E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	151
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p250-2pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every ProASIC[®]3 device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges.

In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-2 on page 2-5.

There are five regions to consider during power-up.

ProASIC3 I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

```
Ramping up: 0.6 V < trip_point_up < 1.2 V
Ramping down: 0.5 V < trip_point_down < 1.1 V
```

VCC Trip Point:

```
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
```

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLLX exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/Down Behavior of Low Power Flash Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers

Output buffers, after 200 ns delay from input buffer activation.

Thermal Characteristics

Introduction

The temperature variable in the Microsemi Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ can be used to calculate junction temperature.

 T_J = Junction Temperature = $\Delta T + T_A$

where:

T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ia} = Junction-to-ambient of the package. θ_{ia} numbers are located in Table 2-5 on page 2-6.

P = Power dissipation

Calculating Power Dissipation

Quiescent Supply Current

Table 2-7 • Quiescent Supply Current Characteristics

	A3P015	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Typical (25°C)	2 mA	2 mA	2 mA	2 mA	3 mA	3 mA	5 mA	8 mA
Max. (Commercial)	10 mA	10 mA	10 mA	10 mA	20 mA	20 mA	30 mA	50 mA
Max. (Industrial)	15 mA	15 mA	15 mA	15 mA	30 mA	30 mA	45 mA	75 mA

Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-11 and Table 2-12 on page 2-9.

Power per I/O Pin

Table 2-8 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Advanced I/O Banks

	VMV (V)	Static Power P _{DC2} (mW) ¹	Dynamic Power PAC9 (μW/MHz) ²
Single-Ended		1	
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.22
3.3 V LVCMOS Wide Range ³	3.3	-	16.22
2.5 V LVCMOS	2.5	-	5.12
1.8 V LVCMOS	1.8	-	2.13
1.5 V LVCMOS (JESD8-11)	1.5	-	1.45
3.3 V PCI	3.3	-	18.11
3.3 V PCI-X	3.3	-	18.11
Differential			
LVDS	2.5	2.26	1.20
LVPECL	3.3	5.72	1.87

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

Table 2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks

	VMV (V)	Static Power PDC2 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.23
3.3 V LVCMOS Wide Range ³	3.3	-	16.23

Notes:

- 1. PDC2 is the static power (where applicable) measured on VMV.
- 2. PAC9 is the total dynamic power measured on VCC and VMV.
- 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

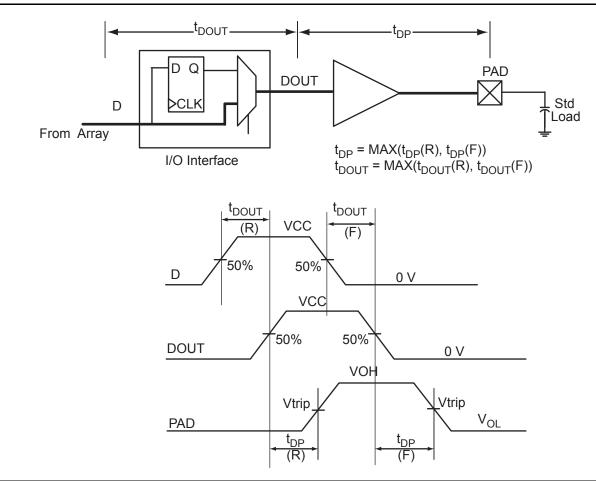


Figure 2-5 • Output Buffer Model and Delays (Example)

Table 2-34 • I/O Short Currents IOSH/IOSL Applicable to Standard I/O Banks

	Drive Strength	IOSL (mA) ¹	IOSH (mA) ¹
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
3.3 V LVCMOS Wide Range ²	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
1.5 V LVCMOS	2 mA	16	13

Notes:

- 1. $T_{.1} = 100^{\circ}C$
- Applicable to 3.3 V LVCMOS Wide Range. I_{OSL}/I_{OSH} dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-35 • Duration of Short Circuit Event Before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	0.5 years

Table 2-36 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (min)	Input Rise/Fall Time (max)	Reliability
LVTTL/LVCMOS	No requirement	10 ns *	20 years (110°C)
LVDS/B-LVDS/ M-LVDS/LVPECL	No requirement	10 ns *	10 years (100°C)

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

Timing Characteristics

Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
4 mA	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
6 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
8 mA	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	Std.	0.66	3.53	0.04	1.02	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	-1	0.56	3.00	0.04	0.86	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	Std.	0.66	3.33	0.04	1.02	0.43	3.39	2.56	3.26	3.68	5.63	4.80	ns
	-1	0.56	2.83	0.04	0.86	0.36	2.89	2.18	2.77	3.13	4.79	4.08	ns
	-2	0.49	2.49	0.03	0.76	0.32	2.53	1.91	2.44	2.75	4.20	3.58	ns
24 mA	Std.	0.66	3.08	0.04	1.02	0.43	3.13	2.12	3.32	4.06	5.37	4.35	ns
	–1	0.56	2.62	0.04	0.86	0.36	2.66	1.80	2.83	3.45	4.57	3.70	ns
	-2	0.49	2.30	0.03	0.76	0.32	2.34	1.58	2.48	3.03	4.01	3.25	ns

Notes:

1. Software default selection highlighted in gray.

Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

								1						T
Drive Strength	Equiv. Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zнs}	Units
100 µA	2 mA	Std.	0.60	14.97	0.04	1.52	0.43	14.97	12.79	3.52	3.41	18.36	16.18	ns
		-1	0.51	12.73	0.04	1.29	0.36	12.73	10.88	2.99	2.90	15.62	13.77	ns
		-2	0.45	11.18	0.03	1.14	0.32	11.18	9.55	2.63	2.55	13.71	12.08	ns
100 µA	4 mA	Std.	0.60	10.36	0.04	1.52	0.43	10.36	8.93	3.99	4.24	13.75	12.33	ns
		-1	0.51	8.81	0.04	1.29	0.36	8.81	7.60	3.39	3.60	11.70	10.49	ns
		-2	0.45	7.74	0.03	1.14	0.32	7.74	6.67	2.98	3.16	10.27	9.21	ns
100 µA	6 mA	Std.	0.60	10.36	0.04	1.52	0.43	10.36	8.93	3.99	4.24	13.75	12.33	ns
		-1	0.51	8.81	0.04	1.29	0.36	8.81	7.60	3.39	3.60	11.70	10.49	ns
		-2	0.45	7.74	0.03	1.14	0.32	7.74	6.67	2.98	3.16	10.27	9.21	ns
100 µA	8 mA	Std.	0.60	7.81	0.04	1.52	0.43	7.81	6.85	4.32	4.76	11.20	10.24	ns
		-1	0.51	6.64	0.04	1.29	0.36	6.64	5.82	3.67	4.05	9.53	8.71	ns
		-2	0.45	5.83	0.03	1.14	0.32	5.83	5.11	3.22	3.56	8.36	7.65	ns
100 µA	16 mA	Std.	0.60	7.81	0.04	1.52	0.43	7.81	6.85	4.32	4.76	11.20	10.24	ns
		-1	0.51	6.64	0.04	1.29	0.36	6.64	5.82	3.67	4.05	9.53	8.71	ns
		-2	0.45	5.83	0.03	1.14	0.32	5.83	5.11	3.22	3.56	8.36	7.65	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

