ТСК	83	IO17RSB0	
12	VCOMPLF	48	TDI	84	IO15RSB0	
13	GFA0/IO85RSB1	49	TMS	85	IO13RSB0	
14	VCCPLF	50	VMV1	86	IO11RSB0	
15	GFA1/IO84RSB1	51	GND	87	VCCIB0	
16	GFA2/IO83RSB1	52	VPUMP	88	GND	
17	VCC	53	NC	89	VCC	
18	VCCIB1	54	TDO	90	IO10RSB0	
19	GEC1/IO77RSB1	55	TRST	91	IO09RSB0	
20	GEB1/IO75RSB1	56	VJTAG	92	IO08RSB0	
21	GEB0/IO74RSB1	57	GDA1/IO49RSB0	93	GAC1/IO07RSB0	
22	GEA1/IO73RSB1	58	GDC0/IO46RSB0	94	GAC0/IO06RSB0	
23	GEA0/IO72RSB1	59	GDC1/IO45RSB0	95	GAB1/IO05RSB0	
24	VMV1	60	GCC2/IO43RSB0	96	GAB0/IO04RSB0	
25	GNDQ	61	GCB2/IO42RSB0	97	GAA1/IO03RSB0	
26	GEA2/IO71RSB1	62	GCA0/IO40RSB0	98	GAA0/IO02RSB0	
27	GEB2/IO70RSB1	63	GCA1/IO39RSB0	99	IO01RSB0	
28	GEC2/IO69RSB1	64	GCC0/IO36RSB0	100	IO00RSB0	
29	IO68RSB1	65	GCC1/IO35RSB0		-	
30	IO67RSB1	66	VCCIB0			
31	IO66RSB1	67	GND			
32	IO65RSB1	68	VCC			
33	IO64RSB1	69	IO31RSB0			
34	IO63RSB1	70	GBC2/IO29RSB0			
35	IO62RSB1	71	GBB2/IO27RSB0			
36	IO61RSB1	72	IO26RSB0			

т	TQ144					
Pin Number	A3P060 Function					
109	NC					
110	NC					
111	GBA1/IO24RSB0					
112	GBA0/IO23RSB0					
113	GBB1/IO22RSB0					
114	GBB0/IO21RSB0					
115	GBC1/IO20RSB0					
116	GBC0/IO19RSB0					
117	VCCIB0					
118	GND					
119	VCC					
120	IO18RSB0					
121	IO17RSB0					
122	IO16RSB0					
123	IO15RSB0					
124	IO14RSB0					
125	IO13RSB0					
126	IO12RSB0					
127	IO11RSB0					
128	NC					
129	IO10RSB0					
130	IO09RSB0					
131	IO08RSB0					
132	GAC1/IO07RSB0					
133	GAC0/IO06RSB0					
134	NC					
135	GND					
136	NC					
137	GAB1/IO05RSB0					
138	GAB0/IO04RSB0					
139	GAA1/IO03RSB0					
140	GAA0/IO02RSB0					
141	IO01RSB0					
142	IO00RSB0					
143	GNDQ					
144	VMV0					

