E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	68
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p250-2vq100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 – ProASIC3 DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 • Absolute Maximum Ratings	Table 2-1 •	Absolute	Maximum	Ratings
--------------------------------------	-------------	----------	---------	---------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	–0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	–0.3 to 1.65	V
VCCI	DC I/O output buffer supply voltage	-0.3 to 3.75	V
VMV	DC I/O input buffer supply voltage	–0.3 to 3.75	V
VI	I/O input voltage	–0.3 V to 3.6 V	V
		(when I/O hot insertion mode is enabled)	
		-0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)	
T _{STG} ²	Storage temperature	-65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every ProASIC[®]3 device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges.

In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-2 on page 2-5.

There are five regions to consider during power-up.

ProASIC3 I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

```
Ramping up: 0.6 V < trip_point_up < 1.2 V
Ramping down: 0.5 V < trip_point_down < 1.1 V
```

VCC Trip Point:

```
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
```

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLLX exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/Down Behavior of Low Power Flash Devices" chapter of the *ProASIC3 FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers

Output buffers, after 200 ns delay from input buffer activation.

Thermal Characteristics

Introduction

The temperature variable in the Microsemi Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ can be used to calculate junction temperature.

 T_J = Junction Temperature = $\Delta T + T_A$

where:

T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ia} = Junction-to-ambient of the package. θ_{ia} numbers are located in Table 2-5 on page 2-6.

P = Power dissipation

Table 2-29 • I/O Output Buffer Maximum Resistances ¹ Applicable to Standard Plus I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V	2 mA	100	300
LVCMOS	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	25	75
3.3 V LVCMOS Wide Range ⁴	100 µA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
1.5 V LVCMOS	2 mA	200	224
Γ	4 mA	100	112
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

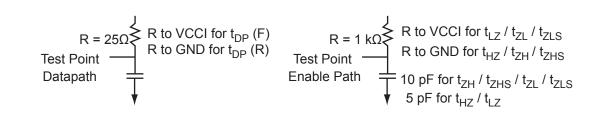
4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

^{2.} R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

^{3.} R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.


3.3 V PCI/PCI-X VIL		ΊL	VIH		VOL	L VOH		ЮН	IOSL	IOSH	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max,. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA²	μA²
Per PCI specification	Per PCI curves					10	10					

Notes:

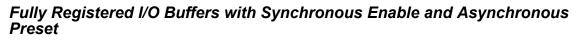
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-11.

Figure 2-11 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-87.


Table 2-87 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}	10
		0.615 * VCCI for t _{DP(F)}	

Note: *Measuring point = V_{trip.} See Table 2-22 on page 2-22 for a complete table of trip points.

I/O Register Specifications

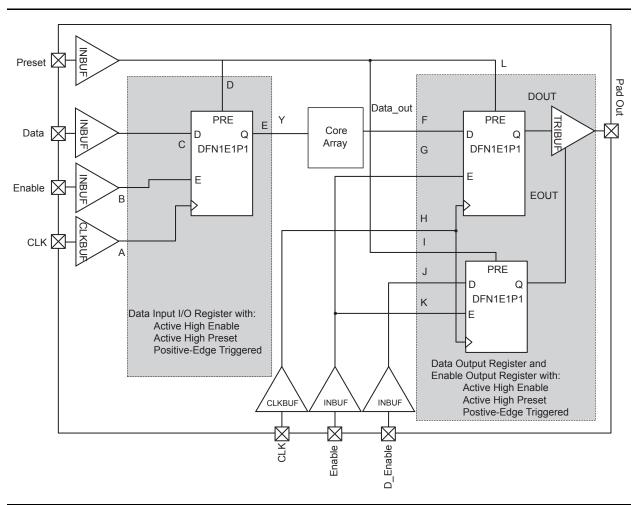
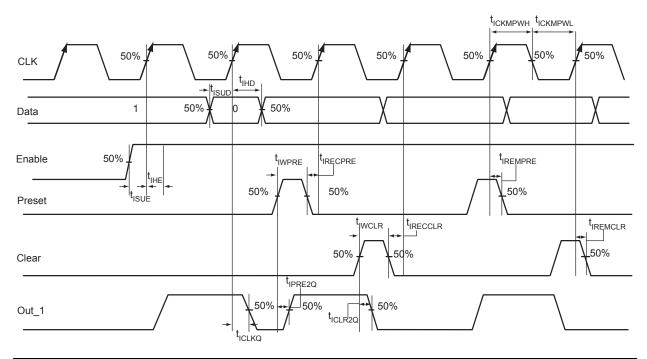
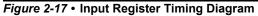