Table 2-62 •	2.5 V LV Commer Applicat	cial-Cas	e Cond	itions:			st-Case	• VCC =	= 1.425	V, Wor	st-Case	VCCI = 2	2.3 V
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	8.28	0.04	1.30	0.43	7.41	8.28	2.25	2.07	9.64	10.51	ns
	-1	0.56	7.04	0.04	1.10	0.36	6.30	7.04	1.92	1.76	8.20	8.94	ns
	-2	0.49	6.18	0.03	0.97	0.32	5.53	6.18	1.68	1.55	7.20	7.85	ns
6 mA	Std.	0.66	4.85	0.04	1.30	0.43	4.65	4.85	2.59	2.71	6.88	7.09	ns
	-1	0.56	4.13	0.04	1.10	0.36	3.95	4.13	2.20	2.31	5.85	6.03	ns
	-2	0.49	3.62	0.03	0.97	0.32	3.47	3.62	1.93	2.02	5.14	5.29	ns
8 mA	Std.	0.66	4.85	0.04	1.30	0.43	4.65	4.85	2.59	2.71	6.88	7.09	ns
	-1	0.56	4.13	0.04	1.10	0.36	3.95	4.13	2.20	2.31	5.85	6.03	ns
	-2	0.49	3.62	0.03	0.97	0.32	3.47	3.62	1.93	2.02	5.14	5.29	ns
12 mA	Std.	0.66	3.21	0.04	1.30	0.43	3.27	3.14	2.82	3.11	5.50	5.38	ns
	-1	0.56	2.73	0.04	1.10	0.36	2.78	2.67	2.40	2.65	4.68	4.57	ns
	-2	0.49	2.39	0.03	0.97	0.32	2.44	2.35	2.11	2.32	4.11	4.02	ns

Microsomi

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-63 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	10.84	0.04	1.30	0.43	10.64	10.84	2.26	1.99	12.87	13.08	ns
	–1	0.56	9.22	0.04	1.10	0.36	9.05	9.22	1.92	1.69	10.95	11.12	ns
	-2	0.49	8.10	0.03	0.97	0.32	7.94	8.10	1.68	1.49	9.61	9.77	ns
6 mA	Std.	0.66	7.37	0.04	1.30	0.43	7.50	7.36	2.59	2.61	9.74	9.60	ns
	–1	0.56	6.27	0.04	1.10	0.36	6.38	6.26	2.20	2.22	8.29	8.16	ns
	-2	0.49	5.50	0.03	0.97	0.32	5.60	5.50	1.93	1.95	7.27	7.17	ns
8 mA	Std.	0.66	7.37	0.04	1.30	0.43	7.50	7.36	2.59	2.61	9.74	9.60	ns
	-1	0.56	6.27	0.04	1.10	0.36	6.38	6.26	2.20	2.22	8.29	8.16	ns
	-2	0.49	5.50	0.03	0.97	0.32	5.60	5.50	1.93	1.95	7.27	7.17	ns
12 mA	Std.	0.66	5.63	0.04	1.30	0.43	5.73	5.51	2.83	3.01	7.97	7.74	ns
	–1	0.56	4.79	0.04	1.10	0.36	4.88	4.68	2.41	2.56	6.78	6.59	ns
	-2	0.49	4.20	0.03	0.97	0.32	4.28	4.11	2.11	2.25	5.95	5.78	ns

Timing Characteristics

Combinatorial Cell	Equation	Parameter	-2	-1	Std.	Units
INV	Y = !A	t _{PD}	0.40	0.46	0.54	ns
AND2	$Y = A \cdot B$	t _{PD}	0.47	0.54	0.63	ns
NAND2	Y = !(A · B)	t _{PD}	0.47	0.54	0.63	ns
OR2	Y = A + B	t _{PD}	0.49	0.55	0.65	ns
NOR2	Y = !(A + B)	t _{PD}	0.49	0.55	0.65	ns
XOR2	Y = A ⊕ B	t _{PD}	0.74	0.84	0.99	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	0.70	0.79	0.93	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	0.87	1.00	1.17	ns
MUX2	Y = A !S + B S	t _{PD}	0.51	0.58	0.68	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	0.56	0.64	0.75	ns

Table 2-105 • Combinatorial Cell Propagation Delays

Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

VersaTile Specifications as a Sequential Module

The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide*.

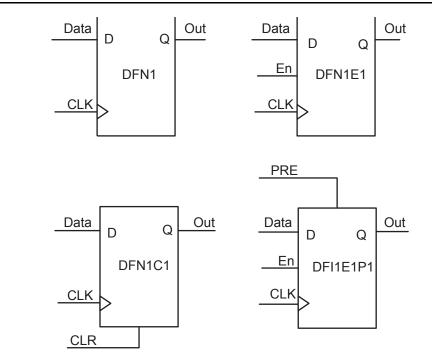


Figure 2-26 • Sample of Sequential Cells

Timing Characteristics

Table 2-107 • A3P015 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2 -1		Std.			
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.66	0.81	0.75	0.92	0.88	1.08	ns
t _{RCKH}	Input High Delay for Global Clock	0.67	0.84	0.76	0.96	0.89	1.13	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.18		0.21		0.25	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-108 • A3P030 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2		-1	Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.67	0.81	0.76	0.92	0.89	1.09	ns
t _{RCKH}	Input High Delay for Global Clock	0.68	0.85	0.77	0.97	0.91	1.14	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.18		0.21		0.24	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

Table 2-113 • A3P600 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.425 V

		-	-2 -		-1 Std.		td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.87	1.09	0.99	1.24	1.17	1.46	ns
t _{RCKH}	Input High Delay for Global Clock	0.86	1.11	0.98	1.27	1.15	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Microse

Power Matters.

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

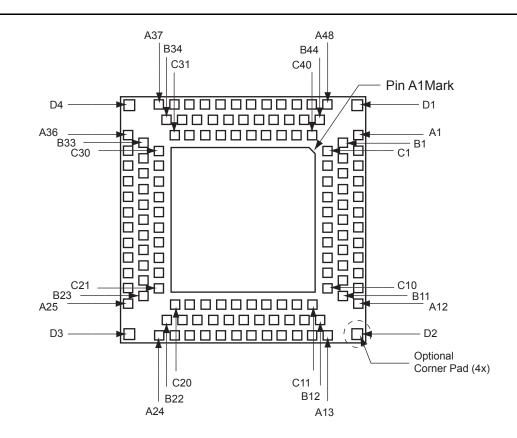
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-114 • A3P1000 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2 -		-1 Std.		td.	
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.94	1.16	1.07	1.32	1.26	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	0.93	1.19	1.06	1.35	1.24	1.59	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.35	ns

Notes:


1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

static Microsemi.

Package Pin Assignments

QN132 – Bottom View

Notes:

- 1. The die attach paddle center of the package is tied to ground (GND).
- 2. Option corner pads come with this device and package combination. It is optional to tie them to ground or leave them floating.
- 3. The QN132 package is discontinued and is not available for ProASIC3 devices.
- 4. For more information on package drawings, see PD3068: Package Mechanical Drawings.

<u>۱</u>	/Q100	\ \	/Q100	\ \	/Q100
Pin Number	A3P030 Function	Pin Number	A3P030 Function	Pin Number	A3P030 Function
1	GND	37	VCC	73	IO27RSB0
2	IO82RSB1	38	GND	74	IO26RSB0
3	IO81RSB1	39	VCCIB1	75	IO25RSB0
4	IO80RSB1	40	IO49RSB1	76	IO24RSB0
5	IO79RSB1	41	IO47RSB1	77	IO23RSB0
6	IO78RSB1	42	IO46RSB1	78	IO22RSB0
7	IO77RSB1	43	IO45RSB1	79	IO21RSB0
8	IO76RSB1	44	IO44RSB1	80	IO20RSB0
9	GND	45	IO43RSB1	81	IO19RSB0
10	IO75RSB1	46	IO42RSB1	82	IO18RSB0
11	IO74RSB1	47	ТСК	83	IO17RSB0
12	GEC0/IO73RSB1	48	TDI	84	IO16RSB0
13	GEA0/IO72RSB1	49	TMS	85	IO15RSB0
14	GEB0/IO71RSB1	50	NC	86	IO14RSB0
15	IO70RSB1	51	GND	87	VCCIB0
16	IO69RSB1	52	VPUMP	88	GND
17	VCC	53	NC	89	VCC
18	VCCIB1	54	TDO	90	IO12RSB0
19	IO68RSB1	55	TRST	91	IO10RSB0
20	IO67RSB1	56	VJTAG	92	IO08RSB0
21	IO66RSB1	57	IO41RSB0	93	IO07RSB0
22	IO65RSB1	58	IO40RSB0	94	IO06RSB0
23	IO64RSB1	59	IO39RSB0	95	IO05RSB0
24	IO63RSB1	60	IO38RSB0	96	IO04RSB0
25	IO62RSB1	61	IO37RSB0	97	IO03RSB0
26	IO61RSB1	62	IO36RSB0	98	IO02RSB0
27	IO60RSB1	63	GDB0/IO34RSB0	99	IO01RSB0
28	IO59RSB1	64	GDA0/IO33RSB0	100	IO00RSB0
29	IO58RSB1	65	GDC0/IO32RSB0		
30	IO57RSB1	66	VCCIB0		
31	IO56RSB1	67	GND		
32	IO55RSB1	68	VCC		
33	IO54RSB1	69	IO31RSB0		
34	IO53RSB1	70	IO30RSB0		
35	IO52RSB1	71	IO29RSB0		
36	IO51RSB1	72	IO28RSB0		