PQ208		F	PQ208	PQ208		
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function	
1	GND	37	IO152PDB3	73	IO120RSB2	
2	GAA2/IO174PDB3	38	IO152NDB3	74	IO119RSB2	
3	IO174NDB3	39	IO150PSB3	75	IO118RSB2	
4	GAB2/IO173PDB3	40	VCCIB3	76	IO117RSB2	
5	IO173NDB3	41	GND	77	IO116RSB2	
6	GAC2/IO172PDB3	42	IO147PDB3	78	IO115RSB2	
7	IO172NDB3	43	IO147NDB3	79	IO114RSB2	
8	IO171PDB3	44	GEC1/IO146PDB3	80	IO112RSB2	
9	IO171NDB3	45	GEC0/IO146NDB3	81	GND	
10	IO170PDB3	46	GEB1/IO145PDB3	82	IO111RSB2	
11	IO170NDB3	47	GEB0/IO145NDB3	83	IO110RSB2	
12	IO169PDB3	48	GEA1/IO144PDB3	84	IO109RSB2	
13	IO169NDB3	49	GEA0/IO144NDB3	85	IO108RSB2	
14	IO168PDB3	50	VMV3	86	IO107RSB2	
15	IO168NDB3	51	GNDQ	87	IO106RSB2	
16	VCC	52	GND	88	VCC	
17	GND	53	VMV2	89	VCCIB2	
18	VCCIB3	54	GEA2/IO143RSB2	90	IO104RSB2	
19	IO166PDB3	55	GEB2/IO142RSB2	91	IO102RSB2	
20	IO166NDB3	56	GEC2/IO141RSB2	92	IO100RSB2	
21	GFC1/IO164PDB3	57	IO140RSB2	93	IO98RSB2	
22	GFC0/IO164NDB3	58	IO139RSB2	94	IO96RSB2	
23	GFB1/IO163PDB3	59	IO138RSB2	95	IO92RSB2	
24	GFB0/IO163NDB3	60	IO137RSB2	96	GDC2/IO91RSB2	
25	VCOMPLF	61	IO136RSB2	97	GND	
26	GFA0/IO162NPB3	62	VCCIB2	98	GDB2/IO90RSB2	
27	VCCPLF	63	IO135RSB2	99	GDA2/IO89RSB2	
28	GFA1/IO162PPB3	64	IO133RSB2	100	GNDQ	
29	GND	65	GND	101	ТСК	
30	GFA2/IO161PDB3	66	IO131RSB2	102	TDI	
31	IO161NDB3	67	IO129RSB2	103	TMS	
32	GFB2/IO160PDB3	68	IO127RSB2	104	VMV2	
33	IO160NDB3	69	IO125RSB2	105	GND	
34	GFC2/IO159PDB3	70	IO123RSB2	106	VPUMP	
35	IO159NDB3	71	VCC	107	GNDQ	
36	VCC	72	VCCIB2	108	TDO	

FG144				
Pin Number	A3P125 Function			
K1	GEB0/IO109RSB1			
K2	GEA1/IO108RSB1			
K3	GEA0/IO107RSB1			
K4	GEA2/IO106RSB1			
K5	IO100RSB1			
K6	IO98RSB1			
K7	GND			
K8	IO73RSB1			
K9	GDC2/IO72RSB1			
K10	GND			
K11	GDA0/IO66RSB0			
K12	GDB0/IO64RSB0			
L1	GND			
L2	VMV1			
L3	GEB2/IO105RSB1			
L4	IO102RSB1			
L5	VCCIB1			
L6	IO95RSB1			
L7	IO85RSB1			
L8	IO74RSB1			
L9	TMS			
L10	VJTAG			
L11	VMV1			
L12	TRST			
M1	GNDQ			
M2	GEC2/IO104RSB1			
M3	IO103RSB1			
M4	IO101RSB1			
M5	IO97RSB1			
M6	IO94RSB1			
M7	IO86RSB1			
M8	IO75RSB1			
M9	TDI			
M10	VCCIB1			
M11	VPUMP			
M12	GNDQ			

FG256					
Pin Number	A3P250 Function				
P9	IO76RSB2				
P10	IO71RSB2				
P11	IO66RSB2				
P12	NC				
P13	ТСК				
P14	VPUMP				
P15	TRST				
P16	GDA0/IO60VDB1				
R1	GEA1/IO98PDB3				
R2	GEA0/IO98NDB3				
R3	NC				
R4	GEC2/IO95RSB2				
R5	IO91RSB2				
R6	IO88RSB2				
R7	IO84RSB2				
R8	IO80RSB2				
R9	IO77RSB2				
R10	IO72RSB2				
R11	IO68RSB2				
R12	IO65RSB2				
R13	GDB2/IO62RSB2				
R14	TDI				
R15	NC				
R16	TDO				
T1	GND				
T2	IO94RSB2				
Т3	GEB2/IO96RSB2				
T4	IO93RSB2				
Τ5	IO90RSB2				
Т6	IO87RSB2				
Τ7	IO83RSB2				
Т8	IO79RSB2				
Т9	IO78RSB2				
T10	IO73RSB2				
T11	IO70RSB2				
T12	GDC2/IO63RSB2				

