

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	157
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p250-2fgg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices

	Definition		Devic	e Spe	cific S	tatic F	Power	(mW)	
Parameter		A3P1000	A3P600	A3P400	A3P250	A3P125	A3P060	A3P030	A3P015
PDC1	Array static power in Active mode		9	See Ta	ble 2-7	on pa	ige 2-7		
PDC2	I/O input pin static power (standard-dependent)		See		2-8 on 2-10 c		2-7 three 2-8.	ough	
PDC3	I/O output pin static power (standard-dependent)		See Table 2-11 on page 2-9 through Table 2-13 on page 2-10.						
PDC4	Static PLL contribution	2.55 mW							
PDC5	Bank quiescent power (VCCI-dependent)	See Table 2-7 on page 2-7.							

Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power spreadsheet calculator or SmartPower tool in Libero SoC software.

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- · The number and the standard of I/O pins used in the design
- · The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-16 on page 2-14.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-17 on page 2-14.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-17 on page 2-14. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

 $P_{\mbox{\scriptsize STAT}}$ is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

P_{STAT} = P_{DC1} + N_{INPUTS}* P_{DC2} + N_{OUTPUTS}* P_{DC3}

N_{INPLITS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

Total Dynamic Power Consumption—P_{DYN}

PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL

Global Clock Contribution—P_{CLOCK}

P_{CLOCK} = (P_{AC1} + N_{SPINE}*P_{AC2} + N_{ROW}*P_{AC3} + N_{S-CELL}* P_{AC4}) * F_{CLK}

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3 FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *ProASIC3 FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

 P_{AC1} , P_{AC2} , P_{AC3} , and P_{AC4} are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

$$\mathsf{P}_{\mathsf{S-CELL}} = \mathsf{N}_{\mathsf{S-CELL}} * (\mathsf{P}_{\mathsf{AC5}} + \alpha_1 \, / \, 2 * \, \mathsf{P}_{\mathsf{AC6}}) * \mathsf{F}_{\mathsf{CLK}}$$

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.

F_{CLK} is the global clock signal frequency.

Combinatorial Cells Contribution—P_{C-CELL}

$$P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * P_{AC7} * F_{CLK}$$

 $N_{C\text{-}CELL}$ is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.

F_{CLK} is the global clock signal frequency.

Routing Net Contribution—P_{NET}

$$P_{NET} = (N_{S-CELL} + N_{C-CELL}) * \alpha_1 / 2 * P_{AC8} * F_{CLK}$$

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-16 on page 2-14.

F_{CLK} is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS

 $P_{INPUTS} = N_{INPUTS} * \alpha_2 / 2 * P_{AC9} * F_{CLK}$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-14.

 F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * P_{AC10} * F_{CLK}$

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-16 on page 2-14.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-17 on page 2-14.

F_{CLK} is the global clock signal frequency.

2-13 Revision 18

Table 2-19 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings
Applicable to Standard Plus I/O Banks

		Equiv.			VIL	VIH		VOL	VOH		
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min V	Max V	Min V	Max V	Max V	Min V	IOL ¹ mA	IOH ¹ mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ³	100 μΑ	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI - 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	8 mA	8 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI – 0.45	8	8
1.5 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.6	0.25 * VCCI	0.75 * VCCI	4	4
3.3 V PCI					Per P	CI specification	ns			-	
3.3 V PCI-X					Per PC	I-X specificat	ions				

- 1. Currents are measured at 85°C junction temperature.
- 2. 3.3 V LVCMOS wide range is applicable to 100 μ A drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