Pin Number A3P125 Function Pin Number A3P125 Function 1 GND 37 VCC 73 GBA2/I041RSB0 2 GAA2/I067RSB1 38 GND 74 VMV0 3 I068RSB1 39 VCCIB1 75 GND 4 GAA2/I067RSB1 40 I0687RSB1 76 GBA1/I040RSB0 6 GAC2/I0131RSB1 41 I087RSB1 76 GBA1/I040RSB0 6 GAC2/I0131RSB1 42 I081RSB1 78 GBB1/I038RSB0 7 I0130RSB1 43 I075RSB1 80 GBC1/I038RSB0 9 GND 45 GD2/I071RSB1 81 GBC0/I038RSB0 11 GFB0/I0123RSB1 47 TCK 83 I028RSB0 13 GFA0II012RSB1 49 TMS 85 I028RSB0 14 VCCPLF 50 VMV1 86 I019RSB0 16 GFA2/I012RSB1 51 GND 87 VCCIB0 <tr< th=""><th>· · · · · · · · · · · · · · · · · · ·</th><th>VQ100</th><th></th><th>VQ100</th><th></th><th>VQ100</th></tr<>	· · · · · · · · · · · · · · · · · · ·	VQ100		VQ100		VQ100
2 GAA2/IO67RSB1 38 GND 74 VMV0 3 IO68RSB1 39 VCCIB1 75 GNDQ 4 GAB2/IO69RSB1 40 IO87RSB1 76 GBA1/IO40RSB0 5 IO132RSB1 41 IO64RSB1 76 GBA1/IO40RSB0 6 GAC2/IO131RSB1 42 IO81RSB1 78 GBB1/IO38RSB0 7 IO130RSB1 43 IO75RSB1 80 GBC/IO38RSB0 9 GND 45 GD22/IO72RSB1 80 GBC/IO38RSB0 10 GFB1/IO124RSB1 46 GDA2/IO70RSB1 81 GBC0/IO38RSB0 12 VCOMPLF 48 TDI 84 IO28RSB0 13 GFA0/IO122RSB1 49 TMS 85 IO22RSB0 14 VCCPLF 50 VMV1 86 IO18RSB0 16 GFA2/IO120RSB1 51 GND 87 VCCIB0 17 VCC 53 NC 89 VCC </th <th>Pin Number</th> <th>A3P125 Function</th> <th>Pin Number</th> <th>A3P125 Function</th> <th>Pin Number</th> <th>A3P125 Function</th>	Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
3 1068RSB1 39 VCCIB1 75 GNDQ 4 GAB2/I069RSB1 40 I067RSB1 76 GBA1/I040RSB0 5 I0132RSB1 41 I084RSB1 76 GBA1/I040RSB0 6 GAC2/I0131RSB1 42 I081RSB1 78 GBB1/I038RSB0 7 I0130RSB1 43 I075RSB1 78 GBB1/I038RSB0 9 GND 45 GD2/I072RSB1 80 GBC1/I03RSB0 10 GFB1/I0124RSB1 46 GDA2/I070RSB1 82 I032RSB0 11 GFB0/I0123RSB1 47 TCK 83 I028RSB0 13 GFA0/I0124RSB1 49 TMS 85 I022RSB0 14 VCCPLF 50 VMV1 86 I019RSB0 15 GFA1/I0121RSB1 51 GND 87 VCCIB0 17 VCC 53 NC 89 VCC 16 GFA2/I010RSB1 55 TRST 91 I013RSB0 <td>1</td> <td>GND</td> <td>37</td> <td>VCC</td> <td>73</td> <td>GBA2/IO41RSB0</td>	1	GND	37	VCC	73	GBA2/IO41RSB0
4 GAB2/IO69RSB1 40 IO87RSB1 76 GBA1/IO40RSB0 5 IO132RSB1 41 IO84RSB1 77 GBA0/IO39RSB0 6 GAC2/IO131RSB1 42 IO81RSB1 78 GBB1/IO39RSB0 7 IO130RSB1 43 IO75RSB1 79 GBB0/IO37RSB0 8 IO129RSB1 44 GDC2/IO72RSB1 80 GEC1/IO36RSB0 9 GND 45 GDB2/IO71RSB1 81 GBC/IO37RSB0 10 GFB1/IO124RSB1 46 GDA2/IO72RSB1 82 IO32RSB0 11 GFB0/IO123RSB1 47 TCK 83 IO22RSB0 112 VCOMPLF 48 TDI 84 IO25RSB0 13 GFA0/IO122RSB1 49 TMS 85 IO22RSB0 14 VCCPLF 50 VMV1 86 IO19RSB0 15 GFA1/IO121RSB1 51 GND 87 VCCIB0 17 VCC 53 NC 89	2	GAA2/IO67RSB1	38	GND	74	VMV0
5 IO132RSB1 41 IO84RSB1 77 GBA0/IO39RSB0 6 GAC2/IO131RSB1 42 IO81RSB1 78 GBB1/IO38RSB0 7 IO130RSB1 43 IO75RSB1 79 GBB0/IO37RSB0 8 IO129RSB1 44 GDC2/IO72RSB1 80 GBC1/IO36RSB0 9 GND 45 GDB2/IO71RSB1 81 GBC0/IO35RSB0 10 GFB1/IO124RSB1 47 TCK 83 IO28RSB0 11 GFB0/IO123RSB1 47 TCK 83 IO28RSB0 12 VCOMPLF 48 TDI 84 IO28RSB0 13 GFA0/IO122RSB1 50 VMV1 86 IO19RSB0 14 VCCPLF 50 VMV1 86 IO19RSB0 14 VCCB1 51 GND 87 VCCIB0 14 VCCB1 54 TDO 90 IO15RSB0 14 VCCB1 55 TRST 91 IO15RSB0	3	IO68RSB1	39	VCCIB1	75	GNDQ
6 GAC2/I0131RSB1 42 IO81RSB1 78 GBB1/IO38RSB0 7 IO130RSB1 43 IO75RSB1 79 GBB0/IO37RSB0 8 IO129RSB1 44 GDC2/IO72RSB1 80 GBC1/IO36RSB0 9 GND 45 GDB2/IO71RSB1 81 GBC0/IO35RSB0 10 GFB1/IO124RSB1 46 GDA2/IO70RSB1 82 IO32RSB0 11 GFB0/IO123RSB1 47 TCK 83 IO28RS80 12 VCOMPLF 44 GDC2/IO70RSB1 82 IO32RSB0 14 VCCPLF 50 VMV1 86 IO19RSB0 15 GFA1/IO121RSB1 51 GND 87 VCCIB0 16 GFA2/IO120RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO178RS0 20 GEB1/IO110RSB1 57 GDA1/IO65RSB0 93 IO0	4	GAB2/IO69RSB1	40	IO87RSB1	76	GBA1/IO40RSB0
7 IO130RSB1 43 IO75RSB1 79 GBB0/IO37RSB0 8 IO129RSB1 44 GDC2/IO72RSB1 80 GBC/I/O36RSB0 9 GND 45 GDB2/IO71RSB1 81 GBC0/IO37RSB0 10 GFB1/IO124RSB1 46 GDA2/IO70RSB1 82 IO32RSB0 11 GFB0/IO123RSB1 47 TCK 83 IO28RSB0 12 VCOMPLF 48 TDI 84 IO27SB0 14 VCCPLF 50 VMV1 86 IO19RSB0 15 GFA1/IO12RSB1 51 GND 87 VCCIB0 16 GFA2/IO120RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO18RSB0 20 GEB1/IO110RSB1 55 TRST 91 IO13RSB0 21 GEB0/IO19RSB1 58 GDC0/IO6RSB0 93 IO09RSB0	5	IO132RSB1	41	IO84RSB1	77	GBA0/IO39RSB0