Figure 2-15 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Input Register

Timing Characteristics

Table 2-98 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.27	0.32	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.26	0.30	0.35	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.37	0.42	0.50	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.32	0.37	0.43	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-109 • A3P060 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		-	-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock	0.71	0.93	0.81	1.05	0.95	1.24	ns	
t _{RCKH}	Input High Delay for Global Clock	0.70	0.96	0.80	1.09	0.94	1.28	ns	
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns	
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns	
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns	

Microse

Power Matters.

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

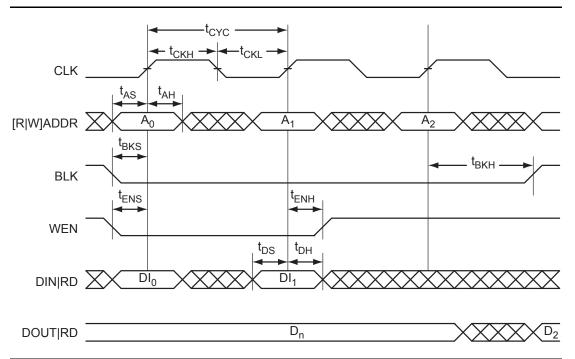
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

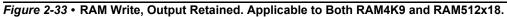
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

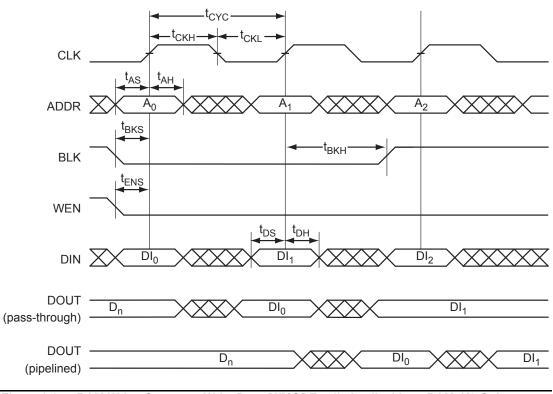
Table 2-110 • A3P125 Global Resource

```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V
```

		-	-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock	0.77	0.99	0.87	1.12	1.03	1.32	ns	
t _{RCKH}	Input High Delay for Global Clock	0.76	1.02	0.87	1.16	1.02	1.37	ns	
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.75		0.85		1.00		ns	
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		0.96		1.13		ns	
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns	


Notes:


1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).


2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Figure 2-34 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.13	0.15	0.17	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{DS}	Input data (WD) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (WD) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	2.16	2.46	2.89	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	0.90	1.02	1.20	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.50	0.43	0.38	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address—Applicable to Opening Edge	0.59	0.50	0.44	ns
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to data out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Table 2-117 • RAM512X18