	Equiv. Software													
Drive Strength	Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zhs}	Units
100 μΑ	2 mA	Std.	0.60	14.97	0.04	1.52	0.43	14.97	12.79	3.52	3.41	18.36	16.18	ns
		–1	0.51	12.73	0.04	1.29	0.36	12.73	10.88	2.99	2.90	15.62	13.77	ns
		-2	0.45	11.18	0.03	1.14	0.32	11.18	9.55	2.63	2.55	13.71	12.08	ns
100 μΑ	4 mA	Std.	0.60	10.36	0.04	1.52	0.43	10.36	8.93	3.99	4.24	13.75	12.33	ns
		–1	0.51	8.81	0.04	1.29	0.36	8.81	7.60	3.39	3.60	11.70	10.49	ns
		-2	0.45	7.74	0.03	1.14	0.32	7.74	6.67	2.98	3.16	10.27	9.21	ns
100 μΑ	6 mA	Std.	0.60	10.36	0.04	1.52	0.43	10.36	8.93	3.99	4.24	13.75	12.33	ns
		-1	0.51	8.81	0.04	1.29	0.36	8.81	7.60	3.39	3.60	11.70	10.49	ns
		-2	0.45	7.74	0.03	1.14	0.32	7.74	6.67	2.98	3.16	10.27	9.21	ns
100 μΑ	8 mA	Std.	0.60	7.81	0.04	1.52	0.43	7.81	6.85	4.32	4.76	11.20	10.24	ns
		–1	0.51	6.64	0.04	1.29	0.36	6.64	5.82	3.67	4.05	9.53	8.71	ns
		-2	0.45	5.83	0.03	1.14	0.32	5.83	5.11	3.22	3.56	8.36	7.65	ns
100 μΑ	16 mA	Std.	0.60	7.81	0.04	1.52	0.43	7.81	6.85	4.32	4.76	11.20	10.24	ns
		–1	0.51	6.64	0.04	1.29	0.36	6.64	5.82	3.67	4.05	9.53	8.71	ns
		-2	0.45	5.83	0.03	1.14	0.32	5.83	5.11	3.22	3.56	8.36	7.65	ns

^{1.} The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

^{2.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-58 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks

2.5 V LVCMOS	V	TL .	٧	ΊΗ	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max., V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	32	37	10	10

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

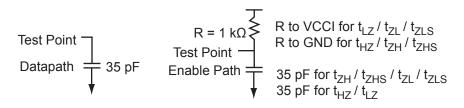


Figure 2-8 • AC Loading

Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	2.5	1.2	35

Note: *Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.

Table 2-75 • 1.8 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	15.01	0.04	1.20	0.43	13.15	15.01	1.99	1.99	ns
	-1	0.56	12.77	0.04	1.02	0.36	11.19	12.77	1.70	1.70	ns
	-2	0.49	11.21	0.03	0.90	0.32	9.82	11.21	1.49	1.49	ns
4 mA	Std.	0.66	10.10	0.04	1.20	0.43	9.55	10.10	2.41	2.37	ns
	-1	0.56	8.59	0.04	1.02	0.36	8.13	8.59	2.05	2.02	ns
	-2	0.49	7.54	0.03	0.90	0.32	7.13	7.54	1.80	1.77	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

Table 2-76 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	юзн	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max., V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10

Notes

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

2-59 Revision 18

Table 2-83 • 1.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	12.08	0.04	1.42	0.43	12.01	12.08	2.72	2.43	14.24	14.31	ns
	– 1	0.56	10.27	0.04	1.21	0.36	10.21	10.27	2.31	2.06	12.12	12.18	ns
	-2	0.49	9.02	0.03	1.06	0.32	8.97	9.02	2.03	1.81	10.64	10.69	ns
4 mA	Std.	0.66	9.28	0.04	1.42	0.43	9.45	8.91	3.04	3.00	11.69	11.15	ns
	-1	0.56	7.89	0.04	1.21	0.36	8.04	7.58	2.58	2.55	9.94	9.49	ns
	-2	0.49	6.93	0.03	1.06	0.32	7.06	6.66	2.27	2.24	8.73	8.33	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-84 • 1.5 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.65	0.04	1.42	0.43	6.31	7.65	2.45	2.45	ns
	-1	0.56	6.50	0.04	1.21	0.36	5.37	6.50	2.08	2.08	ns
	-2	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-85 • 1.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Applicable to Standard I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	12.33	0.04	1.42	0.43	11.79	12.33	2.45	2.32	ns
	-1	0.56	10.49	0.04	1.21	0.36	10.03	10.49	2.08	1.98	ns
	-2	0.49	9.21	0.03	1.06	0.32	8.81	9.21	1.83	1.73	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-63 Revision 18

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-13. The input and output buffer delays are available in the LVDS section in Table 2-92.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: R_S = 60 Ω and R_T = 70 Ω , given Z_0 = 50 Ω (2") and Z_{stub} = 50 Ω (~1.5").