8 IO129RSB1 44 GDC2/IO72RSB1 80 GBC1/IO36RSB0 9 GND 45 GDB2/IO71RSB1 81 GBC0/IO35RSB0 10 GFB1/IO124RSB1 46 GDA2/IO70RSB1 82 IO32RSB0 11 GFB0/IO123RSB1 47 TCK 83 IO28RSB0 12 VCOMPLF 48 TDI 84 IO275RSB0 13 GFA0/IO122RSB1 49 TMS 85 IO22RSB0 14 VCCPLF 50 VMV1 86 IO19RSB0 15 GFA1/IO121RSB1 51 GND 87 VCCIB0 16 GFA2/IO120RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO15RSB0 20 GEB1/IO110RSB1 56 VJTAG 92 IO11RSB0 21 GEB0/IO109RSB1 57 GDA1/IO66RSB0 93 IO09RSB0	6	GAC2/IO131RSB1	42	IO81RSB1	78	GBB1/IO38RSB0
9 GND 45 GDB2/IO71RSB1 81 GBC0/IO35RSB0 10 GFB1/IO124RSB1 46 GDA2/IO70RSB1 82 IO32RSB0 11 GFB0/IO123RSB1 47 TCK 83 IO28RSB0 12 VCOMPLF 48 TDI 84 IO27SB0 13 GFA0/IO122RSB1 49 TMS 85 IO22RSB0 14 VCCPLF 50 VMV1 86 IO19RSB0 15 GFA1/IO121RSB1 51 GND 87 VCCIB0 16 GFA2/IO120RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO15RSB0 20 GEB1/IO110RSB1 56 VJTAG 92 IO118SB0 21 GEB0/IO198SB1 57 GDA1/IO65RSB0 93 IO09RSB0 23 GEA0/IO107RSB1 59 GDC1/IO61RSB0 95 GAC1/IO07RSB0 </td <td>7</td> <td>IO130RSB1</td> <td>43</td> <td>IO75RSB1</td> <td>79</td> <td>GBB0/IO37RSB0</td>	7	IO130RSB1	43	IO75RSB1	79	GBB0/IO37RSB0
10 GFB1/I0124RSB1 46 GDA2/I070RSB1 82 I032RSB0 11 GFB0/I0123RSB1 47 TCK 83 I028RSB0 12 VCOMPLF 48 TDI 84 I022RSB0 13 GFA0/I0122RSB1 49 TMS 85 I022RSB0 14 VCCPLF 50 VMV1 86 I019RSB0 16 GFA2/I0120RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 I015RSB0 20 GEB1/I0110RSB1 55 TRST 91 I013RSB0 21 GEB0/I019RSB1 58 GDC0/I062RSB0 93 I009RSB0 223 GEA0/I0107RSB1 59 GDC1/I061RSB0 95 GAC1/I005RSB0 224 VMV1 60 GCC2/I059RSB0 96 GAA0/I000RSB0 23 GEA2/I0106RSB1 64 GCC0/I052RSB0 98 GAB0	8	IO129RSB1	44	GDC2/IO72RSB1	80	GBC1/IO36RSB0
11 GFB0/I0123RSB1 47 TCK 83 IO28RSB0 12 VCOMPLF 48 TDI 84 IO25RSB0 13 GFA0/I0122RSB1 49 TMS 85 IO22RSB0 14 VCCPLF 50 VMV1 86 IO19RSB0 16 GFA2/I0120RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO15RSB0 19 GEC0/I0111RSB1 55 TRST 91 IO13RSB0 20 GEB1/I0100RSB1 56 VJTAG 92 IO11RSB0 21 GEB0/I0109RSB1 57 GDA1/I065RSB0 93 IO09RSB0 22 GEA1/I0108RSB1 59 GDC1/I061RSB0 95 GAC1/I005RSB0 22 GEA2/I0106RSB1 62 GCA0/I056RSB0 96 GAA0/I000RSB0 23 GEA2/I0106RSB1 63 GCC1/I051RSB0 98 GAB	9	GND	45	GDB2/IO71RSB1	81	GBC0/IO35RSB0
12 VCOMPLF 48 TDI 84 IO25RSB0 13 GFA0/IO122RSB1 49 TMS 85 IO22RSB0 14 VCCPLF 50 VMV1 86 IO19RSB0 15 GFA1/IO121RSB1 51 GND 87 VCCIB0 16 GFA2/IO120RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO15RSB0 20 GEB1/IO110RSB1 55 TRST 91 IO13RSB0 21 GEB0/IO109RSB1 57 GDA1/IO65RSB0 93 IO09RSB0 23 GEA0/IO17RSB1 59 GDC1/IO61RSB0 95 GAC1/IO05RSB0 24 VMV1 60 GC22/IO58RS0 97 GAB1/IO03RSB0 24 GEA2/IO106RSB1 62 GCA0/IO56RSB0 98 GAB0/IO02RSB0 25 GNDQ 61 GC22/IO58RS0 98 GAB1/IO03RSB0 </td <td>10</td> <td>GFB1/IO124RSB1</td> <td>46</td> <td>GDA2/IO70RSB1</td> <td>82</td> <td>IO32RSB0</td>	10	GFB1/IO124RSB1	46	GDA2/IO70RSB1	82	IO32RSB0
13 GFA0/IO122RSB1 49 TMS 85 IO22RSB0 14 VCCPLF 50 VMV1 86 IO19RSB0 15 GFA1/IO121RSB1 51 GND 87 VCCIB0 16 GFA2/IO120RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO15RSB0 20 GEB1/IO110RSB1 55 TRST 91 IO13RSB0 21 GEB0/IO198RS1 57 GDA1/IO65RSB0 93 IO09RSB0 22 GEA1/IO18RSB1 58 GDC0/IO62RSB0 94 IO07RSB0 23 GEA0/IO17RSB1 59 GDC1/IO61RSB0 95 GAC1/IO05RSB0 24 VMV1 60 GCC2/IO59RSB0 96 GAC0/IO04RSB0 24 GE2/IO105RSB1 63 GCA1/IO55RSB0 98 GAB0/IO02RSB0 25 GNDQ 61 GCC2/IO59RSB0 98 <td< td=""><td>11</td><td>GFB0/IO123RSB1</td><td>47</td><td>ТСК</td><td>83</td><td>IO28RSB0</td></td<>	11	GFB0/IO123RSB1	47	ТСК	83	IO28RSB0
14 VCCPLF 50 VMV1 86 I019RSB0 15 GFA1/IO121RSB1 51 GND 87 VCCIB0 16 GFA2/IO120RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCB1 54 TDO 90 I015RSB0 19 GEC0/IO111RSB1 55 TRST 91 I013RSB0 20 GEB1/IO110RSB1 56 VJTAG 92 IO11RSB0 21 GEB0/IO109RSB1 57 GDA1/IO65RSB0 93 I009RSB0 23 GEA0/IO17RSB1 59 GDC1/IO61RSB0 95 GAC1/IO05RSB0 24 VMV1 60 GCC2/IO59RSB0 96 GAC0/IO04RSB0 25 GNDQ 61 GCB2/IO58RSB0 97 GAB1/IO03RSB0 26 GEA2/IO106RSB1 63 GCC1/IO57RSB0 98 GAA0/IO00RSB0 29 IO102RSB1 64 GCC0/IO52RSB0 100	12	VCOMPLF	48	TDI	84	IO25RSB0