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

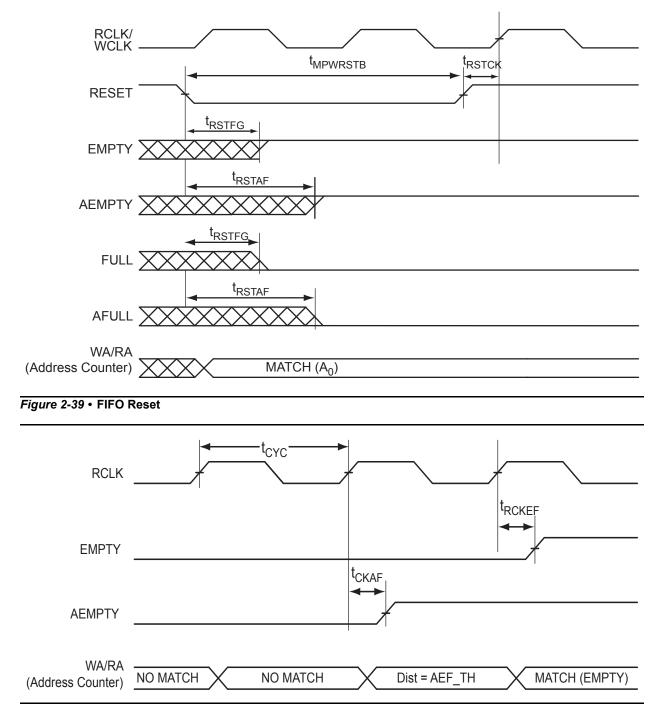


Figure 2-40 • FIFO EMPTY Flag and AEMPTY Flag Assertion

Table 2-119 • FIFO (for A3P250 only, aspect-ratio-dependent)Worst Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	3.26	3.71	4.36	ns
t _{ENH}	REN, WEN Hold Time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup Time	0.19	0.22	0.26	ns
t _{BKH}	BLK Hold Time	0.00	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.18	0.21	0.25	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.92	1.05	1.23	ns
	RESET Low to Data Out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle Time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	MHz

A3P060 Function GND NC GCB2/IO45RSB0 GND GCB0/IO41RSB0 GCC1/IO38RSB0 GND GBB2/IO30RSB0 VMV0 GBA0/IO26RSB0 GBC1/IO23RSB0 GND IO20RSB0 IO17RSB0 GND IO12RSB0 GAC0/IO09RSB0 GND GAA1/IO06RSB0 GNDQ GAA2/IO02RSB1 IO95RSB1 VCC GFB1/IO87RSB1 GFA0/IO85RSB1 GFA2/IO83RSB1 IO80RSB1 VCCIB1 GEA1/IO73RSB1 GNDQ GEA2/IO71RSB1 IO68RSB1 VCCIB1 NC NC IO60RSB1

QN132			QN132	QN132		
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P0	
A1	GAB2/IO00RSB1	A37	GBB1/IO25RSB0	B25		
A2	IO93RSB1	A38	GBC0/IO22RSB0	B26		
A3	VCCIB1	A39	VCCIB0	B27	GCB2	
A4	GFC1/IO89RSB1	A40	IO21RSB0	B28		
A5	GFB0/IO86RSB1	A41	IO18RSB0	B29	GCBC	
A6	VCCPLF	A42	IO15RSB0	B30	GCC1	
A7	GFA1/IO84RSB1	A43	IO14RSB0	B31		
A8	GFC2/IO81RSB1	A44	IO11RSB0	B32	GBB2	
A9	IO78RSB1	A45	GAB1/IO08RSB0	B33		
A10	VCC	A46	NC	B34	GBAC	
A11	GEB1/IO75RSB1	A47	GAB0/IO07RSB0	B35	GBC1	
A12	GEA0/IO72RSB1	A48	IO04RSB0	B36		
A13	GEC2/IO69RSB1	B1	IO01RSB1	B37	IO	
A14	IO65RSB1	B2	GAC2/IO94RSB1	B38	IO	
A15	VCC	B3	GND	B39		
A16	IO64RSB1	B4	GFC0/IO88RSB1	B40	IO	
A17	IO63RSB1	B5	VCOMPLF	B41	GAC	
A18	IO62RSB1	B6	GND	B42		
A19	IO61RSB1	B7	GFB2/IO82RSB1	B43	GAA1	
A20	IO58RSB1	B8	IO79RSB1	B44		
A21	GDB2/IO55RSB1	B9	GND	C1	GAA2	
A22	NC	B10	GEB0/IO74RSB1	C2	IO	
A23	GDA2/IO54RSB1	B11	VMV1	C3		
A24	TDI	B12	GEB2/IO70RSB1	C4	GFB1	
A25	TRST	B13	IO67RSB1	C5	GFAC	
A26	GDC1/IO48RSB0	B14	GND	C6	GFA2	
A27	VCC	B15	NC	C7	IO	
A28	IO47RSB0	B16	NC	C8	\	
A29	GCC2/IO46RSB0	B17	GND	C9	GEA1	
A30	GCA2/IO44RSB0	B18	IO59RSB1	C10		
A31	GCA0/IO43RSB0	B19	GDC2/IO56RSB1	C11	GEA2	
A32	GCB1/IO40RSB0	B20	GND	C12	IO	
A33	IO36RSB0	B21	GNDQ	C13	\	
A34	VCC	B22	TMS	C14		
A35	IO31RSB0	B23	TDO	C15		
A36	GBA2/IO28RSB0	B24	GDC0/IO49RSB0	C16	IO	