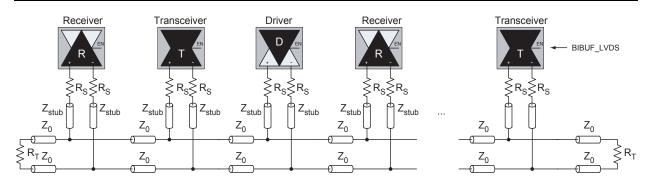


Figure 2-13 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

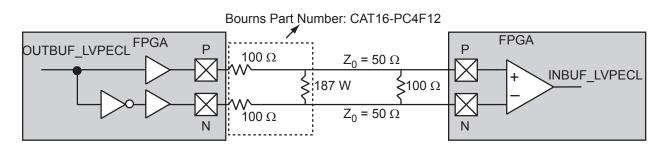


Figure 2-14 • LVPECL Circuit Diagram and Board-Level Implementation

2-67 Revision 18

Table 2-109 • A3P060 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		_	-2	_	-1	Si		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.71	0.93	0.81	1.05	0.95	1.24	ns
t _{RCKH}	Input High Delay for Global Clock	0.70	0.96	0.80	1.09	0.94	1.28	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-110 • A3P125 Global Resource
Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		_	-2	-	·1	St	td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.77	0.99	0.87	1.12	1.03	1.32	ns
t _{RCKH}	Input High Delay for Global Clock	0.76	1.02	0.87	1.16	1.02	1.37	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-87 Revision 18

Timing Characteristics

Table 2-118 • FIFO (for all dies except A3P250) Worst Commercial-Case Conditions: $T_J = 70$ °C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.34	1.52	1.79	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design.

If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

ProASIC3 devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in Table 2-2 on page 2-2.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, $0.01~\mu F$ and $0.33~\mu F$ capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to V_{CCI} . With V_{CCI} , VMV, and V_{CC} supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- · Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- · Weak pull-up is programmed

GL Globals

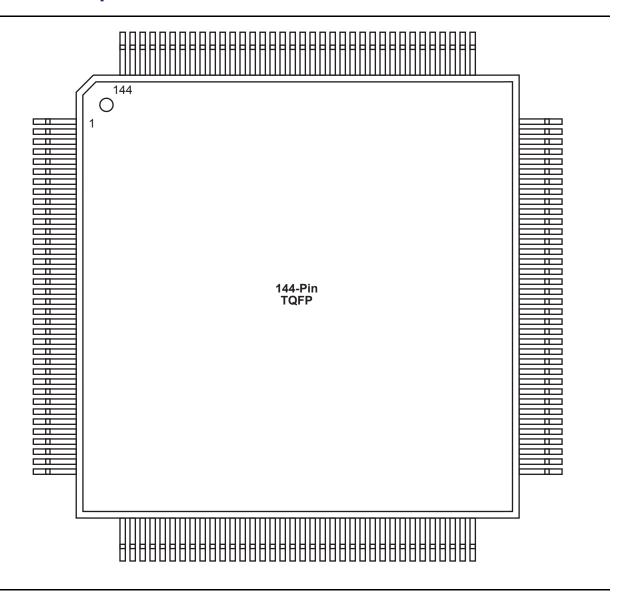
GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the I/O Structure section of the handbook for the device you are using for an explanation of the naming of global pins.