15 GFA1/I0121RSB1 51 GND 87 VCCIB0 16 GFA2/I0120RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 I015RSB0 19 GEC0/I0111RSB1 55 TRST 91 I013RSB0 20 GEB1/I0110RSB1 56 VJTAG 92 I011RSB0 21 GEB0/I0109RSB1 57 GDA1/I065RSB0 93 I009RSB0 22 GEA1/I010RSB1 58 GDC0/I062RSB0 94 I007RSB0 23 GEA0/I0107RSB1 59 GDC1/I061RSB0 95 GAC1/I005RSB0 24 VMV1 60 GCC2/I059RSB0 96 GAC0/I004RSB0 25 GNDQ 61 GCB2/I058RSB0 97 GAB1/I003RSB0 26 GEA2/I0106RSB1 63 GCC1/I051RSB0 98 GAB0/I002RSB0 30 I0102RSB1 65 GCC1/I051RSB0 <	13	GFA0/IO122RSB1	49	TMS	85	IO22RSB0
16 GFA2/IO120RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO15RSB0 19 GEC0/IO111RSB1 55 TRST 91 IO13RSB0 20 GEB1/IO110RSB1 56 VJTAG 92 IO11RSB0 21 GEB0/IO109RSB1 57 GDA1/IO65RSB0 93 IO09RSB0 23 GEA0/IO17RSB1 59 GDC1/IO61RSB0 95 GAC1/IO05RSB0 24 VMV1 60 GCC2/IO59RSB0 96 GAC0/IO04RSB0 25 GNDQ 61 GCB2/IO58RSB0 96 GAC0/IO04RSB0 25 GNDQ 61 GCC2/IO58RSB0 97 GAB1/IO03RSB0 26 GEA2/IO106RSB1 63 GCA1/IO55RSB0 98 GAB0/IO02RSB0 29 IO102RSB1 66 VCCIB0 100 GAA0/IO00RSB0 31 IO99RSB1 67 GND 100 <td>14</td> <td>VCCPLF</td> <td>50</td> <td>VMV1</td> <td>86</td> <td>IO19RSB0</td>	14	VCCPLF	50	VMV1	86	IO19RSB0
17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 I015RSB0 19 GEC0/IO111RSB1 55 TRST 91 I013RSB0 20 GEB1/IO110RSB1 56 VJTAG 92 IO11RSB0 21 GEB0/IO109RSB1 57 GDA1/IO65RSB0 93 IO09RSB0 23 GEA0/IO107RSB1 59 GDC1/IO61RSB0 95 GAC1/IO05RSB0 24 VMV1 60 GCC2/IO59RSB0 96 GAC0/IO04RSB0 26 GEA2/IO106RSB1 62 GCA0/IO56RSB0 98 GAB0/IO02RSB0 27 GEB2/IO105RSB1 63 GCC1/IO51RSB0 98 GAB0/IO02RSB0 28 GEC2/IO104RSB1 64 GCC0/IO52RSB0 99 GAA1/IO01RSB0 30 IO100RSB1 66 VCCIB0 100 GAA0/IO00RSB0 31 IO99RSB1 67 GND 100 GAA0/IO00RSB0 32 IO97RSB1 68 VCC<	15	GFA1/IO121RSB1	51	GND	87	VCCIB0
18 VCCIB1 54 TDO 90 IO15RSB0 19 GEC0/IO111RSB1 55 TRST 91 IO13RSB0 20 GEB1/IO110RSB1 56 VJTAG 92 IO11RSB0 21 GEB0/IO109RSB1 57 GDA1/IO65RSB0 93 IO09RSB0 22 GEA1/IO108RSB1 58 GDC0/IO62RSB0 94 IO07RSB0 23 GEA0/IO107RSB1 59 GDC1/IO61RSB0 95 GAC1/IO05RSB0 24 VMV1 60 GCC2/IO59RSB0 96 GAC0/IO04RSB0 26 GEA2/IO106RSB1 62 GCA0/IO56RSB0 98 GAB0/IO02RSB0 27 GEB2/IO105RSB1 63 GCC1/IO51RSB0 99 GAA1/IO01RSB0 28 GEC2/IO104RSB1 64 GCC0/IO52RSB0 99 GAA0/IO00RSB0 30 IO100RSB1 66 VCCIB0 100 GAA0/IO00RSB0 31 IO99RSB1 67 GND 100 GAA0/IO00RSB0 32 IO97RSB1 <	16	GFA2/IO120RSB1	52	VPUMP	88	GND
19 GEC0/IO111RSB1 55 TRST 91 IO13RSB0 20 GEB1/IO110RSB1 56 VJTAG 92 IO11RSB0 21 GEB0/IO109RSB1 57 GDA1/IO65RSB0 93 IO09RSB0 22 GEA1/IO108RSB1 58 GDC0/IO62RSB0 94 IO07RSB0 23 GEA0/IO107RSB1 59 GDC1/IO61RSB0 95 GAC1/IO05RSB0 24 VMV1 60 GCC2/IO59RSB0 96 GAC0/IO04RSB0 25 GNDQ 61 GCB2/IO58RSB0 98 GAB0/IO02RSB0 26 GEA2/IO106RSB1 62 GCA0/IO56RSB0 98 GAB0/IO02RSB0 27 GEB2/IO105RSB1 63 GCA1/IO55RSB0 99 GAA1/IO01RSB0 28 GEC2/IO14RSB1 64 GCC0/IO52RSB0 100 GAA0/IO00RSB0 30 IO100RSB1 66 VCCIB0 100 GAA0/IO00RSB0 31 IO99RSB1 67 GND 100 GAA0/IO00RSB0 32 IO97RSB1 </td <td>17</td> <td>VCC</td> <td>53</td> <td>NC</td> <td>89</td> <td>VCC</td>	17	VCC	53	NC	89	VCC
20 GEB1/I0110RSB1 56 VJTAG 92 I011RSB0 21 GEB0/I0109RSB1 57 GDA1/I065RSB0 93 I009RSB0 22 GEA1/I0108RSB1 58 GDC0/I062RSB0 94 I007RSB0 23 GEA0/I0107RSB1 59 GDC1/I061RSB0 95 GAC1/I005RSB0 24 VMV1 60 GCC2/I059RSB0 96 GAC0/I004RSB0 25 GNDQ 61 GCB2/I058RSB0 97 GAB1/I003RSB0 26 GEA2/I0106RSB1 62 GCA0/I056RSB0 98 GAB0/I002RSB0 27 GEB2/I0105RSB1 63 GCA1/I055RSB0 99 GAA1/I001RSB0 28 GEC2/I014RSB1 64 GCC0/I052RSB0 100 GAA0/I000RSB0 30 I0100RSB1 66 VCCIB0 100 GAA0/I000RSB0 31 I099RSB1 67 GND 1047RSB0 100 GAA0/I000RSB0 33 I096RSB1 69 I047RSB0 1047RSB0 100 SA40/I000RSB0 <	18	VCCIB1	54	TDO	90	IO15RSB0
21 GEB0/IO109RSB1 57 GDA1/IO65RSB0 93 IO09RSB0 22 GEA1/IO108RSB1 58 GDC0/IO62RSB0 94 IO07RSB0 23 GEA0/IO107RSB1 59 GDC1/IO61RSB0 95 GAC1/IO05RSB0 24 VMV1 60 GCC2/IO59RSB0 96 GAC0/IO04RSB0 25 GNDQ 61 GCB2/IO58RSB0 97 GAB1/IO03RSB0 26 GEA2/IO106RSB1 62 GCA0/IO56RSB0 98 GAB0/IO02RSB0 28 GEC2/IO104RSB1 64 GCC0/IO52RSB0 99 GAA1/IO01RSB0 30 IO100RSB1 66 VCCIB0 100 GAA0/IO00RSB0 31 IO99RSB1 66 VCC 100 GAA0/IO00RSB0 32 IO97RSB1 68 VCC 33 IO96RSB1 69 IO47RSB0 34 IO95RSB1 70 GBC2/IO45RSB0 GBC2/IO45RSB0 IS IS 35 IO94RSB1 71 GBB2/IO43RSB0 IS IS	19	GEC0/IO111RSB1	55	TRST	91	IO13RSB0