FG256					
Pin Number	A3P250 Function				
T13	IO67RSB2				
T14	GDA2/IO61RSB2				
T15	TMS				
T16	GND				

🌜 Microsemi.

Package Pin Assignments

FG256					
Pin Number	A3P400 Function				
P9	IO98RSB2				
P10	IO95RSB2				
P11	IO88RSB2				
P12	IO84RSB2				
P13	ТСК				
P14	VPUMP				
P15	TRST				
P16	GDA0/IO79VDB1				
R1	GEA1/IO135PDB3				
R2	GEA0/IO135NDB3				
R3	IO127RSB2				
R4	GEC2/IO132RSB2				
R5	IO123RSB2				
R6	IO118RSB2				
R7	IO112RSB2				
R8	IO106RSB2				
R9	IO100RSB2				
R10	IO96RSB2				
R11	IO89RSB2				
R12	IO85RSB2				
R13	GDB2/IO81RSB2				
R14	TDI				
R15	NC				
R16	TDO				
T1	GND				
T2	IO126RSB2				
Т3	GEB2/IO133RSB2				
T4	IO124RSB2				
Т5	IO116RSB2				
Т6	IO113RSB2				
T7	IO107RSB2				
Т8	IO105RSB2				
Т9	IO102RSB2				
T10	IO97RSB2				
T11	IO92RSB2				
T12	GDC2/IO82RSB2				

FG256					
Pin Number	A3P400 Function				
T13	IO86RSB2				
T14	GDA2/IO80RSB2				
T15	TMS				
T16	GND				

FG484		FG484			FG484	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function	
E21	NC	G13	IO40RSB0	J5	IO149NPB3	
E22	NC	G14	IO46RSB0	J6	IO09RSB0	
F1	NC	G15	GNDQ	J7	IO152UDB3	
F2	NC	G16	IO47RSB0	J8	VCCIB3	
F3	NC	G17	GBB2/IO61PPB1	J9	GND	
F4	IO154VDB3	G18	IO53RSB0	J10	VCC	
F5	IO155VDB3	G19	IO63NDB1	J11	VCC	
F6	IO11RSB0	G20	NC	J12	VCC	
F7	IO07RSB0	G21	NC	J13	VCC	
F8	GAC0/IO04RSB0	G22	NC	J14	GND	
F9	GAC1/IO05RSB0	H1	NC	J15	VCCIB1	
F10	IO20RSB0	H2	NC	J16	IO62NDB1	
F11	IO24RSB0	H3	VCC	J17	IO49RSB0	
F12	IO33RSB0	H4	IO150PDB3	J18	IO64PPB1	
F13	IO39RSB0	H5	IO08RSB0	J19	IO66NDB1	
F14	IO45RSB0	H6	IO153VDB3	J20	NC	
F15	GBC0/IO54RSB0	H7	IO152VDB3	J21	NC	
F16	IO48RSB0	H8	VMV0	J22	NC	
F17	VMV0	H9	VCCIB0	K1	NC	
F18	IO61NPB1	H10	VCCIB0	K2	NC	
F19	IO63PDB1	H11	IO25RSB0	K3	NC	
F20	NC	H12	IO31RSB0	K4	IO148NDB3	
F21	NC	H13	VCCIB0	K5	IO148PDB3	
F22	NC	H14	VCCIB0	K6	IO149PPB3	
G1	NC	H15	VMV1	K7	GFC1/IO147PPB3	
G2	NC	H16	GBC2/IO62PDB1	K8	VCCIB3	
G3	NC	H17	IO65RSB1	K9	VCC	
G4	IO151VDB3	H18	IO52RSB0	K10	GND	
G5	IO151UDB3	H19	IO66PDB1	K11	GND	
G6	GAC2/IO153UDB3	H20	VCC	K12	GND	
G7	IO06RSB0	H21	NC	K13	GND	
G8	GNDQ	H22	NC	K14	VCC	
G9	IO10RSB0	J1	NC	K15	VCCIB1	
G10	IO19RSB0	J2	NC	K16	GCC1/IO67PPB1	
G11	IO26RSB0	J3	NC	K17	IO64NPB1	
G12	IO30RSB0	J4	IO150NDB3	K18	IO73PDB1	