FF Flash*Freeze Mode Activation Pin

Flash*Freeze is available on IGLOO, ProASIC3L, and RT ProASIC3 devices. It is not supported on ProASIC3/E devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active-low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze


VQ100		
Pin Number	A3P060 Function	
1	GND	
2	GAA2/IO51RSB1	
3	IO52RSB1	
4	GAB2/IO53RSB1	
5	IO95RSB1	
6	GAC2/IO94RSB1	
7	IO93RSB1	
8	IO92RSB1	
9	GND	
10	GFB1/IO87RSB1	
11	GFB0/IO86RSB1	
12	VCOMPLF	
13	GFA0/IO85RSB1	
14	VCCPLF	
15	GFA1/IO84RSB1	
16	GFA2/IO83RSB1	
17	VCC	
18	VCCIB1	
19	GEC1/IO77RSB1	
20	GEB1/IO75RSB1	
21	GEB0/IO74RSB1	
22	GEA1/IO73RSB1	
23	GEA0/IO72RSB1	
24	VMV1	
25	GNDQ	
26	GEA2/IO71RSB1	
27	GEB2/IO70RSB1	
28	GEC2/IO69RSB1	
29	IO68RSB1	
30	IO67RSB1	
31	IO66RSB1	
32	IO65RSB1	
33	IO64RSB1	
34	IO63RSB1	
35	IO62RSB1	
36	IO61RSB1	

VQ100			
Pin Number	A3P060 Function		
37	VCC		
38	GND		
39	VCCIB1		
40	IO60RSB1		
41	IO59RSB1		
42	IO58RSB1		
43	IO57RSB1		
44	GDC2/IO56RSB1		
45	GDB2/IO55RSB1		
46	GDA2/IO54RSB1		
47	TCK		
48	TDI		
49	TMS		
50	VMV1		
51	GND		
52	VPUMP		
53	NC		
54	TDO		
55	TRST		
56	VJTAG		
57	GDA1/IO49RSB0		
58	GDC0/IO46RSB0		
59	GDC1/IO45RSB0		
60	GCC2/IO43RSB0		
61	GCB2/IO42RSB0		
62	GCA0/IO40RSB0		
63	GCA1/IO39RSB0		
64	GCC0/IO36RSB0		
65	GCC1/IO35RSB0		
66	VCCIB0		
67	GND		
68	VCC		
69	IO31RSB0		
70	GBC2/IO29RSB0		
71	GBB2/IO27RSB0		
72	IO26RSB0		

A3P060 Function GBA2/IO25RSB0 VMV0
VMV0
GNDQ
GBA1/IO24RSB0
GBA0/IO23RSB0
GBB1/IO22RSB0
GBB0/IO21RSB0
GBC1/IO20RSB0
GBC0/IO19RSB0
IO18RSB0
IO17RSB0
IO15RSB0
IO13RSB0
IO11RSB0
VCCIB0
GND
VCC
IO10RSB0
IO09RSB0
IO08RSB0
GAC1/IO07RSB0
GAC0/IO06RSB0
GAB1/IO05RSB0
GAB0/IO04RSB0
GAA1/IO03RSB0
GAA0/IO02RSB0
IO01RSB0
IO00RSB0

4-20 Revision 18

TQ144 - Top View

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

TQ144		
Pin Number	A3P125 Function	
1	GAA2/IO67RSB1	
2	IO68RSB1	
3	GAB2/IO69RSB1	
4	IO132RSB1	
5	GAC2/IO131RSB1	
6	IO130RSB1	
7	IO129RSB1	
8	IO128RSB1	
9	VCC	
10	GND	
11	VCCIB1	
12	IO127RSB1	
13	GFC1/IO126RSB1	
14	GFC0/IO125RSB1	
15	GFB1/IO124RSB1	
16	GFB0/IO123RSB1	
17	VCOMPLF	
18	GFA0/IO122RSB1	
19	VCCPLF	
20	GFA1/IO121RSB1	
21	GFA2/IO120RSB1	
22	GFB2/IO119RSB1	
23	GFC2/IO118RSB1	
24	IO117RSB1	
25	IO116RSB1	
26	IO115RSB1	
27	GND	
28	VCCIB1	
29	GEC1/IO112RSB1	
30	GEC0/IO111RSB1	
31	GEB1/IO110RSB1	
32	GEB0/IO109RSB1	
33	GEA1/IO108RSB1	
34	GEA0/IO107RSB1	
35	VMV1	
36	GNDQ	