Package Pin Assignments

VQ100		VQ100		VQ100	
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function
1	GND	37	VCC	73	GBA2/IO25RSB0
2	GAA2/IO51RSB1	38	GND	74	VMV0
3	IO52RSB1	39	VCCIB1	75	GNDQ
4	GAB2/IO53RSB1	40	IO60RSB1	76	GBA1/IO24RSB0
5	IO95RSB1	41	IO59RSB1	77	GBA0/IO23RSB0
6	GAC2/IO94RSB1	42	IO58RSB1	78	GBB1/IO22RSB0
7	IO93RSB1	43	IO57RSB1	79	GBB0/IO21RSB0
8	IO92RSB1	44	GDC2/IO56RSB1	80	GBC1/IO20RSB0
9	GND	45	GDB2/IO55RSB1	81	GBC0/IO19RSB0
10	GFB1/IO87RSB1	46	GDA2/IO54RSB1	82	IO18RSB0
11	GFB0/IO86RSB1	47	ТСК	83	IO17RSB0
12	VCOMPLF	48	TDI	84	IO15RSB0
13	GFA0/IO85RSB1	49	TMS	85	IO13RSB0
14	VCCPLF	50	VMV1	86	IO11RSB0
15	GFA1/IO84RSB1	51	GND	87	VCCIB0
16	GFA2/IO83RSB1	52	VPUMP	88	GND
17	VCC	53	NC	89	VCC
18	VCCIB1	54	TDO	90	IO10RSB0
19	GEC1/IO77RSB1	55	TRST	91	IO09RSB0
20	GEB1/IO75RSB1	56	VJTAG	92	IO08RSB0
21	GEB0/IO74RSB1	57	GDA1/IO49RSB0	93	GAC1/IO07RSB0
22	GEA1/IO73RSB1	58	GDC0/IO46RSB0	94	GAC0/IO06RSB0
23	GEA0/IO72RSB1	59	GDC1/IO45RSB0	95	GAB1/IO05RSB0
24	VMV1	60	GCC2/IO43RSB0	96	GAB0/IO04RSB0
25	GNDQ	61	GCB2/IO42RSB0	97	GAA1/IO03RSB0
26	GEA2/IO71RSB1	62	GCA0/IO40RSB0	98	GAA0/IO02RSB0
27	GEB2/IO70RSB1	63	GCA1/IO39RSB0	99	IO01RSB0
28	GEC2/IO69RSB1	64	GCC0/IO36RSB0	100	IO00RSB0
29	IO68RSB1	65	GCC1/IO35RSB0		-
30	IO67RSB1	66	VCCIB0		
31	IO66RSB1	67	GND		
32	IO65RSB1	68	VCC		
33	IO64RSB1	69	IO31RSB0		
34	IO63RSB1	70	GBC2/IO29RSB0		
35	IO62RSB1	71	GBB2/IO27RSB0		
36	IO61RSB1	72	IO26RSB0		

🌜 Microsemi.