Revision	Changes	Page
v2.0 (continued)	Table 3-20 • Summary of I/O Timing Characteristics—Software Default Settings (Advanced) and Table 3-21 • Summary of I/O Timing Characteristics—Software Default Settings (Standard Plus) were updated.	
	Table 3-11 • Different Components Contributing to Dynamic Power Consumptionin ProASIC3 Devices was updated.	
	Table 3-24 • I/O Output Buffer Maximum Resistances1 (Advanced) and Tab25 • I/O Output Buffer Maximum Resistances1 (Standard Plus) were update	
	Table 3-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions was updated.	3-18
	Table 3-28 • I/O Short Currents IOSH/IOSL (Advanced) and Table 3-29 • I/O Short Currents IOSH/IOSL (Standard Plus) were updated.	
	The note in Table 3-32 • I/O Input Rise Time, Fall Time, and Related I/O Reliability was updated.	3-27
	Figure 3-33 • Write Access After Write onto Same Address, Figure 3-34 • Read Access After Write onto Same Address, and Figure 3-35 • Write Access After Read onto Same Address are new.	
	Figure 3-43 • Timing Diagram was updated.	3-96
	Ambient was deleted from the "Speed Grade and Temperature Grade Matrix".	iv
	Notes were added to the package diagrams identifying if they were top or bottom view.	N/A
	The A3P030 "132-Pin QFN" table is new.	4-2
	The A3P060 "132-Pin QFN" table is new.	4-4
	The A3P125 "132-Pin QFN" table is new.	4-6
	The A3P250 "132-Pin QFN" table is new.	4-8
	The A3P030 "100-Pin VQFP" table is new.	4-11
Advance v0.7 (January 2007)	In the "I/Os Per Package" table, the I/O numbers were added for A3P060, A3P125, and A3P250. The A3P030-VQ100 I/O was changed from 79 to 77.	ii
Advance v0.6 (April 2006)	The term flow-through was changed to pass-through.	N/A
	Table 1 was updated to include the QN132.	ii
	The "I/Os Per Package" table was updated with the QN132. The footnotes were also updated. The A3P400-FG144 I/O count was updated.	ii
	"Automotive ProASIC3 Ordering Information" was updated with the QN132.	iii
	"Temperature Grade Offerings" was updated with the QN132.	iii
	B-LVDS and M-LDVS are new I/O standards added to the datasheet.	N/A
	The term flow-through was changed to pass-through.	
	Figure 2-7 • Efficient Long-Line Resources was updated.	2-7
	The footnotes in Figure 2-15 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT were updated.	
	The Delay Increments in the Programmable Delay Blocks specification in Figure 2-24 • ProASIC3E CCC Options.	2-24
	The "SRAM and FIFO" section was updated.	2-21

Revision	Changes	Page
Advance v0.2, (continued)	Table 2-43 was updated.	2-64
	Table 2-18 was updated.	2-45
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "User I/O Naming Convention" section was updated.	2-48
	Table 3-7 was updated.	3-6
	The "Methodology" section was updated.	3-10
	Table 3-40 and Table 3-39 were updated.	3-33,3-32
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68