TQ144			
Pin Number	A3P125 Function		
37	NC		
38	GEA2/IO106RSB1		
39	GEB2/IO105RSB1		
40	GEC2/IO104RSB1		
41	IO103RSB1		
42	IO102RSB1		
43	IO101RSB1		
44	IO100RSB1		
45	VCC		
46	GND		
47	VCCIB1		
48	IO99RSB1		
49	IO97RSB1		
50	IO95RSB1		
51	IO93RSB1		
52	IO92RSB1		
53	IO90RSB1		
54	IO88RSB1		
55	IO86RSB1		
56	IO84RSB1		
57	IO83RSB1		
58	IO82RSB1		
59	IO81RSB1		
60	IO80RSB1		
61	IO79RSB1		
62	VCC		
63	GND		
64	VCCIB1		
65	GDC2/IO72RSB1		
66	GDB2/IO71RSB1		
67	GDA2/IO70RSB1		
68	GNDQ		
69	TCK		
70	TDI		
71	TMS		
72	VMV1		

TQ144		
Pin Number	A3P125 Function	
73	VPUMP	
74	NC	
75	TDO	
76	TRST	
77	VJTAG	
78	GDA0/IO66RSB0	
79	GDB0/IO64RSB0	
80	GDB1/IO63RSB0	
81	VCCIB0	
82	GND	
83	IO60RSB0	
84	GCC2/IO59RSB0	
85	GCB2/IO58RSB0	
86	GCA2/IO57RSB0	
87	GCA0/IO56RSB0	
88	GCA1/IO55RSB0	
89	GCB0/IO54RSB0	
90	GCB1/IO53RSB0	
91	GCC0/IO52RSB0	
92	GCC1/IO51RSB0	
93	IO50RSB0	
94	IO49RSB0	
95	NC	
96	NC	
97	NC	
98	VCCIB0	
99	GND	
100	VCC	
101	IO47RSB0	
102	GBC2/IO45RSB0	
103	IO44RSB0	
104	GBB2/IO43RSB0	
105	IO42RSB0	
106	GBA2/IO41RSB0	
107	VMV0	
108	GNDQ	

4-26 Revision 18

TQ144		
Pin Number	A3P125 Function	
109	GBA1/IO40RSB0	
110	GBA0/IO39RSB0	
111	GBB1/IO38RSB0	
112	GBB0/IO37RSB0	
113	GBC1/IO36RSB0	
114	GBC0/IO35RSB0	
115	IO34RSB0	
116	IO33RSB0	
117	VCCIB0	
118	GND	
119	VCC	
120	IO29RSB0	
121	IO28RSB0	
122	IO27RSB0	
123	IO25RSB0	
124	IO23RSB0	
125	IO21RSB0	
126	IO19RSB0	
127	IO17RSB0	
128	IO16RSB0	
129	IO14RSB0	
130	IO12RSB0	
131	IO10RSB0	
132	IO08RSB0	
133	IO06RSB0	
134	VCCIB0	
135	GND	
136	VCC	
137	GAC1/IO05RSB0	
138	GAC0/IO04RSB0	
139	GAB1/IO03RSB0	
140	GAB0/IO02RSB0	
141	GAA1/IO01RSB0	
142	GAA0/IO00RSB0	
143	GNDQ	
144	VMV0	

PQ208		
Pin Number	A3P250 Function	
1	GND	
2	GAA2/IO118UDB3	
3	IO118VDB3	
4	GAB2/IO117UDB3	
5	IO117VDB3	
6	GAC2/IO116UDB3	
7	IO116VDB3	
8	IO115UDB3	
9	IO115VDB3	
10	IO114UDB3	
11	IO114VDB3	
12	IO113PDB3	
13	IO113NDB3	
14	IO112PDB3	
15	IO112NDB3	
16	VCC	
17	GND	
18	VCCIB3	
19	IO111PDB3	
20	IO111NDB3	
21	GFC1/IO110PDB3	
22	GFC0/IO110NDB3	
23	GFB1/IO109PDB3	
24	GFB0/IO109NDB3	
25	VCOMPLF	
26	GFA0/IO108NPB3	
27	VCCPLF	
28	GFA1/IO108PPB3	
29	GND	
30	GFA2/IO107PDB3	
31	IO107NDB3	
32	GFB2/IO106PDB3	
33	IO106NDB3	
34	GFC2/IO105PDB3	
35	IO105NDB3	
36	NC	