Package Pin Assignments

	TQ144		TQ144 TQ		TQ144
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
1	GAA2/IO67RSB1	37	NC	73	VPUMP
2	IO68RSB1	38	GEA2/IO106RSB1	74	NC
3	GAB2/IO69RSB1	39	GEB2/IO105RSB1	75	TDO
4	IO132RSB1	40	GEC2/IO104RSB1	76	TRST
5	GAC2/IO131RSB1	41	IO103RSB1	77	VJTAG
6	IO130RSB1	42	IO102RSB1	78	GDA0/IO66RSB0
7	IO129RSB1	43	IO101RSB1	79	GDB0/IO64RSB0
8	IO128RSB1	44	IO100RSB1	80	GDB1/IO63RSB0
9	VCC	45	VCC	81	VCCIB0
10	GND	46	GND	82	GND
11	VCCIB1	47	VCCIB1	83	IO60RSB0
12	IO127RSB1	48	IO99RSB1	84	GCC2/IO59RSB0
13	GFC1/IO126RSB1	49	IO97RSB1	85	GCB2/IO58RSB0
14	GFC0/IO125RSB1	50	IO95RSB1	86	GCA2/IO57RSB0
15	GFB1/IO124RSB1	51	IO93RSB1	87	GCA0/IO56RSB0
16	GFB0/IO123RSB1	52	IO92RSB1	88	GCA1/IO55RSB0
17	VCOMPLF	53	IO90RSB1	89	GCB0/IO54RSB0
18	GFA0/IO122RSB1	54	IO88RSB1	90	GCB1/IO53RSB0
19	VCCPLF	55	IO86RSB1	91	GCC0/IO52RSB0
20	GFA1/IO121RSB1	56	IO84RSB1	92	GCC1/IO51RSB0
21	GFA2/IO120RSB1	57	IO83RSB1	93	IO50RSB0
22	GFB2/IO119RSB1	58	IO82RSB1	94	IO49RSB0
23	GFC2/IO118RSB1	59	IO81RSB1	95	NC
24	IO117RSB1	60	IO80RSB1	96	NC
25	IO116RSB1	61	IO79RSB1	97	NC
26	IO115RSB1	62	VCC	98	VCCIB0
27	GND	63	GND	99	GND
28	VCCIB1	64	VCCIB1	100	VCC
29	GEC1/IO112RSB1	65	GDC2/IO72RSB1	101	IO47RSB0
30	GEC0/IO111RSB1	66	GDB2/IO71RSB1	102	GBC2/IO45RSB0
31	GEB1/IO110RSB1	67	GDA2/IO70RSB1	103	IO44RSB0
32	GEB0/IO109RSB1	68	GNDQ	104	GBB2/IO43RSB0
33	GEA1/IO108RSB1	69	ТСК	105	IO42RSB0
34	GEA0/IO107RSB1	70	TDI	106	GBA2/IO41RSB0
35	VMV1	71	TMS	107	VMV0
36	GNDQ	72	VMV1	108	GNDQ