22 GEA1/IO108RSB1 58 GDC0/IO62RSB0 94 IO07RSB0 23 GEA0/IO107RSB1 59 GDC1/IO61RSB0 95 GAC1/IO05RSB0 24 VMV1 60 GCC2/IO59RSB0 96 GAC0/IO4RSB0 25 GNDQ 61 GCB2/IO58RSB0 96 GAC0/IO4RSB0 26 GEA2/IO106RSB1 62 GCA0/IO56RSB0 98 GAB0/IO02RSB0 27 GEB2/IO105RSB1 63 GCC1/IO51RSB0 99 GAA1/IO01RSB0 28 GEC2/IO104RSB1 65 GCC1/IO51RSB0 99 GAA0/IO00RSB0 30 IO102RSB1 66 VCCIB0 100 GAA0/IO00RSB0 31 IO99RSB1 67 GND 33 IO96RSB1 69 IO47RSB0 33 IO96RSB1 69 IO47RSB0 34 IO95RSB1 70 GBC2/IO45RSB0 35 IO94RSB1 71 GBB2/IO43RSB0 34 IO94RSB1 71	20	GEB1/IO110RSB1	56	VJTAG	92	IO11RSB0
23 GEA0/IO107RSB1 59 GDC1/IO61RSB0 95 GAC1/IO05RSB0 24 VMV1 60 GCC2/IO59RSB0 96 GAC0/IO04RSB0 25 GNDQ 61 GCB2/IO58RSB0 97 GAB1/IO03RSB0 26 GEA2/IO106RSB1 62 GCA0/IO56RSB0 98 GAB0/IO02RSB0 27 GEB2/IO105RSB1 63 GCA1/IO55RSB0 99 GAA1/IO01RSB0 28 GEC2/IO104RSB1 64 GCC0/IO52RSB0 100 GAA0/IO00RSB0 30 IO102RSB1 65 GCC1/IO51RSB0 100 GAA0/IO00RSB0 31 IO99RSB1 67 GND 68 VCC 33 IO96RSB1 69 IO47RSB0 54 54 34 IO95RSB1 70 GB2/IO43RSB0 54 54 35 IO94RSB1 71 GBB2/IO43RSB0 54 54	21	GEB0/IO109RSB1	57	GDA1/IO65RSB0	93	IO09RSB0
24 VMV1 60 GCC2/IO59RSB0 96 GAC0/IO04RSB0 25 GNDQ 61 GCB2/IO58RSB0 97 GAB1/IO03RSB0 26 GEA2/IO106RSB1 62 GCA0/IO56RSB0 98 GAB0/IO02RSB0 27 GEB2/IO105RSB1 63 GCA1/IO55RSB0 99 GAA1/IO01RSB0 28 GEC2/IO104RSB1 64 GCC0/IO52RSB0 99 GAA1/IO01RSB0 29 IO102RSB1 65 GCC1/IO51RSB0 100 GAA0/IO00RSB0 30 IO100RSB1 66 VCCIB0 100 GAA0/IO00RSB0 31 IO99RSB1 67 GND 5 SVCC 33 IO96RSB1 69 IO47RSB0 5 SVCC 34 IO95RSB1 70 GBC2/IO43RSB0 S S S S 35 IO94RSB1 71 GBB2/IO43RSB0 S S S S S	22	GEA1/IO108RSB1	58	GDC0/IO62RSB0	94	IO07RSB0
25 GNDQ 61 GCB2/IO58RSB0 97 GAB1/IO03RSB0 26 GEA2/IO106RSB1 62 GCA0/IO56RSB0 98 GAB0/IO02RSB0 27 GEB2/IO105RSB1 63 GCA1/IO55RSB0 99 GAA1/IO01RSB0 28 GEC2/IO104RSB1 64 GCC0/IO52RSB0 100 GAA0/IO00RSB0 29 IO102RSB1 65 GCC1/IO51RSB0 100 GAA0/IO00RSB0 30 IO100RSB1 66 VCCIB0 100 GAA0/IO00RSB0 31 IO99RSB1 67 GND 53 IO97RSB1 68 VCC 33 IO96RSB1 69 IO47RSB0 1047RSB0 1047RSB0 34 IO95RSB1 70 GBC2/IO45RSB0 1047RSB0 35 IO94RSB1 71 GBB2/IO43RSB0 1043RSB0	23	GEA0/IO107RSB1	59	GDC1/IO61RSB0	95	GAC1/IO05RSB0
26 GEA2/IO106RSB1 62 GCA0/IO56RSB0 98 GAB0/IO02RSB0 27 GEB2/IO105RSB1 63 GCA1/IO55RSB0 99 GAA1/IO01RSB0 28 GEC2/IO104RSB1 64 GCC0/IO52RSB0 100 GAA0/IO00RSB0 29 IO102RSB1 65 GCC1/IO51RSB0 100 GAA0/IO00RSB0 30 IO100RSB1 66 VCCIB0 100 GAA0/IO00RSB0 31 IO99RSB1 67 GND 53 VCC 33 IO96RSB1 69 IO47RSB0 54 VCC 34 IO95RSB1 70 GBB2/IO43RSB0 54 VCC 35 IO94RSB1 71 GBB2/IO43RSB0 54 VCC	24	VMV1	60	GCC2/IO59RSB0	96	GAC0/IO04RSB0
27 GEB2/IO105RSB1 63 GCA1/IO55RSB0 99 GAA1/IO01RSB0 28 GEC2/IO104RSB1 64 GCC0/IO52RSB0 100 GAA0/IO00RSB0 29 IO102RSB1 65 GCC1/IO51RSB0 100 GAA0/IO00RSB0 30 IO100RSB1 66 VCCIB0 100 GAA0/IO00RSB0 31 IO99RSB1 67 GND 10107RSB1 68 VCC 33 IO96RSB1 69 IO47RSB0 1047RSB0 1095RSB1 1094RSB1 70 GBC2/IO45RSB0 100	25	GNDQ	61	GCB2/IO58RSB0	97	GAB1/IO03RSB0
28 GEC2/IO104RSB1 64 GCC0/IO52RSB0 100 GAA0/IO00RSB0 29 IO102RSB1 65 GCC1/IO51RSB0 100 GAA0/IO00RSB0 30 IO100RSB1 66 VCCIB0 100 GAA0/IO00RSB0 31 IO99RSB1 67 GND 100 GAA0/IO00RSB0 32 IO97RSB1 68 VCC 100 GAA0/IO00RSB0 33 IO96RSB1 69 IO47RSB0 100 GBC2/IO45RSB0 34 IO95RSB1 70 GBC2/IO45RSB0 100 IO43RSB0 35 IO94RSB1 71 GBB2/IO43RSB0 IO43RSB0	26	GEA2/IO106RSB1	62	GCA0/IO56RSB0	98	GAB0/IO02RSB0
29 IO102RSB1 65 GCC1/IO51RSB0 30 IO100RSB1 66 VCCIB0 31 IO99RSB1 67 GND 32 IO97RSB1 68 VCC 33 IO96RSB1 69 IO47RSB0 34 IO95RSB1 70 GBC2/IO45RSB0 35 IO94RSB1 71 GBB2/IO43RSB0	27	GEB2/IO105RSB1	63	GCA1/IO55RSB0	99	GAA1/IO01RSB0
30 IO100RSB1 66 VCCIB0 31 IO99RSB1 67 GND 32 IO97RSB1 68 VCC 33 IO96RSB1 69 IO47RSB0 34 IO95RSB1 70 GBC2/IO45RSB0 35 IO94RSB1 71 GBB2/IO43RSB0	28	GEC2/IO104RSB1	64	GCC0/IO52RSB0	100	GAA0/IO00RSB0
31 IO99RSB1 67 GND 32 IO97RSB1 68 VCC 33 IO96RSB1 69 IO47RSB0 34 IO95RSB1 70 GBC2/IO45RSB0 35 IO94RSB1 71 GBB2/IO43RSB0	29	IO102RSB1	65	GCC1/IO51RSB0		•
32 IO97RSB1 68 VCC 33 IO96RSB1 69 IO47RSB0 34 IO95RSB1 70 GBC2/IO45RSB0 35 IO94RSB1 71 GBB2/IO43RSB0	30	IO100RSB1	66	VCCIB0		
33 IO96RSB1 69 IO47RSB0 34 IO95RSB1 70 GBC2/IO45RSB0 35 IO94RSB1 71 GBB2/IO43RSB0	31	IO99RSB1	67	GND		
34 IO95RSB1 70 GBC2/IO45RSB0 35 IO94RSB1 71 GBB2/IO43RSB0	32	IO97RSB1	68	VCC		
35 IO94RSB1 71 GBB2/IO43RSB0	33	IO96RSB1	69	IO47RSB0		
	34	IO95RSB1	70	GBC2/IO45RSB0		
36 IO93RSB1 72 IO42RSB0	35	IO94RSB1	71	GBB2/IO43RSB0		
	36	IO93RSB1	72	IO42RSB0		