PQ208		
Pin Number	A3P250 Function	
37	IO104PDB3	
38	IO104NDB3	
39	IO103PSB3	
40	VCCIB3	
41	GND	
42	IO101PDB3	
43	IO101NDB3	
44	GEC1/IO100PDB3	
45	GEC0/IO100NDB3	
46	GEB1/IO99PDB3	
47	GEB0/IO99NDB3	
48	GEA1/IO98PDB3	
49	GEA0/IO98NDB3	
50	VMV3	
51	GNDQ	
52	GND	
53	NC	
54	NC	
55	GEA2/IO97RSB2	
56	GEB2/IO96RSB2	
57	GEC2/IO95RSB2	
58	IO94RSB2	
59	IO93RSB2	
60	IO92RSB2	
61	IO91RSB2	
62	VCCIB2	
63	IO90RSB2	
64	IO89RSB2	
65	GND	
66	IO88RSB2	
67	IO87RSB2	
68	IO86RSB2	
69	IO85RSB2	
70	IO84RSB2	
71	VCC	
72	VCCIB2	

PQ208		
- 4-55		
	A3P250 Function	
73	IO83RSB2	
74	IO82RSB2	
75	IO81RSB2	
76	IO80RSB2	
77	IO79RSB2	
78	IO78RSB2	
79	IO77RSB2	
80	IO76RSB2	
81	GND	
82	IO75RSB2	
83	IO74RSB2	
84	IO73RSB2	
85	IO72RSB2	
86	IO71RSB2	
87	IO70RSB2	
88	VCC	
89	VCCIB2	
90	IO69RSB2	
91	IO68RSB2	
92	IO67RSB2	
93	IO66RSB2	
94	IO65RSB2	
95	IO64RSB2	
96	GDC2/IO63RSB2	
97	GND	
98	GDB2/IO62RSB2	
99	GDA2/IO61RSB2	
100	GNDQ	
101	TCK	
102	TDI	
103	TMS	
104	VMV2	
105	GND	
106	VPUMP	
107	NC	
108	TDO	
I		

	PQ208
Pin Number A3P250 Function	
109	TRST
110	VJTAG
111	GDA0/IO60VDB1
112	GDA1/IO60UDB1
113	GDB0/IO59VDB1
114	GDB1/IO59UDB1
115	GDC0/IO58VDB1
116	GDC1/IO58UDB1
117	IO57VDB1
118	IO57UDB1
119	IO56NDB1
120	IO56PDB1
121	IO55RSB1
122	GND
123	VCCIB1
124	NC
125	NC
126	VCC
127	IO53NDB1
128	GCC2/IO53PDB1
129	GCB2/IO52PSB1
130	GND
131	GCA2/IO51PSB1
132	GCA1/IO50PDB1
133	GCA0/IO50NDB1
134	GCB0/IO49NDB1
135	GCB1/IO49PDB1
136	GCC0/IO48NDB1
137	GCC1/IO48PDB1
138	IO47NDB1
139	IO47PDB1
140	VCCIB1
141	GND
142	VCC
143	IO46RSB1
144	IO45NDB1

PQ208		
Pin Number A3P250 Function		
145	IO45PDB1	
146	IO45PDB1	
147	IO44PDB1	
148	IO43NDB1	
149		
150	GBC2/IO43PDB1	
151	GBB2/IO42PDB1	
152	IO41NDB1	
153	GBA2/IO41PDB1	
154	VMV1	
155	GNDQ	
156	GND	
157	NC	
158	GBA1/IO40RSB0	
159	GBA0/IO39RSB0	
160	GBB1/IO38RSB0	
161	GBB0/IO37RSB0	
162	GND	
163	GBC1/IO36RSB0	
164	GBC0/IO35RSB0	
165	IO34RSB0	
166	IO33RSB0	
167	IO32RSB0	
168	IO31RSB0	
169	IO30RSB0	
170	VCCIB0	
171	VCC	
172	IO29RSB0	
173	IO28RSB0	
174	IO27RSB0	
175	IO26RSB0	
176	IO25RSB0	
177	IO24RSB0	
178	GND	
179	IO23RSB0	
180	IO22RSB0	