PQ208		PQ208		PQ208	
Pin Number	Pin Number A3P600 Function		A3P600 Function	Pin Number	A3P600 Function
1	GND	37	IO152PDB3	73	IO120RSB2
2	GAA2/IO174PDB3	38	IO152NDB3	74	IO119RSB2
3	IO174NDB3	39	IO150PSB3	75	IO118RSB2
4	GAB2/IO173PDB3	40	VCCIB3	76	IO117RSB2
5	IO173NDB3	41	GND	77	IO116RSB2
6	GAC2/IO172PDB3	42	IO147PDB3	78	IO115RSB2
7	IO172NDB3	43	IO147NDB3	79	IO114RSB2
8	IO171PDB3	44	GEC1/IO146PDB3	80	IO112RSB2
9	IO171NDB3	45	GEC0/IO146NDB3	81	GND
10	IO170PDB3	46	GEB1/IO145PDB3	82	IO111RSB2
11	IO170NDB3	47	GEB0/IO145NDB3	83	IO110RSB2
12	IO169PDB3	48	GEA1/IO144PDB3	84	IO109RSB2
13	IO169NDB3	49	GEA0/IO144NDB3	85	IO108RSB2
14	IO168PDB3	50	VMV3	86	IO107RSB2
15	IO168NDB3	51	GNDQ	87	IO106RSB2
16	VCC	52	GND	88	VCC
17	GND	53	VMV2	89	VCCIB2
18	VCCIB3	54	GEA2/IO143RSB2	90	IO104RSB2
19	IO166PDB3	55	GEB2/IO142RSB2	91	IO102RSB2
20	IO166NDB3	56	GEC2/IO141RSB2	92	IO100RSB2
21	GFC1/IO164PDB3	57	IO140RSB2	93	IO98RSB2
22	GFC0/IO164NDB3	58	IO139RSB2	94	IO96RSB2
23	GFB1/IO163PDB3	59	IO138RSB2	95	IO92RSB2
24	GFB0/IO163NDB3	60	IO137RSB2	96	GDC2/IO91RSB2
25	VCOMPLF	61	IO136RSB2	97	GND
26	GFA0/IO162NPB3	62	VCCIB2	98	GDB2/IO90RSB2
27	VCCPLF	63	IO135RSB2	99	GDA2/IO89RSB2
28	GFA1/IO162PPB3	64	IO133RSB2	100	GNDQ
29	GND	65	GND	101	ТСК
30	GFA2/IO161PDB3	66	IO131RSB2	102	TDI
31	IO161NDB3	67	IO129RSB2	103	TMS
32	GFB2/IO160PDB3	68	IO127RSB2	104	VMV2
33	IO160NDB3	69	IO125RSB2	105	GND
34	GFC2/IO159PDB3	70	IO123RSB2	106	VPUMP
35	IO159NDB3	71	VCC	107	GNDQ
36	VCC	72	VCCIB2	108	TDO

FG144				
Pin Number A3P060 Function				
K1	GEB0/IO74RSB1			
K2	GEA1/IO73RSB1			
К3	GEA0/IO72RSB1			
K4	GEA2/IO71RSB1			
K5	IO65RSB1			
K6	IO64RSB1			
K7	GND			
K8	IO57RSB1			
K9	GDC2/IO56RSB1			
K10	GND			
K11	GDA0/IO50RSB0			
K12	GDB0/IO48RSB0			
L1	GND			
L2	VMV1			
L3	GEB2/IO70RSB1			
L4	IO67RSB1			
L5	VCCIB1			
L6	IO62RSB1			
L7	IO59RSB1			
L8	IO58RSB1			
L9	TMS			
L10	VJTAG			
L11	VMV1			
L12	TRST			
M1	GNDQ			
M2	GEC2/IO69RSB1			
M3	IO68RSB1			
M4	IO66RSB1			
M5	IO63RSB1			
M6	IO61RSB1			
M7	IO60RSB1			
M8	NC			
M9	TDI			
M10	VCCIB1			
M11	VPUMP			
M12	GNDQ			