🌜 Microsemi.

Package Pin Assignments

F	G144	F	G144	F	G144
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
A1	GNDQ	D1	IO128RSB1	G1	GFA1/IO121RSB1
A2	VMV0	D2	IO129RSB1	G2	GND
A3	GAB0/IO02RSB0	D3	IO130RSB1	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO67RSB1	G4	GFA0/IO122RSB1
A5	IO11RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO18RSB0	D7	GBC0/IO35RSB0	G7	GND
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO61RSB0
A9	IO25RSB0	D9	GBB2/IO43RSB0	G9	IO48RSB0
A10	GBA0/IO39RSB0	D10	IO28RSB0	G10	GCC2/IO59RSB0
A11	GBA1/IO40RSB0	D11	IO44RSB0	G11	IO47RSB0
A12	GNDQ	D12	GCB1/IO53RSB0	G12	GCB2/IO58RSB0
B1	GAB2/IO69RSB1	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO125RSB1	H2	GFB2/IO119RSB1
B3	GAA0/IO00RSB0	E3	GFC1/IO126RSB1	H3	GFC2/IO118RSB1
B4	GAA1/IO01RSB0	E4	VCCIB1	H4	GEC1/IO112RSB1
B5	IO08RSB0	E5	IO68RSB1	H5	VCC
B6	IO14RSB0	E6	VCCIB0	H6	IO50RSB0
B7	IO19RSB0	E7	VCCIB0	H7	IO60RSB0
B8	IO22RSB0	E8	GCC1/IO51RSB0	H8	GDB2/IO71RSB1
B9	GBB0/IO37RSB0	E9	VCCIB0	H9	GDC0/IO62RSB0
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB0
B11	GND	E11	GCA0/IO56RSB0	H11	IO49RSB0
B12	VMV0	E12	IO46RSB0	H12	VCC
C1	IO132RSB1	F1	GFB0/IO123RSB1	J1	GEB1/IO110RSB1
C2	GFA2/IO120RSB1	F2	VCOMPLF	J2	IO115RSB1
C3	GAC2/IO131RSB1	F3	GFB1/IO124RSB1	J3	VCCIB1
C4	VCC	F4	IO127RSB1	J4	GEC0/IO111RSB1
C5	IO10RSB0	F5	GND	J5	IO116RSB1
C6	IO12RSB0	F6	GND	J6	IO117RSB1
C7	IO21RSB0	F7	GND	J7	VCC
C8	IO24RSB0	F8	GCC0/IO52RSB0	J8	ТСК
C9	IO27RSB0	F9	GCB0/IO54RSB0	J9	GDA2/IO70RSB1
C10	GBA2/IO41RSB0	F10	GND	J10	TDO
C11	IO42RSB0	F11	GCA1/IO55RSB0	J11	GDA1/IO65RSB0
C12	GBC2/IO45RSB0	F12	GCA2/IO57RSB0	J12	GDB1/IO63RSB0

	FG144
Pin Number	A3P400 Function
K1	GEB0/IO136NDB3
K2	GEA1/IO135PDB3
K3	GEA0/IO135NDB3
K4	GEA2/IO134RSB2
K5	IO127RSB2
K6	IO121RSB2
K7	GND
K8	IO104RSB2
K9	GDC2/IO82RSB2
K10	GND
K11	GDA0/IO79VDB1
K12	GDB0/IO78VDB1
L1	GND
L2	VMV3
L3	GEB2/IO133RSB2
L4	IO128RSB2
L5	VCCIB2
L6	IO119RSB2
L7	IO114RSB2
L8	IO110RSB2
L9	TMS
L10	VJTAG
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO132RSB2
M3	IO129RSB2
M4	IO126RSB2
M5	IO124RSB2
M6	IO122RSB2
M7	IO117RSB2
M8	IO115RSB2
M9	TDI
M10	VCCIB2
M11	VPUMP
M12	GNDQ

🌜 Microsemi.

Package Pin Assignments

	FG484		FG484		FG484
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
A1	GND	B15	IO63RSB0	D7	GAB0/IO02RSB0
A2	GND	B16	IO66RSB0	D8	IO16RSB0
A3	VCCIB0	B17	IO68RSB0	D9	IO22RSB0
A4	IO07RSB0	B18	IO70RSB0	D10	IO28RSB0
A5	IO09RSB0	B19	NC	D11	IO35RSB0
A6	IO13RSB0	B20	NC	D12	IO45RSB0
A7	IO18RSB0	B21	VCCIB1	D13	IO50RSB0
A8	IO20RSB0	B22	GND	D14	IO55RSB0
A9	IO26RSB0	C1	VCCIB3	D15	IO61RSB0
A10	IO32RSB0	C2	IO220PDB3	D16	GBB1/IO75RSB0
A11	IO40RSB0	C3	NC	D17	GBA0/IO76RSB0
A12	IO41RSB0	C4	NC	D18	GBA1/IO77RSB0
A13	IO53RSB0	C5	GND	D19	GND
A14	IO59RSB0	C6	IO10RSB0	D20	NC
A15	IO64RSB0	C7	IO14RSB0	D21	NC
A16	IO65RSB0	C8	VCC	D22	NC
A17	IO67RSB0	C9	VCC	E1	IO219NDB3
A18	IO69RSB0	C10	IO30RSB0	E2	NC
A19	NC	C11	IO37RSB0	E3	GND
A20	VCCIB0	C12	IO43RSB0	E4	GAB2/IO224PDB3
A21	GND	C13	NC	E5	GAA2/IO225PDB3
A22	GND	C14	VCC	E6	GNDQ
B1	GND	C15	VCC	E7	GAB1/IO03RSB0
B2	VCCIB3	C16	NC	E8	IO17RSB0
B3	NC	C17	NC	E9	IO21RSB0
B4	IO06RSB0	C18	GND	E10	IO27RSB0
B5	IO08RSB0	C19	NC	E11	IO34RSB0
B6	IO12RSB0	C20	NC	E12	IO44RSB0
B7	IO15RSB0	C21	NC	E13	IO51RSB0
B8	IO19RSB0	C22	VCCIB1	E14	IO57RSB0
B9	IO24RSB0	D1	IO219PDB3	E15	GBC1/IO73RSB0
B10	IO31RSB0	D2	IO220NDB3	E16	GBB0/IO74RSB0
B11	IO39RSB0	D3	NC	E17	IO71RSB0
B12	IO48RSB0	D4	GND	E18	GBA2/IO78PDB1
B13	IO54RSB0	D5	GAA0/IO00RSB0	E19	IO81PDB1
B14	IO58RSB0	D6	GAA1/IO01RSB0	E20	GND