PQ208		
Pin Number	A3P250 Function	
181	IO21RSB0	
182	IO20RSB0	
183	IO19RSB0	
184	IO18RSB0	
185	IO17RSB0	
186	VCCIB0	
187	VCC	
188	IO16RSB0	
189	IO15RSB0	
190	IO14RSB0	
191	IO13RSB0	
192	IO12RSB0	
193	IO11RSB0	
194	IO10RSB0	
195	GND	
196	IO09RSB0	
197	IO08RSB0	
198	IO07RSB0	
199	IO06RSB0	
200	VCCIB0	
201	GAC1/IO05RSB0	
202	GAC0/IO04RSB0	
203	GAB1/IO03RSB0	
204	GAB0/IO02RSB0	
205	GAA1/IO01RSB0	
206	GAA0/IO00RSB0	
207	GNDQ	
208	VMV0	

4-32 Revision 18

FG144		
Pin Number A3P250 Function		
A1	GNDQ	
A2	VMV0	
A3	GAB0/IO02RSB0	
A4	GAB1/IO03RSB0	
A5	IO16RSB0	
A6	GND	
A7	IO29RSB0	
A8	VCC	
A9	IO33RSB0	
A10	GBA0/IO39RSB0	
A11	GBA1/IO40RSB0	
A12	GNDQ	
B1	GAB2/IO117UDB3	
B2	GND	
В3	GAA0/IO00RSB0	
B4	GAA1/IO01RSB0	
B5	IO14RSB0	
B6	IO19RSB0	
В7	IO22RSB0	
B8	IO30RSB0	
В9	GBB0/IO37RSB0	
B10	GBB1/IO38RSB0	
B11	GND	
B12	VMV1	
C1	IO117VDB3	
C2	GFA2/IO107PPB3	
C3	GAC2/IO116UDB3	
C4	VCC	
C5	IO12RSB0	
C6	IO17RSB0	
C7	IO24RSB0	
C8	IO31RSB0	
C9	IO34RSB0	
C10	GBA2/IO41PDB1	
C11	IO41NDB1	
C12	GBC2/IO43PPB1	

FG144		
Pin Number	A3P250 Function	
D1	IO112NDB3	
D2	IO112PDB3	
D3	IO116VDB3	
D4	GAA2/IO118UPB3	
D5	GAC0/IO04RSB0	
D6	GAC1/IO05RSB0	
D7	GBC0/IO35RSB0	
D8	GBC1/IO36RSB0	
D9	GBB2/IO42PDB1	
D10	IO42NDB1	
D11	IO43NPB1	
D12	GCB1/IO49PPB1	
E1	VCC	
E2	GFC0/IO110NDB3	
E3	GFC1/IO110PDB3	
E4	VCCIB3	
E5	IO118VPB3	
E6	VCCIB0	
E7	VCCIB0	
E8	GCC1/IO48PDB1	
E9	VCCIB1	
E10	VCC	
E11	GCA0/IO50NDB1	
E12	IO51NDB1	
F1	GFB0/IO109NPB3	
F2	VCOMPLF	
F3	GFB1/IO109PPB3	
F4	IO107NPB3	
F5	GND	
F6	GND	
F7	GND	
F8	GCC0/IO48NDB1	
F9	GCB0/IO49NPB1	
F10	GND	
F11	GCA1/IO50PDB1	
F12	GCA2/IO51PDB1	

FG144		
A3P250 Function		
GFA1/IO108PPB3		
GND		
VCCPLF		
GFA0/IO108NPB3		
GND		
GND		
GND		
GDC1/IO58UPB1		
IO53NDB1		
GCC2/IO53PDB1		
IO52NDB1		
GCB2/IO52PDB1		
VCC		
GFB2/IO106PDB3		
GFC2/IO105PSB3		
GEC1/IO100PDB3		
VCC		
IO79RSB2		
IO65RSB2		
GDB2/IO62RSB2		
GDC0/IO58VPB1		
VCCIB1		
IO54PSB1		
VCC		
GEB1/IO99PDB3		
IO106NDB3		
VCCIB3		
GEC0/IO100NDB3		
IO88RSB2		
IO81RSB2		
VCC		
TCK		
GDA2/IO61RSB2		
TDO		
GDA1/IO60UDB1		
GDB1/IO59UDB1		