FG256		FG256		FG256	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
A1	GND	C5	GAC0/IO04RSB0	E9	IO24RSB0
A2	GAA0/IO00RSB0	C6	GAC1/IO05RSB0	E10	VCCIB0
A3	GAA1/IO01RSB0	C7	IO13RSB0	E11	VCCIB0
A4	GAB0/IO02RSB0	C8	IO17RSB0	E12	VMV1
A5	IO07RSB0	C9	IO22RSB0	E13	GBC2/IO43PDB1
A6	IO10RSB0	C10	IO27RSB0	E14	IO46RSB1
A7	IO11RSB0	C11	IO31RSB0	E15	NC
A8	IO15RSB0	C12	GBC0/IO35RSB0	E16	IO45PDB1
A9	IO20RSB0	C13	IO34RSB0	F1	IO113NDB3
A10	IO25RSB0	C14	NC	F2	IO112PPB3
A11	IO29RSB0	C15	IO42NPB1	F3	NC
A12	IO33RSB0	C16	IO44PDB1	F4	IO115VDB3
A13	GBB1/IO38RSB0	D1	IO114VDB3	F5	VCCIB3
A14	GBA0/IO39RSB0	D2	IO114UDB3	F6	GND
A15	GBA1/IO40RSB0	D3	GAC2/IO116UDB3	F7	VCC
A16	GND	D4	NC	F8	VCC
B1	GAB2/IO117UDB3	D5	GNDQ	F9	VCC
B2	GAA2/IO118UDB3	D6	IO08RSB0	F10	VCC
B3	NC	D7	IO14RSB0	F11	GND
B4	GAB1/IO03RSB0	D8	IO18RSB0	F12	VCCIB1
B5	IO06RSB0	D9	IO23RSB0	F13	IO43NDB1
B6	IO09RSB0	D10	IO28RSB0	F14	NC
B7	IO12RSB0	D11	IO32RSB0	F15	IO47PPB1
B8	IO16RSB0	D12	GNDQ	F16	IO45NDB1
B9	IO21RSB0	D13	NC	G1	IO111NDB3
B10	IO26RSB0	D14	GBB2/IO42PPB1	G2	IO111PDB3
B11	IO30RSB0	D15	NC	G3	IO112NPB3
B12	GBC1/IO36RSB0	D16	IO44NDB1	G4	GFC1/IO110PPB3
B13	GBB0/IO37RSB0	E1	IO113PDB3	G5	VCCIB3
B14	NC	E2	NC	G6	VCC
B15	GBA2/IO41PDB1	E3	IO116VDB3	G7	GND
B16	IO41NDB1	E4	IO115UDB3	G8	GND
C1	IO117VDB3	E5	VMV0	G9	GND
C2	IO118VDB3	E6	VCCIB0	G10	GND
C3	NC	E7	VCCIB0	G11	VCC
C4	NC	E8	IO19RSB0	G12	VCCIB1

Revision	Changes	Page
Revision 2 (cont'd)	The "ProASIC3 FPGAs Package Sizes Dimensions" table is new.	
	In the "ProASIC3 Ordering Information", the QN package measurements were updated to include both 0.4 mm and 0.5 mm.	IV
	In the General Description section the number of I/Os was updated from 288 to 300.	1-1
Packaging v1.2	The "QN68 – Bottom View" section is new.	4-3
Revision 1 (Feb 2008) DC and Switching Characteristics v1.1	In Table 2-2 • Recommended Operating Conditions 1, T_J was listed in the symbol column and was incorrect. It was corrected and changed to T_A .	2-2
	In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades.	2-3
	The "PLL Behavior at Brownout Condition" section is new.	2-4
	In the "PLL Contribution—PPLL" section, the following was deleted: FCLKIN is the input clock frequency.	2-14
	In Table 2-21 • Summary of Maximum and Minimum DC Input Levels, the note was incorrect. It previously said T_J and it was corrected and changed to T_A .	2-21
	In Table 2-115 • ProASIC3 CCC/PLL Specification, the SCLK parameter and note 1 are new.	2-90
	Table 2-125 • JTAG 1532 was populated with the parameter data, which was not in the previous version of the document.	2-108
Packaging v1.1	In the "VQ100" A3P030 pin table, the function of pin 63 was incorrect and changed from IO39RSB0 to GDB0/IO38RSB0.	4-19
Revision 0 (Jan 2008)	This document was previously in datasheet v2.2. As a result of moving to the handbook format, Actel has restarted the version numbers.	N/A
v2.2 (July 2007)	The M7 and M1 device part numbers have been updated in Table 1 • ProASIC3 Product Family, "I/Os Per Package", "Automotive ProASIC3 Ordering Information", "Temperature Grade Offerings", and "Speed Grade and Temperature Grade Matrix".	i, ii, iii, iii, iv
	The words "ambient temperature" were added to the temperature range in the "Automotive ProASIC3 Ordering Information", "Temperature Grade Offerings", and "Speed Grade and Temperature Grade Matrix" sections.	iii, iv
	The T _J parameter in Table 3-2 \cdot Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 4–6 were added.	3-2
v2.1 (May 2007)	In the "Clock Conditioning Circuit (CCC) and PLL" section, the Wide Input Frequency Range (1.5 MHz to 200 MHz) was changed to (1.5 MHz to 350 MHz).	i
	The "Clock Conditioning Circuit (CCC) and PLL" section was updated.	i
	In the "I/Os Per Package" section, the A3P030, A3P060, A3P125, ACP250, and A3P600 device I/Os were updated.	ii
	Table 3-5 • Package Thermal Resistivities was updated with A3P1000information. The note below the table is also new.	3-5