Revision	Changes	Page
Revision 13 (January 2013)	The "ProASIC3 Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43104).	1-IV
	Added a note to Table 2-2 • Recommended Operating Conditions 1 (SAR 43644): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	2-2
	The note in Table 2-115 • ProASIC3 CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42569).	2-90
	Libero Integrated Design Environment (IDE) was changed to Libero System-on- Chip (SoC) throughout the document (SAR 40284). Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 12 (September 2012)	The Security section was modified to clarify that Microsemi does not support read-back of programmed data.	1-1
	Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information" to Table 2-1 • Absolute Maximum Ratings and Table 2-2 • Recommended Operating Conditions 1 (SAR 38321).	2-1 2-2
	Table 2-35 • Duration of Short Circuit Event Before Failure was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37933).	2-31
	In Table 2-93 • Minimum and Maximum DC Input and Output Levels, VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 28549).	2-68
	Figure 2-37 • FIFO Read and Figure 2-38 • FIFO Write are new (SAR 28371).	2-99
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38321). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Information

Revision	Changes	Page
Revision 5 (Aug 2008) DC and Switching Characteristics v1.3	TJ, Maximum Junction Temperature, was changed to 100° from 110° in the "Thermal Characteristics" section and EQ 1. The calculated result of Maximum Power Allowed has thus changed to 1.463 W from 1.951 W.	2-6
	Values for the A3P015 device were added to Table 2-7 • Quiescent Supply Current Characteristics.	2-7
	Values for the A3P015 device were added to Table 2-14 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices. P_{AC14} was removed. Table 2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices is new.	2-11, 2-12
	The "PLL Contribution—PPLL" section was updated to change the P _{PLL} formula from $P_{AC13} + P_{AC14} * F_{CLKOUT}$ to $P_{DC4} + P_{AC13} * F_{CLKOUT}$.	2-14
	Both fall and rise values were included for $t_{\mbox{DDRISUD}}$ and $t_{\mbox{DDRIHD}}$ in Table 2-102 \bullet Input DDR Propagation Delays.	2-78
	Table 2-107 • A3P015 Global Resource is new.	2-86
	The typical value for Delay Increments in Programmable Delay Blocks was changed from 160 to 200 in Table 2-115 • ProASIC3 CCC/PLL Specification.	2-90
Revision 4 (Jun 2008) DC and Switching Characteristics v1.2	Table note references were added to Table 2-2 • Recommended Operating Conditions 1, and the order of the table notes was changed.	2-2
	The title for Table 2-4 • Overshoot and Undershoot Limits 1 was modified to remove "as measured on quiet I/Os." Table note 1 was revised to remove "estimated SSO density over cycles." Table note 2 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching I/Os."	2-3
	The "Power per I/O Pin" section was updated to include 3 additional tables pertaining to input buffer power and output buffer power.	2-7
	Table 2-29 • I/O Output Buffer Maximum Resistances 1 was revised to include values for 3.3 V PCI/PCI-X.	2-27
	Table 2-90 • LVDS Minimum and Maximum DC Input and Output Levels was updated.	2-66
Revision 3 (Jun 2008) Packaging v1.3	Pin numbers were added to the "QN68 – Bottom View" package diagram. Note 2 was added below the diagram.	4-3
	The "QN132 – Bottom View" package diagram was updated to include D1 to D4. In addition, note 1 was changed from top view to bottom view, and note 2 is new.	4-6
Revision 2 (Feb 2008) Product Brief v1.0	This document was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview.	N/A
	This document was updated to include A3P015 device information. QN68 is a new package that was added because it is offered in the A3P015. The following sections were updated:	N/A
	"Features and Benefits"	
	"ProASIC3 Ordering Information"	
	"Temperature Grade Offerings"	
	"ProASIC3 Flash Family FPGAs"	
	"A3P015 and A3P030" note	
	Introduction and Overview (NA)	

Revision	Changes	Page
Revision 2 (cont'd)	The "ProASIC3 FPGAs Package Sizes Dimensions" table is new.	Ш
	In the "ProASIC3 Ordering Information", the QN package measurements were updated to include both 0.4 mm and 0.5 mm.	IV
	In the General Description section the number of I/Os was updated from 288 to 300.	1-1
Packaging v1.2	The "QN68 – Bottom View" section is new.	4-3
Revision 1 (Feb 2008) DC and Switching Characteristics v1.1	In Table 2-2 • Recommended Operating Conditions 1, T_J was listed in the symbol column and was incorrect. It was corrected and changed to T_A .	2-2
	In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades.	2-3
	The "PLL Behavior at Brownout Condition" section is new.	2-4
	In the "PLL Contribution—PPLL" section, the following was deleted: FCLKIN is the input clock frequency.	2-14
	In Table 2-21 • Summary of Maximum and Minimum DC Input Levels, the note was incorrect. It previously said T_J and it was corrected and changed to T_A .	2-21
	In Table 2-115 • ProASIC3 CCC/PLL Specification, the SCLK parameter and note 1 are new.	2-90
	Table 2-125 • JTAG 1532 was populated with the parameter data, which was not in the previous version of the document.	2-108
Packaging v1.1	In the "VQ100" A3P030 pin table, the function of pin 63 was incorrect and changed from IO39RSB0 to GDB0/IO38RSB0.	4-19
Revision 0 (Jan 2008)	This document was previously in datasheet v2.2. As a result of moving to the handbook format, Actel has restarted the version numbers.	N/A
v2.2 (July 2007)	The M7 and M1 device part numbers have been updated in Table 1 • ProASIC3 Product Family, "I/Os Per Package", "Automotive ProASIC3 Ordering Information", "Temperature Grade Offerings", and "Speed Grade and Temperature Grade Matrix".	i, ii, iii, iii, iv
	The words "ambient temperature" were added to the temperature range in the "Automotive ProASIC3 Ordering Information", "Temperature Grade Offerings", and "Speed Grade and Temperature Grade Matrix" sections.	iii, iv
	The T _J parameter in Table 3-2 \cdot Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 4–6 were added.	3-2
v2.1 (May 2007)	In the "Clock Conditioning Circuit (CCC) and PLL" section, the Wide Input Frequency Range (1.5 MHz to 200 MHz) was changed to (1.5 MHz to 350 MHz).	i
	The "Clock Conditioning Circuit (CCC) and PLL" section was updated.	i
	In the "I/Os Per Package" section, the A3P030, A3P060, A3P125, ACP250, and A3P600 device I/Os were updated.	ii
	Table 3-5 • Package Thermal Resistivities was updated with A3P1000information. The note below the table is also new.	3-5

Revision	Changes	Page
Advance v0.2, (continued)	Table 2-43 was updated.	2-64
	Table 2-18 was updated.	2-45
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "User I/O Naming Convention" section was updated.	2-48
	Table 3-7 was updated.	3-6
	The "Methodology" section was updated.	3-10
	Table 3-40 and Table 3-39 were updated.	3-33,3-32
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68