4-44 Revision 18

FG484		
Pin Number	A3P400 Function	
K19	IO73NDB1	
K20	NC	
K21	NC	
K22	NC	
L1	NC	
L2	NC	
L3	NC	
L4	GFB0/IO146NPB3	
L5	GFA0/IO145NDB3	
L6	GFB1/IO146PPB3	
L7	VCOMPLF	
L8	GFC0/IO147NPB3	
L9	VCC	
L10	GND	
L11	GND	
L12	GND	
L13	GND	
L14	VCC	
L15	GCC0/IO67NPB1	
L16	GCB1/IO68PPB1	
L17	GCA0/IO69NPB1	
L18	NC	
L19	GCB0/IO68NPB1	
L20	NC	
L21	NC	
L22	NC	
M1	NC	
M2	NC	
M3	NC	
M4	GFA2/IO144PPB3	
M5	GFA1/IO145PDB3	
M6	VCCPLF	
M7	IO143NDB3	
M8	GFB2/IO143PDB3	
M9	VCC	
M10	GND	

FG484		
Pin Number A3P400 Function		
M11	GND	
M12	GND	
M13	GND	
M14	VCC	
M15	GCB2/IO71PPB1	
M16	GCA1/IO69PPB1	
M17	GCC2/IO72PPB1	
M18	NC	
M19	GCA2/IO70PDB1	
M20	NC	
M21	NC	
M22	NC	
N1	NC	
N2	NC	
N3	NC	
N4	GFC2/IO142PDB3	
N5	IO144NPB3	
N6	IO141PPB3	
N7	IO120RSB2	
N8	VCCIB3	
N9	VCC	
N10	GND	
N11	GND	
N12	GND	
N13	GND	
N14	VCC	
N15	VCCIB1	
N16	IO71NPB1	
N17	IO74RSB1	
N18	IO72NPB1	
N19	IO70NDB1	
N20	NC	
N21	NC	
N22	NC	
P1	NC	
P2	NC	

=0 :0:		
	FG484	
Pin Number	A3P400 Function	
P3	NC	
P4	IO142NDB3	
P5	IO141NPB3	
P6	IO125RSB2	
P7	IO139RSB3	
P8	VCCIB3	
P9	GND	
P10	VCC	
P11	VCC	
P12	VCC	
P13	VCC	
P14	GND	
P15	VCCIB1	
P16	GDB0/IO78VPB1	
P17	IO76VDB1	
P18	IO76UDB1	
P19	IO75PDB1	
P20	NC	
P21	NC	
P22	NC	
R1	NC	
R2	NC	
R3	VCC	
R4	IO140PDB3	
R5	IO130RSB2	
R6	IO138NPB3	
R7	GEC0/IO137NPB3	
R8	VMV3	
R9	VCCIB2	
R10	VCCIB2	
R11	IO108RSB2	
R12	IO101RSB2	
R13	VCCIB2	
R14	VCCIB2	
R15	VMV2	
R16	IO83RSB2	

4-68 Revision 18

Datasheet Information

Revision	Changes	Page
Revision 11 (March 2012)	Note indicating that A3P015 is not recommended for new designs has been added. The "Devices Not Recommended For New Designs" section is new (SAR 36760).	I to IV
	The following sentence was removed from the Advanced Architecture section: "In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR 34687).	NA
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>ProASIC3 FPGA Fabric User's Guide</i> (SAR 34734).	2-12
	Figure 2-4 • Input Buffer Timing Model and Delays (Example) has been modified for the DIN waveform; the Rise and Fall time label has been changed to tDIN (35430).	2-16
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34883).	2-32
	Added values for minimum pulse width and removed the FRMAX row from Table 2-107 through Table 2-114 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SARs 37279, 29269).	2-85

5-3 Revision 18