Revision	Changes	Page		
Advance v0.6 (continued)	The "Programming" section was updated to include information concerning serialization.			
	The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information.			
	"DC and Switching Characteristics" chapter was updated with new information.	3-1		
	The A3P060 "100-Pin VQFP" pin table was updated.			
	The A3P125 "100-Pin VQFP" pin table was updated.			
	The A3P060 "144-Pin TQFP" pin table was updated.	4-16		
	The A3P125 "144-Pin TQFP" pin table was updated.	4-18		
	The A3P125 "208-Pin PQFP" pin table was updated.	4-21		
	The A3P400 "208-Pin PQFP" pin table was updated.	4-25		
	The A3P060 "144-Pin FBGA" pin table was updated.	4-32		
	The A3P125 "144-Pin FBGA" pin table is new.	4-34		
	The A3P400 "144-Pin FBGA" is new.	4-38		
	The A3P400 "256-Pin FBGA" was updated.	4-48		
	The A3P1000 "256-Pin FBGA" was updated.			
	The A3P400 "484-Pin FBGA" was updated.			
	The A3P1000 "484-Pin FBGA" was updated.			
	The A3P250 "100-Pin VQFP*" pin table was updated.			
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23		
	The A3P1000 "208-Pin PQFP*" pin table was updated.			
	The A3P250 "144-Pin FBGA*" pin table was updated.			
	The A3P1000 "144-Pin FBGA*" pin table was updated.			
	The A3P250 "256-Pin FBGA*" pin table was updated.			
	The A3P1000 "256-Pin FBGA*" pin table was updated.			
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68		
Advance v0.5 (November 2005)	The "I/Os Per Package" table was updated for the following devices and packages:	ii		
	DevicePackageA3P250/M7ACP250VQ100			
	A3P250/M7ACP250 FG144 A3P1000 FG256			
Advance v0.4	M7 device information is new.	N/A		
	The I/O counts in the "I/Os Per Package" table were updated.			
Advance v0.3	The "I/Os Per Package" table was updated.	" ii		
	M7 device information is new.			
	Table 2-4 ProASIC3 Globals/Spines/Rows by Device was updated to include			
	the number or rows in each top or bottom spine.	2-16		
	EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options.	2-24		

Revision	Changes	Page
Advance v0.2, (continued)	Table 2-43 was updated.	2-64
	Table 2-18 was updated.	2-45
	Pin descriptions in the "JTAG Pins" section were updated.	2-51
	The "User I/O Naming Convention" section was updated.	2-48
	Table 3-7 was updated.	3-6
	The "Methodology" section was updated.	3-10
	Table 3-40 and Table 3-39 were updated.	3-33,3-32
	The A3P250 "100-Pin VQFP*" pin table was updated.	4-14
	The A3P250 "208-Pin PQFP*" pin table was updated.	4-23
	The A3P1000 "208-Pin PQFP*" pin table was updated.	4-29
	The A3P250 "144-Pin FBGA*" pin table was updated.	4-36
	The A3P1000 "144-Pin FBGA*" pin table was updated.	4-32
	The A3P250 "256-Pin FBGA*" pin table was updated.	4-45
	The A3P1000 "256-Pin FBGA*" pin table was updated.	4-54
	The A3P1000 "484-Pin FBGA*" pin table was updated.	4-68